
J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 188–206, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Native to HTML5: A Real-World Mobile
Application Case Study

Rachel Gawley, Jonathan Barr, and Michael Barr

JamPot Technologies Limited, Mobile Computing Research Department,
405 Holywood Road, Belfast, UK

{rachel.gawley,jonathan.barr,michael.barr}@jampot.ie

Abstract. HTML5 is capable of producing media-rich and interactive webpages
that function more like desktop applications than webpages. Increasing mobile
browser support for the standard has enabled the development of mobile web
applications as an alternative to native applications. This paper presents a
project, which recreated a cross-compiled native application in HTML5. The
experience provides an insight into developing mobile web applications and
identifies some of the limitations associated with using HTML5 on mobile
devices.

Keywords: HTML5, mobile applications, cross-platform.

1 Introduction

By the end of 2010 there were approximately 5.3 billion mobile subscriptions [1],
which was equivalent to 77% of the world population. The sale of mobile phones is
increasing with smartphones showing the biggest increase. In Q1 2011, smartphone
sales were 85% greater than Q1 2010 [2]. The prevalence of the smartphone,
especially in the developed world [1], is creating a culture where a mobile phone
becomes an integral part of the user’s life as it is also a media player, pocket gaming
console, business tool, means to connect to the Internet and even a substitute laptop.

Mobile applications (apps) are also becoming an increasingly common feature in
daily life with 43% of American mobile phone users having apps on their phone [3].
In the last 3 years, there have been over 350,000 applications developed [4]. These
applications have been downloaded over 10.9 billion times in 2010 and it is predicted
that the number of downloads will be 76.9 billion in 2014 [5]. Nevertheless, Gartner
analysts [2] noted that

“Every time a user downloads a native app to their smartphone or puts their data
into a platform’s cloud service, they are committing to a particular ecosystem and
reducing the chances of switching to a new platform”

This is an issue for both the end-user and mobile application developers. Ideally,
end-users should have the same applications and associated assets available to them
regardless of operating system/device. Consequently, application developers are
increasingly required to redevelop the same application for different mobile

 Native to HTML5: A Real-World Mobile Application Case Study 189

platforms. This is not a trivial task as the skill sets required differ between the various
mobile runtime environments.

The ultimate application development goal is to write an application once and
deploy it to every screen. This includes desktop devices, tablets, mobile devices and
even smart televisions [6]. No complete solution exists [7]. Nevertheless, there are
mechanisms that enable the ‘write once and deploy to multiple platforms’ approach.
This is referred to as cross-platform development and often produces cross-compiled
code. The most common cross-platform approaches are:

• Appcelerator Titanium [8] – a native app builder for iOS and Android using
web technologies, for example, HTML, CSS, JavaScript, PHP, Ruby, etc.

• Mono [9] – a software development kit that enables the deployment of .Net
applications to Unix, Mac OSX, Windows (desktop and phone), iOS and
Android as native applications.

• Phone Gap [10] – a hybrid app building platform that enables the creation of
mobile applications for iOS, Android, BlackBerry, Windows and HP using
standard web technologies, i.e. HTML, CSS and JavaScript.

• Adobe Flash [11] – an application-building environment used to produce
native apps for iOS, Android, BlackBerry Playbook, Windows, Unix and Mac
OSX.

• Corona [12] – a mobile development platform that enables the creation of
native iOS and Android apps.

• Unity3D [13] – a development environment that enables the production of 3D
game applications for Windows, Mac OSX, iOS, Android and games
consoles.

Using a cross-platform approach can decrease development time as a mobile
application is written once and deployed to multiple platforms as opposed to
developing an individual application for each environment. The cross-platform
approach can be used to produce applications that will be accepted into the various
mobile applications stores, for example, Apple store, Android Market, Amazon
Appstore for Android, BlackBerry App World, etc. Unfortunately, the app stores
could, at any time, change their terms and conditions and no longer allow cross-
compiled applications. In April 2010, Apple changed their developer agreement to
only accept applications written in Objective C, C or C++ into their app store [14].
Any approach that creates final iOS machine code from other programming
languages, for example, Adobe Flash, MonoTouch, etc. were no longer accepted.
Apple, once again, changed their developer license agreement in September 2010,
which relaxed the restriction on development tools used to create iOS applications
[15]. Currently, cross-compiled applications are accepted into all major mobile
application stores and therefore provide an excellent means of creating and
distributing multi-platform mobile applications. However, the issue of app stores
controlling the acceptance and distribution of mobile applications raises the question

“Whether the future of mobile applications is on the app store or with an
alternative means of implementing and distributing cross-platform apps?”

