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Abstract. In this article, we present some architectures to carry out the 
convolution computation based on carry–save adders and circular buffers 
implemented on FPGAs. Carry-save adders are not frequent in the 
implementation in FPGA devices, since these have a fast carry propagation 
path. We make use of the specific structure of the FPGA to design an optimized 
accumulator which is able to deal with carry–save additions as well as carry–
propagate additions using the same hardware. On the other hand, this structure 
of circular buffers allows the convolution computation of two signals with two 
algorithms of calculation: the input side algorithm and the output side 
algorithm, in a more efficient way. 
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1 Introduction 

There are several methods to describe the relation between the input and output of the 
linear time invariant systems (LTI), when both are represented according to time. One 
of the methods to describe it is by means of differential linear equations (in 
continuous time) or equations in differences of constant coefficients (in discrete time). 
Another way of representing this relation would be by means of a block diagram 
which represents the system as an interconnection of three elementary operations: 
multiplication, addition, and displacement in the time for systems in discreet time, or 
integration for systems in continuous time. The third form is the description by means 
of variables of state, which corresponds to a series of differential equations or in 
differences of the first order connected that represent the behavior of the 'state' of the 
system and an equation that relates the state to the output. 

However, the most widely used method to represent this relation is related to its 
response to impulse. The response to impulse is the output of the system associated 
with the input of the impulse. Considering the response to the impulse, we determine 
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the output due to an arbitrary input, expressing the entry as an exaggerated 
superposition of impulses displaced in the time. For the linearity and invariance 
regarding time, the outputs must be an exaggerated superposition of responses to the 
impulse displaced in time. The term “convolution” is used to describe the procedure 
in the determination of the output from the input and the response to the impulse. 

The response to the impulse is the output of an LTI system due to an input of an 
impulse applied in time t = 0 or n = 0. The response to the impulse characterizes 
completely the behavior of any LTI system. This can seem surprising, but it is a basic 
property of all the LTI systems. The response to the impulse is often determined by 
the knowledge of the configuration and dynamics of the system, or in case of an 
unknown system, it can be measured by applying an approximated impulse near the 
input of the system. The generation of a sequence of impulses in discreet time to 
prove an unknown system is direct. As regards the case in continuous time, a real 
impulse of zero width and infinite amplitude cannot be actually generated and is 
usually physically approximated as a great amplitude and narrow breadth pulse. This 
way, the response to the impulse can be approximated as the behaviour of the system 
in response at an entry of a high amplitude and extremely short duration. 

If the input for a linear system expresses itself as a weighted superposition of 
impulses displaced in time, then the output is a weighed superposition of the response 
of the system to each impulse displaced in time. If the system is also invariant 
regarding time, then its response to an impulse displaced in time is a version displaced 
in the time of the response of the system to an impulse. Consequently, the output of 
an LTI system is given by a weighted superposition of responses to the impulse 
displaced in the time. This weighted superposition receives the name convolution sum 
in discrete time systems and of convolution integral in continuous time systems. 

2 Convolution Sum 

Let us consider the case of discrete time systems. First of all, we express an arbitrary 
signal as a weighted superposition of impulses displaced in time. The convolution 
sum is then obtained by applying to an LTI system a signal represented this way. 

Let us consider the product of signal x [n] and the sequence of impulses δ [n], 
expressed in the following way: 

x[n] · δ[n]= x[0] · δ[n] (1)

If we generalize this relation for the product of x [n] and the sequence of impulses 
displaced in time, we obtain the following: 

x[n] · δ[n–k]= x[k] · δ[n–k] (2)

In this expression, n represents the index of time, therefore x [n] denotes a signal, 
while x [k] represents the value of signal x [n] in moment k. We see that the 
multiplication of a signal by the impulse displaced in time produces an impulse 
displaced in time with an amplitude given by the value of the signal at the moment 
when the impulse happens. 
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This property allows us to represent x [n] as a weighted sum of impulses displaced 
in time: 

x[n] = …+ x[–2] · δ[n+2] + x[–1] · δ[n+1] + x[0] · δ[n] + 

x[1] · δ[n–1] + x[2] · δ[n–2]+··· 
(3)