The development of HTML5 and browser support for the evolving standards has
created an environment suitable for developing cross-platform mobile and desktop

190 R. Gawley, J. Barr, and M. Barr

applications that do not need an app store for distribution. Accessing applications via
a browser is naturally cross-platform with desktop, tablets, laptops, mobiles, games
consoles and even some televisions providing access to the Internet via a browser.
However, HTML5 is an emerging technology as standards are currently being
discussed [16]. Each browser uses an underlying layout engine (for example,
WebKit, Gecko, Trident, etc.), which all have differing means of processing the
HTML5 tags. This discrepancy between layout engines makes it more challenging to
provide one solution for all screens. It has been shown that HTML5 provides many
features required for media and content rich mobile applications [7]. The potential to
write once and distribute everywhere, without an app store, means that HTML5 is a
viable alternative to native mobile application development.

The aim of the project, described here, is to provide an insight into the
practicalities and issues surrounding HTML5 mobile application development. This is
achieved by replicating an existing native application created using cross-platform
techniques in HTML5. This paper is structured to address the issues associated with
creating an HTML5 mobile application and is organized as follows: section 2
describes the background to the project, including the specification of the existing
mobile application; section 3 describes the techniques used to create the online
HTML5 application; section 4 discusses the issues relating to going offline; section 5
presents a potential solution to the issue of creating a dynamic offline HTML5
application; section 6 compares the HTML5 app to the native application created
using cross-platform techniques; section 7 presents and discusses some open issues
relating to the future of HTML5 mobile applications; section 8 provides a brief
conclusion.

2 Background

As part of a previous research project, a mobile application, ‘SoundBoom’, was
created using cross-platform technologies similar to those mentioned in the
introduction. The cross-platform techniques used in the development are proprietary
to JamPot Technologies Limited and beyond the scope of this paper. However, the
resulting application provides an excellent benchmark to compare other cross-
platform techniques such as HTML5.

2.1 SoundBoom Requirements

SoundBoom was created as part of a project aimed at utilising cross-platform
technologies to produce a media-rich application that also provides a compelling user
experience. To provide a valuable insight, the resulting mobile application had to
satisfy four high-level requirements:

• Contain media-rich content
• Utilise device capabilities
• Deliver dynamic content
• Provide the user with the ability to customise the application

 Native to HTML5: A Real-World Mobile Application Case Study 191

2.2 Existing SoundBoom Application

The SoundBoom application was created, using cross-platform technologies, to meet
the requirements documented in section 2.1 by providing:

1. A traditional soundboard that plays sounds when image icons are clicked,
shown in Fig. 1.

2. A means of creating a custom soundboard using the device capabilities
(camera, microphone and asset library).

3. The ability to save a custom soundboard to the cloud via web services.
4. The option to download a custom soundboard from the cloud thus providing

dynamic content.

The resulting SoundBoom application was submitted to and is available on the
following app stores: iTunes [17], BlackBerry App World [18], Android Market [19],
Amazon [20] and Intel AppUp [21]. The application has also been deployed
internally on the following platforms: MeeGo [22], Samsung Smart TV [6], WeTab
[23], Mac OS X [24], Windows (XP, Vista, 7) [25].

Fig. 1. Screenshot of SoundBoom Application

192 R. Gawley, J. Barr, and M. Barr

2.3 HTML5 SoundBoom Specification

The success of SoundBoom provided an ideal foundation to investigate HTML5 as an
alternative approach to cross-platform mobile application development. The aim of
the project, described in this paper, is to replicate the SoundBoom mobile application
in HTML5. Unfortunately, HTML5 mobile applications cannot access device
capabilities such as the camera or microphone. It is possible to use a small native
application such as photopicker [26], which is launched from the browser, to provide
access to the device camera and upload images to a server. As this solution requires a
native application that is downloaded from an app store it cannot be utilised for the
purposes of this project; it was decided that no native applications or techniques could
be used in the solution. The creation of custom soundboards relies heavily on
interacting with the device capabilities and, given the current state of HTML5, it
would be difficult to recreate accurately the custom soundboard creation functionality.
Therefore, the decision was made to create a read-only HTML5 SoundBoom
application as version 1.0.

Version 1.0 will provide an interactive farmyard soundboard, which will play
sounds when icons are clicked. The application will also provide a means to
download custom soundboards, which have been previously created by the original
SoundBoom application available on the app stores. Producing a read-only HTML5
version of SoundBoom is not a trivial task as the application is both media-rich and
can be populated with dynamic content. The application will stretch some of the key
features of the current HTML5 specification to its limits.

2.4 HTML5 as a Runtime Environment

HTML5 is the latest revision of HTML (HyperText Markup Language) and is still
currently under development by both W3C [16] and WHATWG [27]. One of the
main philosophies behind the development of HTML5 is to enable easier creation of
web applications [28]. A web application looks and feels more like a desktop
application, for example, a photo-editing tool, mapping utility, etc. Web applications
often rely heavily on JavaScript or third-party plug-ins, for example, Adobe Flash
[11], Microsoft Silverlight [29], etc. to embed media or enable users to interact with
elements of the webpage. With the introduction of HTML5 standards, the traditional
browser is evolving towards a runtime environment rather than just a means of
rendering HTML.

HTML5 was not specifically created for a mobile environment but smartphones
have evolved and most have sophisticated mobile browsers many of which are
capable of parsing HTML5. This coupled with the following features make HTML5
mobile application development possible:

• Offline viewing – local storage and the application cache provide a means to
store assets and information locally on the device and thus continual
connectivity is not required.

• Rich media – <canvas>, <video> and <audio> tags provide a means of
adding rich media content without additional third-party plug-ins.

 Native to HTML5: A Real-World Mobile Application Case Study 193

The main problem associated with using HTML5 for mobile applications is the
varying levels of browser support. Opera, BlackBerry and the iOS 4.2+ mobile
browsers provide the best HTML5 support [30]. An additional issue is capturing and
responding to touches on the screen as HTML normally responds to mouse-clicks
rather than touch-events. Nevertheless, the current specification of HTML5 and
mobile browser support is sufficient to create a read-only version of SoundBoom.

3 SoundBoom HTML5 Application

The aim of the project is to reproduce a read-only version of SoundBoom in HTML5
without any third-party plug-ins. Additional functionality will be provided via the
well-known cross-browser JavaScript library, jQuery [31], and CSS3 [32].

The first stage of the project was to create the static part of the application. The
term ‘static’ refers to the HTML pages of the application that utilise assets that are
known on the first download/access of the application, even though the assets may be
dynamic in when and how they are used in the application. The static part of
SoundBoom is the farmyard soundboard, which consists of a background image and
12 images, each associated with an audio file. When an icon is clicked the associated
audio file is played. The key features of the static application are:

• Image display
• Orientation specific layout
• Audio playback

3.1 Image Display

The <canvas> tag provides a 2D graphical area, which can have graphics, lines, text
and animations, added in it. The canvas is particularly useful when creating detailed
animations and is therefore suitable for game applications. It is very important to only
use the canvas when another existing element will not suffice [33]. This is true for
SoundBoom; the canvas element is not required as the image icons can be displayed
with traditional tag. The application needs to accommodate different screen
sizes and in particular smaller screen sizes associated with mobiles. This is achieved
using media queries in CSS3, shown overleaf, which enables style customisation
based on the user’s display [32]. The icons sizes are usually 150px, however, on
small screens the size is halved to 75px.

The media query detects screens with a width less than 700px and sets the width of
all the divs with class ‘SBImage’ to 75px. Each image icon is wrapped inside a div
with the class ‘SBImage’. The min-device-pixel-ratio is used to detect browsers on
mobile devices, for example Safari on iOS, and scale the images accordingly.

194 R. Gawley, J. Barr, and M. Barr

CSS code to reduce image size

@media only screen and (max-width: 700px)
{
 .SBImage
 {
 width:75px;
 height:75px;
 }
}

@media only screen and (-webkit-min-device-pixel-ratio:
1.5), only screen and (-o-min-device-pixel-ratio: 3/2),
only screen and (min-device-pixel-ratio: 1.5)
{
 .SBImage
 {
 width:75px;
 height:75px;
 }
}

3.2 Orientation Specific Layout

Traditional webpages and web apps designed for desktop devices have a constant
orientation, whereas smartphones are often designed to be used in either portrait or
landscape. Therefore, HTML5 mobile applications need to accommodate the change
in orientation and its impact on the layout of the application. This can be achieved
using the window.onorientationchanged event, which is supported by WebKit, the
layout engine used by the default browsers on iOS, BlackBerry and Android devices.
The JavaScript function, updateOrientation, presented overleaf, is called both onload
and onorientationchanged. The function changes the style of the application
according to the orientation. When the orientation is 0 or 180, a portrait style is used
and when the orientation is -90 or 90 a landscape style is used. Changing the style
based on the orientation allows the best use of space in the application.
Unfortunately, only WebKit supports the onorientationchanged event and orientation
value, which means that other mobile browsers, mainly Opera mobile, will not be able
to detect the event and change orientation.