Which can be briefly written as follows: 

x[n] =   xሾkሿ  δሾn– kሿஶୀ–ஶ  (4)

If we call the impulse response of the system h [n], the output y [n] of the system to 
an input x [n] is the convolution of both signals: 

y[n] = x[n] * h[n] =   xሾkሿ  hሾn– kሿஶୀ–ஶ  (5)

This expression is called the convolution sum. This formula indicates that for 
calculating the convolution, we need four steps: reflection of h [k] in order to obtain h 
[-k], shift to obtain h [n–k], multiplication, and addition. The reflection operation is 
performed only once, however, the other three are repeated for all possible values of 
the displacement. 

3 Algorithms for Calculating Convolution 

Convolution is a formal mathematical operation that takes two signals and produces a 
third signal. In linear systems, the output signal y [n] of the system is obtained from 
the convolution of the input signal x [n] and from the response h [n] to the impulse 
function δ [n] of the system. 

 
 

 

Fig. 1. Physical direction of convolution: the output of a linear system is obtained from the 
convolution of the input sign and the response to the impulse of the system 

In most digital signal processing applications, the input signal is around some 
hundreds, thousands, or a few million samples in length. However, the impulse response 
is much shorter, around a few hundred samples. The mathematical operation of 
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convolution does not restrict the length of these signals, however, it determines the length 
of the output signal, which is the sum of the length of the two input signals minus one. 

In digital signal processing, convolution can be interpreted in two ways: from the 
point of view of the input signal and from the point of view of the output signal [4]. 
From the point of view of the input signal implies the analysis of how each sample of 
the input signal contributes in many values of the output signal, and it provides a 
conceptual understanding on how convolution affects the signal digital processing. 
From the point of view of the output signal, it evaluates how each sample in the 
output signal receives information from many samples of the input signal. 
Let us consider for example the convolution of two signals x (n) and h (n) with a 
length of M = 5 and N = 4 

x(n) = {x4, x3, x2, x1, x0}   length M = 5 

h(n) = {h3, h2, h1, h0}        length N = 4 

For definition of discrete convolution: 

y[i] = x[n] * h[n] =   xሾjሿ  hሾi– jሿெାே–ଵୀ  (6)

with length M + N – 1 = 5 + 4 – 1 = 8. 
Each of the samples of the output signal y (n) = {y7, y6, y5, y4, y3, y2, y1, y0}, would 

be calculated as follows: 
                               y0 = x0·h0 
                               y1 = x0·h1 + x1·h0 
                               y2 = x0·h2 + x1·h1 + x2·h0 
                               y3 = x0·h3 + x1·h2 + x2·h1 + x3·h0 

 y4 =             x1·h3 + x2·h2 + x3·h1 + x4·h0 
 y5 =                         x2·h3 + x3·h2 + x4·h1 
 y6 =                                     x3·h3 + x4·h2 
 y7 =                                                 x4·h3 

(7)

3.1 The Input Side Algorithm 

The first point of view (the input side algorithm) performs the calculation of the 
convolution of Equations (7) vertically (by columns). It analyzes how each sample in 
the input signal affects several samples of the output signal, i.e., it takes x0 and 
multiplies it by all samples of the response to the impulse h3, h2, h1, h0. In the first 
cycle, it would calculate y0 = x0 • h0, then it calculates the product terms of each 
sample output: x0 • h1, x0 • h2, x0 • h3, etc. Subsequently, it takes x1 and carries out the 
product for all h entries, i.e., it calculates x1 • h0, which when added to its first already 
calculated term product, obtains the second sample of the output signal y1, and then, it 
calculates x1• h1, x1 • h2, x1 • h3, etc. Then, it continues the operations with all samples 
of the input signal.  
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This point of view of convolution is based on the fundamental concept of signal 
digital processing: it decomposes the input, passes the components through the 
system, and synthesizes the output. 