 Native to HTML5: A Real-World Mobile Application Case Study 195

Function to update layout to match orientation of device

function updateOrientation()
{
 switch(window.orientation)
 {
 case 0:$(".imgSB").removeClass("landscape").
 addClass("portrait");
 break;

 case -90:$(".imgSB").removeClass("portrait").
 addClass("landscape");
 break;

 case 90: $(".imgSB").removeClass("portrait").
 addClass("landscape");
 break;

 case 180:$(".imgSB").removeClass("landscape").
 addClass("portrait");
 break;

 default:$(".imgSB").removeClass("portrait").
 addClass("landscape");
 break;
 }
}

When this code was created the BlackBerry PlayBook had not been released. It was
only when the application was tested on a PlayBook that a problem was discovered.
The default orientation of the PlayBook is landscape opposed to portrait.
Consequently, the orientation of 0 and 180 is actually considered to be landscape and
not portrait causing the layout to be switched. A simple solution to this, shown
below, is used to determine orientation based on width and height. If the width is
greater than the height the device is in the landscape position and vice versa.

Function to update layout based on width and height

function updateOrientation(){
 var width = window.innerWidth;
 var height = window.innerHeight;

 if (width >= height)
 $(".imgSB").removeClass("portrait").
 addClass("landscape");
 else
 $(".imgSB").removeClass("landscape").
 addClass("portrait");}

196 R. Gawley, J. Barr, and M. Barr

3.3 Audio Playback

The HTML5 specification originally included an audio codec recommendation;
however, Apple and Nokia objected and the codec requirement was dropped from the
specification [33]. Consequently, each HTML5 engine uses different codecs and
supports different audio files. The most commonly supported audio file types are
MP3 and Ogg. MP3 is supported by WebKit based browsers and Internet Explorer,
whereas, Ogg is supported by Mozilla. Ideally, both MP3 and Ogg formats would be
supported in an application to ensure cross-platform compatibility. For the purposes
of this project, it was decided to support MP3 format for the following reasons:

• MP3 files are smaller than Ogg files which makes downloading multiple
audio files a better user experience.

• The default browsers on iOS, Android and BlackBerry devices support MP3.
Opera mobile browser and Internet Explorer 9 also support the MP3 format.

• MP3 files are used in the native SoundBoom applications.

There is potential to update the application to accommodate other audio files when the
HTML5 audio specification is standardised. The <audio> tag introduced in HTML5
enables audio files to be played in the browser without additional plug-ins. The code
used in the SoundBoom application is shown below. The function plays a sound file
from its relative location, which is stored in the arrAudio array. The JavaScript
function has an integer, soundPosition, as a parameter, which indicates the position in
the array of the audio file location. The playSound function is invoked from an
onclick event associated with an image icon.

JavaScript to load and play audio files

function playSound(soundPosition)
{
 var audioclip;
 if (Modernizr.audio && (Modernizr.audio.mp3 != ""))
 {
 audioclip = arrAudio[soundFile]
 audioclip.load();
 audioclip.play();
 }
 else
 alert("Your browser does not support audio");
}

The JavaScript library Modernizr [34] is used to detect browser capabilities and thus
provide a custom solution specific to the browser. The Modernizr script detects
whether the browser supports the <audio> tag and is capable of playing MP3s. Only
if these features are supported is an attempt to play the clip made, otherwise an alert is
displayed.

 Native to HTML5: A Real-World Mobile Application Case Study 197

4 Going Offline

Offline support is a key feature of the HTML5 specification that supports mobile
application development. Offline support enables the download and storage of key assets
to ensure the application will remain functional when a connection is not available [16].

4.1 Manifest and Application Cache

The manifest file associated with the HTML page lists the assets to be downloaded and
stored locally in the application cache. The file is referenced in the <HTML> tag using
manifest=“/name.manifest”. The MIME type of the manifest file must be ‘text/cache-
manifest’. The manifest file must begin with ‘CACHE MANIFEST’ and include an UTF-
8 encoded, line-separated list of assets. The SoundBoom manifest is shown below; for
the sake of brevity, only some of the audio and image files are listed.

SoundBoom manifest listing

CACHE MANIFEST
revision 47
CACHE:
js/soundboom.js
js/libs/jquery-1.6.2.min.js
js/libs/modernizr-1.7.min.js
img/h/barn.jpg
img/h/cat.jpg
img/h/cow.jpg
img/h/dog.jpg
...
error.htm
index.htm
sounds/cat.mp3
sounds/cow.mp3
sounds/dog.mp3
sounds/donkey.mp3
...
css/style.css?v=1
NETWORK:
js/blank.js

Comment lines in a manifest file start with #. The manifest, listed above, has a
comment line with a revision number. Including a revision number comment
provides a simple but effective means of ensuring application updates are propagated
to devices. The offline cache will only be updated when the manifest changes and
not when the files listed change. Within the manifest the inclusion of a revision
number, and its subsequent increment when any of the files change, ensures the
changes are downloaded when the application is accessed. The files listed under the

198 R. Gawley, J. Barr, and M. Barr

‘CACHE:’ heading are required for the application to work offline and will be
downloaded and stored locally. All images, sounds, style sheets, scripts and HTML
pages required for the application to run successfully offline are listed in the CACHE.
The items listed under the ‘NETWORK:’ heading are never cached; a network
connection is required to access the files.

4.2 Offline Audio

Unfortunately, audio file caching is not well supported in HTML5 at present. It was
observed that audio files listed in the CACHE were not downloaded. One potential
solution is to use Base64 encoding to convert the audio file to an ASCII string format,
which is stored in an XML file. XML files can be cached if they are listed in the
manifest. This offline audio solution only works in desktop browsers, as mobile
browsers on iOS and android devices do not support playing Base64-encoded audio.
Mobile devices using the HTML5 application cannot play audio when offline.

The best overall solution is to play MP3 audio files when a connection is available
and play Base64 audio strings when offline. This at least provides an offline desktop
solution. The function [35], shown below, provides a means of determining the
connectivity status, which is needed to implement the aforementioned solution.

Function to determine connectivity status

function checkNetworkStatus()
{
 if(navigator.onLine)
 {
 $.ajaxSetup({
 async: true,
 cache: false,
 dataType: “json”,
 error: function (req, status, ex)
 {
 console.log("Error: " + ex);
 online = false;
 },
 success: function (data, status, req)
 {
 online = true;
 },
 timeout: 5000,
 type: "GET",
 url: "js/blank.js"});
 $.ajax();
 }
 else
 online = false;
}

 Native to HTML5: A Real-World Mobile Application Case Study 199

There is a JavaScript function navigator.onLine that returns false if there is no
Internet connection; however, it is unreliable and often returns true when it a
connection is not available. Therefore, this alternative method of determining
connectivity is used in the final solution. The JavaScript function
checkNetworkStatus attempts to return a JSON object stored in the blank.js file. As
blank.js is listed in the NETWORK section of the manifest it will not be cached.
Therefore, if the JSON in the JavaScript file can be accessed it can be inferred that the
device is online.

5 Dynamic Content: Cloud Interaction

A key feature of the original SoundBoom, shown in Fig. 2, is the ability to create
user-generated soundboards, upload the assets of the soundboards to the cloud, which
can then be downloaded to other devices and platforms running SoundBoom.

Fig. 2. SoundBoom cloud interaction on multiple devices

Version 1.0 of HTML5 SoundBoom is read-only; and enables users to download
custom soundboards and their associated assets. Fig. 3 is a message sequence chart of
the interaction between the original SoundBoom application and the cloud as a means
of generating dynamic content. A user enters a PIN into the application and selects to
load the soundboard associated with the unique PIN. A request is sent to the cloud; if
there exists a custom soundboard associated with the PIN the details of the assets
(absolute URLs) are returned to the application. A connection is required to make the
request and download the assets. Once the assets have been downloaded they are
stored for offline access within the application. Only when another custom
soundboard is downloaded will the assets be replaced.