3.2 The Output Side Algorithm 

The second point of view (the output side algorithm) performs the calculation of the 
convolution of Equations (7) horizontally (by rows). It examines how each sample of the 
output signal receives information from many points of the input signal. This viewpoint 
describes the mathematics of the convolution operation. The value of each sample of the 
output signal can be calculated regardless of the value of the other samples. 

4 Architecture MAC/CSA 

The convolution function is the key to many signal digital processing applications 
(filtering, FFT, correlation, neural networks, etc.). It is based on multiplication and 
accumulation (MAC), and this is why many high-performance FPGA devices have 
added special hardware to perform these operations. However, this is not to be found 
in low-cost FPGA devices. 

To reduce the cost of the multiplications involved in applications with constant 
terms, a constant multiplier is usually implemented or distributed arithmetic is used. 
However, in other applications, multiplication cannot be avoided, due to which the 
FPGA device manufacturers use embedded multipliers to efficiently perform this 
operation. 

The convolution involves many multiplications and accumulations. If an FPGA 
device has few multipliers, it is common to use them in an iterative way to implement 
a function. To increase performance, it is necessary to reduce cycle time, especially 
when many operations need to be performed. As the size of the multiplier is fixed in 
the FPGA and the accumulator is defined by the user, a suitable design of the hub will 
lead to further optimization of the final operation. 

Many authors have implemented different designs for the output carrying of the 
convolution operation. Current FPGA devices include fast carry logic, which allows 
the implementation of adders with carry spread (CPA) fast. More specifically, the 
path for the propagation of the carry has been specially optimized so that it is a basic 
element for the next stage, and so that together with the carry logic, and spread the 
value of the carry. For this reason, we prefer the carry propagated adders (CPA) 
against the stored carry adders (carry save adders, CSA). For not very long word 
lengths CSAs and CPAs have similar delays, but CPA uses twice the amount of 
logical resources.  

Current FPGAs are primarily designed for signal digital processing applications 
which involve quite smaller operands (16 to 32 bits). FPGA manufacturers decided to 
include additional carry logic for the implementation of fast carry-ripple adders for 
these operation sizes. Let us consider, for example, FPGA Xilinx Spartan-3 (low 
cost). Figure 2 describes the simplified architecture of a slice of this device [4], which 
is the main logical resource to implement combinational and sequential circuits. 
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Fig. 2. Simplified diagram of a slice of a Spartan-3 FPGA device [4] 

Each slice includes two four-input function generators (lookup table, G-LUT, and 
F-LUT), two flip-flops (FFY and FFX), carry logic (CYSELG, CYMUXG, CYSELF, 
CYMUXF, and CYINIT), logic gates (GAND, FAND, XORG AND XORF), and 
multiplexers with multiple functions. Each function generator is implemented using a 
programmable lookup table (LUT). 

It is necessary to remember that a full adder (FA) is a combinational circuit with 
three input bits (the bits to be added xi and yi, and the input carry cin) and two output 
bits (the sum bit si and the carry output cout).We have that si = xi ⊕ yi ⊕ cin,  and 
output carry cout = xi , si xi = yi , and cout = cin in any other case. Let us suppose that F-
LUT calculates xi ⊕ yi, then XORF door obtains the si sum bit, whereas the cout output 
carry calculation involves three multiplexers (CYOF, CYSELF, and CYMUX). The si 
sum bit is sent to another slice (X output) or stored in the FFX flip-flop. The G-LUT 
could implement a second adder within the same slice, thus integrating two bits of a 
CRA adder. Some authors [1] state that in a conventional CSA adder, it is impossible 
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to implement two full adders with independent input carries in the same slice, since 
each slice has only one carry input, which would require then double of the hardware 
resources. Therefore, the hardware design tools assign two slices when a VHDL 
description of de si and cout is carried out, without using a G-LUT.  

Figure 3 describes the simplified architecture of a slice implementing a Carry 
Propagate adder (CPA). 

 

Fig. 3. Simplified diagram of a slice implementing a CPA 

In summary, for a carry save addition (CSA) implementation on FPGA, the carry-
out bit and the sum bit are generated using two LUTs whereas a carry propagate 
addition (CPA) only needs one LUT. Thus, the hardware required for a CSA is double 
than that for a CPA. Besides, the CSA implementation does not take advantage of the 
carry propagation logic. 

In an attempt to use the available carry-logic while keeping an adder maximum delay 
bounded regardless of the word length, authors from [1] present a solution making use 
of a high radix carry-save representation. Due to this high radix representation, initially 
introduced to reduce the number of wires and registers required to store a value, the sum 
word from a carry-save number is represented in radix-r (i. e. log2 r bits per digit) and 
the carry word requires one only bit per radix-r digit, as shown in [6]. 

Using this representation allows the use of standard CPAs to add each of the sum 
word radix-r digit, connecting the carry word to the CPA carry-in inputs, hence 
obtaining the final carry word at the CPA carry-out outputs. Thanks to this, when this 
adder is implemented in an FPGA, we make use of the whole slice resources, 
including the carry logic, at the expense of increasing the addition delay. However, 
due to the great optimization of FPGAs carry logic, this delay increase is not very 
significant if the radix r is not high. 
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However, the high radix carry save representation shows an important drawback, i. 
e., numbers shifts are not an easy task. In this case, complete shifts are only available 
for radix-r digits (groups of log2 r bits), i. e., shifts are only allowed for multiple of r 
numbers. This restriction comes from the carry word processing, since it is only 
available at some specific positions within the addition operation. This limitation 
becomes an important obstacle when applying the high radix carry save representation 
to many shift and add based algorithms, and even the work presented in [1] has to 
deal with this problem. For this reason, it is interesting to look for some other ways of 
using the carry logic when implementing carry save adders. 

The authors in [2] show two different solutions for a more efficient implementation 
of FPGA-CSA than those presented in [1]. This article shows that it is possible to use 
half of the slice to implement other functions such as a 3:2 counter or 4:2 compressor. 

5 Circular Buffer Architecture for Convolution Algorithms 

The architecture proposed in [6] presents an iterative architecture for convolution 
computation which is faster than previous implementations. It is achieved by using 
redundant arithmetic. In spite of redundant arithmetic, which involves an increase of 
hardware, we have developed a technique which allows to reuse the hardware 
resources to obtain the final result in conventional arithmetic. The architecture that we 
propose for convolution is based on an iterative use of the embedded multipliers 
presented in most of modern FPGA devices. 

In this article, a combined CSA-CPA accumulator was proposed using the carry 
logic when implementing carry save adders. This combined CSA–CPA accumulator 
requires the hardware of one CSA accumulator only, without adding additional 
penalty time.  However, the way in which the records where the signals which were 
going to be convolved were stored was not described. 

Now we propose a new architecture based on the previous one [6], which includes 
circular buffers to record the samples of the input or output signals depending on the 
algorithm that we use for the calculation: from the view point of the input (input side 
algorithm) or from the point of view of the output (output side algorithm). 

The output side algorithm examines how each sample of the output signal receives 
information from many points of the input signal. This viewpoint describes the 
mathematics of the convolution operation. You can calculate the value of each sample 
of the output signal regardless of the value of the other samples. The code for this 
algorithm is as follows: 

 

For i=0 to M+N-1 
 y[i] = 0 
 For j=0 to N 
 If (i-j ≥ 0) 
 If (i-j < M) 
  y[i] = y[i] + x[j] * h[i-j] 
 End for 
End for 
 

The architecture which we propose would be the one shown in Figure 4. 
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Si, and Cpi−1 by means of the F-LUT and the associated XOR gate, whereas the carry 
is transmitted to the next slice by crossing both multiplexors (the output of the G-LUT 
is forced to one if Sel=1). 