200 R. Gawley, J. Barr, and M. Barr

Fig. 3. Message sequence chart of SoundBoom cloud interaction

The key to replicating the original SoundBoom is storing locally the assets of the
soundboard for offline viewing. The issues relating to going offline have been
discussed in section 4 but caching dynamic content has not been addressed. The
problem with caching dynamic content is the fact that the assets are not known when
the page is accessed and are not present in the manifest file when the page is loaded.
A means of dynamically adding to the application cache after the page has loaded
would be a good solution to the dynamic caching issue. The Mozilla browser has
suggested the moz-add function to add files to the application cache; unfortunately,
this is experimental and not part of the official specification.

There is no reliable means of dynamically adding to the manifest at run-time on the
client-side, therefore, the problem must be solved on the server side (cloud). The
solution implemented in the HTML5 SoundBoom application is shown in the
message sequence chart in Fig. 4. When a user accesses the cloud with their unique
PIN, a new manifest file is created on the cloud listing all the assets of the custom
soundboard associated with the PIN. A new HTML file of the custom soundboard is
also created and includes a link to the aforementioned manifest file. Both the HTML
and manifest files are named using GUIDs to prevent users accessing the soundboards
by guessing the naming convention.

 Native to HTML5: A Real-World Mobile Application Case Study 201

The GUID is linked to a unique instance of a custom soundboard. If the unique
soundboard has been accessed previously, the HTML and manifest files will already
exist on the cloud and will not be recreated thus reducing the stress on the cloud. On
successful competition of the request, the cloud responds with the location of the new
HTML file, which is then loaded into the browser. When the page loads, the dynamic
content is cached due to the listings provided in the new manifest file.

Fig. 4. Message sequence chart of manifest and HTML generation

6 Cross-Platform vs. HTML5

The aim of the project is to provide insight into developing cross-platform mobile
applications in HTML5. The SoundBoom application had been developed previously
using cross-platform approaches. The result is an application that was coded once,
cross-compiled and runs natively on different platforms. Replicating SoundBoom in
HTML5 provides an insight into using HTML5 as a means of developing mobile
applications. Eight key features were used to compare the two development
approaches: development time; cloud interaction; user-interface; media content
(audio); multi-platform performance; offline performance; ease of distribution; ease
of updating. One mark is awarded to the approach that satisfies the feature the best
and zero to the other. If both approaches performed equally they are both awarded
one mark. Table 1 presents the results and the overall total for each approach.

202 R. Gawley, J. Barr, and M. Barr

Table 1. Cross-compiled native applications vs. HTML5 applications

Comparison Feature Native HTML5

Development time 1 1

Cloud interaction 1 1

User-interface 1 1

Media content (audio) 1 1

Multi-platform performance 1 0

Offline performance 1 0

Ease of distribution 0 1

Ease of updating 0 1

Total 6 6

The cross-compiled native application and the HTML5 application have a total
score of six. The development time for both approaches was approximately the same;
the cloud services for the original SoundBoom were reused in the HTML5 version
and this was taken into consideration when scoring development time. Interaction
with the cloud was easily achieved with cross-platform techniques and HTML5.
CSS3 and JavaScript facilitated the creation of a HTML5 interface that replicated the
original SoundBoom design. Both approaches had the same issue of finding an audio
format that provides a solution for all devices.

The application developed using the cross-platform approach worked consistently
on all devices/platforms tested. The HTML5 approach worked on many platforms
(iOS, Android, BlackBerry PlayBook, Windows and Mac OSX), however, it did not
function consistently across all platforms due to variation in browsers. Once the
custom assets were downloaded to the cross-platform SoundBoom there were always
available even without connectivity. The HTML5 SoundBoom does not provide a
truly offline application as audio files cannot be cached and Base64 encoded audio
strings, which can be cached, cannot be played on mobile browsers.

HTML5 applications are very easy to distribute – the page is uploaded on to a
server and is instantaneously available to any device with a browser. Cross-compiled
applications need to be submitted to many app stores. It is only once the application
has been accepted by a store that is available to the public. There is no guarantee that
the application will be accepted and the process can take up to three weeks to
complete. Similarly, updating requires the resubmission of the application to each
store and the update will take time to process. Updating the HTML5 application
requires updating files on a server and changing the manifest file. The update is
available everywhere instantaneously and will automatically download the next time
the user accesses the application when connected to the Internet.