The input side algorithm analyzes how each sample in the input signal affects 
several samples of the output signal. The code for the implementation of this 
algorithm would be as follows: 

 

For i=0 to M+N-1 
For j=0 to M 
 y[i+j] = y[i+j] + x[i] * h[j] 
End for 
End for 
 

The architecture which we propose for this algorithm is shown in Figure 6: 

 

Fig. 6. Proposed architecture from the input side algorithm 

In this case, the CPA-CSA combined accumulator has been changed by a CSA 
accumulator and two buffers for the outputs of the registers of the sum and the carries 
(RS and RC, respectively), but in order to get the final sum, it is necessary to add a 
conventional CPA adder to perform the final sum, as determined by the carry-save 
arithmetic. We can see that the iterative structure uses the RC and RS registers to 
allocate the sum and carry words in each iteration, and a final CPA is required to 
convert the result from redundant to conventional representation. The length of the RS 
and RC buffers should be the number of samples of h [n] minus one. 

Otherwise, Spartan-3 FPGAs can configure the look-up table (LUT) in a slice as a 
16-bit shift register without using the flip-flops available in each slice. Therefore, 
each input or output buffer uses a lookup table if it consists of 16 samples or less, two 
LUTs if the samples are between 16 and 32, and so on. 

These designs have been simulated, evaluated, and synthesized using Mentor 
Graphics ModelSim, Xilinx ISE 9.1i, and the Xilinx Spartan XC3S500E-5 FPGA 
device. Even though new FPGA models have recently emerged, the LUT-based 
models studied in this paper are currently the most widely used models for low cost  
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applications. The proposed implementations use the embedded multipliers which can 
be found in most modern FPGA devices. In this way, the time and resources of the 
system are optimized. The implementation results for the convolution of 18 bits input 
data are shown in Table 1. This architecture use one 18x18 embedded multiplier and 
one 48 bit accumulator implemented using standard logic. 

Table 1. Implementation results for 18x18 multiplier and 16 samples 

Architecture Fq (MHz) LUTs
C-CPA 114 84 

Input side 149 168 
Output side 149 132 

 
The number of lookup tables shown in Table 1 corresponds to the case of a number 

of samples of 16 or less. In the case that h [n] or x [n] is larger than 16, 18 x 2 LUT 
must be added to the results for each number of samples that exceed a multiple of 16. 
Besides, in the case of the input side implementation, another 18x2 LUTs must be 
added for each number of samples of h [n] that exceeds a multiple of 16, since the 
size of the output buffers is the number of samples of h minus one. 

6 Summary and Conclusions 

In this paper, we have presented several architectures to deal with convolution 
computation, using CSA to speed up the computation, and which are specially 
adapted to the inner architecture of FPGA devices. The designs have been tailored to 
the FPGA structure which allows to take full advantage of the FPGA resources. The 
architectures are compared from a qualitative and quantitative point of view and the 
implementation results over a specific FPGA are presented. 

We have proposed a combined CSA-CPA architecture for the output side 
algorithm based on reusing the hardware required by the CSA in such a way than no 
CPA needs to be implemented in hardware for the last conversion from redundant to 
conventional arithmetic. This leads to the same computation time than that using CSA 
plus a final CPA for the input side algorithm. In other words, the final conversion 
from redundant to conventional arithmetic has no hardware cost for the proposed 
combined CSA-CPA architecture. On the other hand, the use of circular buffers does 
not add significant delays for the final calculation, though it does add major resources 
of the FPGA. 

From the experimental results, we conclude that both CSA based architectures 
presented have the best time results (about 30% speed up for both), and the combined 
CSA-CPA achieves an important hardware reduction in comparison with the CSA 
plus CPA architecture. When larger input data is used and high speed is demanded, it 
is necessary to pipeline the multiplier. In this case, the speed up keeps and the extra 
hardware required by the CSA has a relatively lower weight in the area of the full 
system due to the large hardware required by the pipelined multipliers (only 8% more 
hardware than a pure CPA design with almost 30% speed up for 36 bit input data). 
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