 Native to HTML5: A Real-World Mobile Application Case Study 203

In general, both approaches are comparable in development time, cloud
interactivity, user-interface building and the ability to include media. Focusing on
where the two approaches differ (one approach is identified as providing a better
solution) is essential to providing insight into HTML5. The main areas where the
approaches differ are: cross-platform performance; offline performance; distribution
and updating of the application.

7 HTML5 Analysis

The SoundBoom mobile application was replicated in HTML5. The results indicated
that HTML5 is a valid means of creating cross-platform mobile applications but there
are limitations that need addressed. The main issues with HTML5 identified from the
SoundBoom project are:

• Consistent cross-platform performance
• Consistent offline performance

These issues can be attributed to the fact that HTML5 is an evolving standard with
differing runtime environments provided by browsers. HTML5 is more easily
distributed when compared to native applications and this should be viewed as a
positive feature. As it differs from the traditional app store approach a different
business model is required. It is worth noting that the ease of distribution will affect
the protection of Intellectual Property.

7.1 The Evolving Standard

HTML5 is an evolving standard under development by both WHATWG and W3C.
The current state of WHATWG is in ‘Draft Standard’ and W3C is in ‘Working Draft’.
The specification of HTML5 is an on-going process; it will be many years before
reaching the final W3C recommendation state. Even though the specification of
HTML5 is not stable, all the major web browsers have committed to support it.

Browsers do not have a rigid specification to follow and therefore browser layout
engines differ in their support for HTML5 tags. The differing browser layout engines
make it difficult to provide a solution that works consistently across all devices. The
HTML5 SoundBoom application targeted the WebKit implementation of HTML5 as
it is the layout engine most frequently used by mobile devices.

The debate surrounding HTML5 has also caused previously included specifications
to be dropped. For example, audio codecs that were supported were dropped and
currently there is no codec specification in HTML5. Also, the delay in deciding on a
specification has forced vendors to make a choice without knowing whether or not
their solution will become part of HTML5 specification. For example, Safari,
Chrome and Opera all use Web SQL [37] as a means of storing data that can be
queried. In November 2010, W3C indicated that the specification was “no longer in
active maintenance” and that the Indexed Data API is now supported. Three of the
main browsers use a HTML5 database implementation that is no longer in the W3C
specification. Developers will continue to use this functionality as long as browsers

204 R. Gawley, J. Barr, and M. Barr

support it. These kinds of situations will continue to cause differences between
browser support for HTML5 thus hindering the adoption of HTML5 for mobile
application development.

7.2 HTML5 Mobile Application Business Model

HTML5 applications do not require an app store for distribution. The applications can
be freely distributed on the Internet and just as easily updated. The ease of
distribution is a positive aspect of HTML5 mobile applications but has far-reaching
consequences. Distributing mobile applications via an app store simplifies the process
of receiving payment and distributing the product. The app creator sets the price,
adds a description, details, etc. and the app store does the rest. The app store even
provides a target audience interested in mobile applications. Even though the
commercialisation mechanisms have been provided by the app store the key to
success is getting people to purchase the app.

The HTML5 mobile application distribution model and therefore business model is
completely different. HTML5 applications are easily distributed on the web – anyone
with an Internet connection can access an HTML5 application. Bypassing the app
store and connecting directly to the consumer requires the app developer to assume
the billing responsibility for their app. Of course, an ecommerce system could be
built around HTML5 applications to require payment to access the application.
However, the open-source nature of HTML5 would mean that it would be difficult to
protect the code and stop it being copied and distributed freely. One alternative
approach could be to embrace the easy distribution by making the application free and
adopting a different business model. Another approach would provide free access to
the app and require the user to subscribe to a paid service to unlock full functionality.
For example, SoundBoom allowed the user to download a custom soundboard via a
unique PIN. A user could pay a set fee or subscription and be provided with a PIN to
access the customisation/download functionality. An ecommerce system to manage
payment/subscription could be easily implemented.

8 Conclusion

The aim of the project, presented here, was to recreate a cross-compiled native
application in HTML5. The resulting HTML5 application included much of the
functionality of the original. The solution also included a method to download and
cache dynamic content. However, there were two features the HTML5 application
could not provide: playing audio offline on mobile devices; accessing device
capabilities. The latter was not even attempted in this project due to lack of HTML5
support. For HTML5 to provide a real alternative to native application development
these issues need to be addressed either by W3C and WHATWG or the browser
vendors.

 Native to HTML5: A Real-World Mobile Application Case Study 205

References

1. ITU press release,
http://www.itu.int/net/pressoffice/press_releases/2010/
39.aspx

2. Gartner press release, http://www.gartner.com/it/page.jsp?id=1689814
3. The Rise of Apps Culture, http://pewinternet.org/Reports/2010/

The-Rise-of-Apps-Culture/Overview.aspx
4. Mobile App Internet Recasts The Software And Service Landscape,

http://www.forrester.com/rb/Research/mobile_app_internet_rec
asts_software_and_services/q/id/58179/t/2

5. IDC study, http://www.idc.com/research/viewdocsynopsis.jsp?conta
inerId=225668

6. Samsung Smart TV, http://www.samsung.com/uk/smarttv/
7. Melamed, T., Clayton, B.: A Comparative Evaluation of HTML5 as a Pervasive Media

Platform. In: Phan, T., Montanari, R., Zerfos, P. (eds.) MobiCASE 2009. LNICST, vol. 35,
pp. 307–325. Springer, Heidelberg (2010)

8. Appcelerator Titanium, http://www.appcelerator.com/
9. Mono, http://www.mono-project.com/Main_Page

10. Phone Gap, http://www.phonegap.com/
11. Adobe Flash Player, http://www.adobe.com/products/flashplayer/
12. Corona, http://www.anscamobile.com/
13. Unity 3D, http://unity3d.com/
14. New iPhone Developer Agreement,

http://daringfireball.net/2010/04/iphone_agreement_
bans_flash_compiler

15. Statement by Apple on App Store Review Guidelines,
http://www.apple.com/pr/library/2010/09/
09Statement-by-Apple-on-App-Store-Review-Guidelines.html

16. HTML5 Working Draft, http://www.w3.org/TR/html5/
17. SoundBoom iTunes,

http://itunes.apple.com/gb/app/soundboom/id429903896?mt=8
18. SoundBoom BlackBerry App World, http://appworld.blackberry.com/

webstore/content/38624?lang=en
19. SoundBoom Android Market, https://play.google.com/store/apps/

details?id=air.ie.jampot.SoundBoomPro&feature=search_result#
?t=W251bGwsMSwxLDEsImFpci5pZS5qYW1wb3QuU291bmRCb29tUHJvIl0

20. SoundBoom Amazon, http://www.amazon.com/JamPot-Technologies-
Ltd-SoundBoom/dp/B004X6GU56/ref=sr_1_1?ie=UTF8&s=mobile-
apps&qid=1303284579&sr=1-1

21. SoundBoom Intel AppUp,
http://www.appup.com/applications/applications-SoundBoom

22. MeeGo, https://www.meego.com/
23. WeTab, http://wetab.mobi/en/
24. Mac OSX, http://www.apple.com/macosx/
25. Microsoft Windows, http://windows.microsoft.com/en-US/windows/home
26. iPhone Photo Picker, http://code.google.com/p/iphone-photo-picker/
27. WHATWG, http://www.whatwg.org/
28. Lawson, B., Sharp, R.: Introducing HTML5. New riders (2010)

206 R. Gawley, J. Barr, and M. Barr

29. Silverlight, http://www.microsoft.com/silverlight/
30. The HTML5 Test, http://html5test.com/results.html
31. jQuery, http://jquery.com/
32. CSS3, http://www.css3.info/
33. Lubbers, P., Albers, B., Salim, D.: Pro HTML5 Programming. Apress (2010)
34. Modernizr, http://www.modernizr.com/
35. Detecting offline status in HTML5,

http://ednortonengineeringsociety.blogspot.com/2010/10/
detecting-offline-status-in-html-5.html

36. Mobile Browser Stats for (January 2011),
http://www.quirksmode.org/blog/archives/2011/02/
mobile_browser_5.html

37. Web SQL Database, http://www.w3.org/TR/webdatabase/

	Native to HTML5: A Real-World Mobile Application Case Study
	Introduction
	Background
	SoundBoom Requirements
	Existing SoundBoom Application
	HTML5 SoundBoom Specification
	HTML5 as a Runtime Environment

	SoundBoom HTML5 Application
	Image Display
	Orientation Specific Layout
	Audio Playback

	Going Offline
	Manifest and Application Cache
	Offline Audio

	Dynamic Content: Cloud Interaction
	Cross-Platform vs. HTML5
	HTML5 Analysis
	The Evolving Standard
	HTML5 Mobile Application Business Model

	Conclusion
	References

