

M.L. Reyes et al. (Eds.): IT Revolutions 2011, LNICST 82, pp. 237–248, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Convolution Computation in FPGA Based on Carry-Save
Adders and Circular Buffers

Carlos D. Moreno1,4, Pilar Martínez2,4, Francisco J. Bellido1, Javier Hormigo3,5,
Manuel A. Ortiz1, and Francisco J. Quiles1

1 Computer Architecture, Electronics and Electronic Technology Department,
University of Córdoba, Spain

2 Applied Physics Department, EPS, University of Córdoba, Spain
3 Computer Architecture Department, University of Málaga, Spain

4 Campus Universitario de Rabanales. 14071 Córdoba, Spain
5 Campus Universitario de Teatinos. 29080 Málaga, Spain

el1momoc@uco.es

Abstract. In this article, we present some architectures to carry out the
convolution computation based on carry–save adders and circular buffers
implemented on FPGAs. Carry-save adders are not frequent in the
implementation in FPGA devices, since these have a fast carry propagation
path. We make use of the specific structure of the FPGA to design an optimized
accumulator which is able to deal with carry–save additions as well as carry–
propagate additions using the same hardware. On the other hand, this structure
of circular buffers allows the convolution computation of two signals with two
algorithms of calculation: the input side algorithm and the output side
algorithm, in a more efficient way.

Keywords: Convolution, FPGA, carry-save adders, circular buffers.

1 Introduction

There are several methods to describe the relation between the input and output of the
linear time invariant systems (LTI), when both are represented according to time. One
of the methods to describe it is by means of differential linear equations (in
continuous time) or equations in differences of constant coefficients (in discrete time).
Another way of representing this relation would be by means of a block diagram
which represents the system as an interconnection of three elementary operations:
multiplication, addition, and displacement in the time for systems in discreet time, or
integration for systems in continuous time. The third form is the description by means
of variables of state, which corresponds to a series of differential equations or in
differences of the first order connected that represent the behavior of the 'state' of the
system and an equation that relates the state to the output.

However, the most widely used method to represent this relation is related to its
response to impulse. The response to impulse is the output of the system associated
with the input of the impulse. Considering the response to the impulse, we determine

238 C.D. Moreno et al.

the output due to an arbitrary input, expressing the entry as an exaggerated
superposition of impulses displaced in the time. For the linearity and invariance
regarding time, the outputs must be an exaggerated superposition of responses to the
impulse displaced in time. The term “convolution” is used to describe the procedure
in the determination of the output from the input and the response to the impulse.

The response to the impulse is the output of an LTI system due to an input of an
impulse applied in time t = 0 or n = 0. The response to the impulse characterizes
completely the behavior of any LTI system. This can seem surprising, but it is a basic
property of all the LTI systems. The response to the impulse is often determined by
the knowledge of the configuration and dynamics of the system, or in case of an
unknown system, it can be measured by applying an approximated impulse near the
input of the system. The generation of a sequence of impulses in discreet time to
prove an unknown system is direct. As regards the case in continuous time, a real
impulse of zero width and infinite amplitude cannot be actually generated and is
usually physically approximated as a great amplitude and narrow breadth pulse. This
way, the response to the impulse can be approximated as the behaviour of the system
in response at an entry of a high amplitude and extremely short duration.

If the input for a linear system expresses itself as a weighted superposition of
impulses displaced in time, then the output is a weighed superposition of the response
of the system to each impulse displaced in time. If the system is also invariant
regarding time, then its response to an impulse displaced in time is a version displaced
in the time of the response of the system to an impulse. Consequently, the output of
an LTI system is given by a weighted superposition of responses to the impulse
displaced in the time. This weighted superposition receives the name convolution sum
in discrete time systems and of convolution integral in continuous time systems.

2 Convolution Sum

Let us consider the case of discrete time systems. First of all, we express an arbitrary
signal as a weighted superposition of impulses displaced in time. The convolution
sum is then obtained by applying to an LTI system a signal represented this way.

Let us consider the product of signal x [n] and the sequence of impulses δ [n],
expressed in the following way:

x[n] · δ[n]= x[0] · δ[n] (1)

If we generalize this relation for the product of x [n] and the sequence of impulses
displaced in time, we obtain the following:

x[n] · δ[n–k]= x[k] · δ[n–k] (2)

In this expression, n represents the index of time, therefore x [n] denotes a signal,
while x [k] represents the value of signal x [n] in moment k. We see that the
multiplication of a signal by the impulse displaced in time produces an impulse
displaced in time with an amplitude given by the value of the signal at the moment
when the impulse happens.

Convolution Computation in FPGA Based on Carry-Save Adders and Circular Buffers 239

This property allows us to represent x [n] as a weighted sum of impulses displaced
in time:

x[n] = …+ x[–2] · δ[n+2] + x[–1] · δ[n+1] + x[0] · δ[n] +

x[1] · δ[n–1] + x[2] · δ[n–2]+···
(3)

Which can be briefly written as follows:

x[n] = xሾkሿ δሾn– kሿஶୀ–ஶ (4)

If we call the impulse response of the system h [n], the output y [n] of the system to
an input x [n] is the convolution of both signals:

y[n] = x[n] * h[n] = xሾkሿ hሾn– kሿஶୀ–ஶ (5)

This expression is called the convolution sum. This formula indicates that for
calculating the convolution, we need four steps: reflection of h [k] in order to obtain h
[-k], shift to obtain h [n–k], multiplication, and addition. The reflection operation is
performed only once, however, the other three are repeated for all possible values of
the displacement.

3 Algorithms for Calculating Convolution

Convolution is a formal mathematical operation that takes two signals and produces a
third signal. In linear systems, the output signal y [n] of the system is obtained from
the convolution of the input signal x [n] and from the response h [n] to the impulse
function δ [n] of the system.

Fig. 1. Physical direction of convolution: the output of a linear system is obtained from the
convolution of the input sign and the response to the impulse of the system

In most digital signal processing applications, the input signal is around some
hundreds, thousands, or a few million samples in length. However, the impulse response
is much shorter, around a few hundred samples. The mathematical operation of

240 C.D. Moreno et al.

convolution does not restrict the length of these signals, however, it determines the length
of the output signal, which is the sum of the length of the two input signals minus one.

In digital signal processing, convolution can be interpreted in two ways: from the
point of view of the input signal and from the point of view of the output signal [4].
From the point of view of the input signal implies the analysis of how each sample of
the input signal contributes in many values of the output signal, and it provides a
conceptual understanding on how convolution affects the signal digital processing.
From the point of view of the output signal, it evaluates how each sample in the
output signal receives information from many samples of the input signal.
Let us consider for example the convolution of two signals x (n) and h (n) with a
length of M = 5 and N = 4

x(n) = {x4, x3, x2, x1, x0} length M = 5

h(n) = {h3, h2, h1, h0} length N = 4

For definition of discrete convolution:

y[i] = x[n] * h[n] = xሾjሿ hሾi– jሿெାே–ଵୀ (6)

with length M + N – 1 = 5 + 4 – 1 = 8.
Each of the samples of the output signal y (n) = {y7, y6, y5, y4, y3, y2, y1, y0}, would

be calculated as follows:
 y0 = x0·h0
 y1 = x0·h1 + x1·h0
 y2 = x0·h2 + x1·h1 + x2·h0
 y3 = x0·h3 + x1·h2 + x2·h1 + x3·h0

 y4 = x1·h3 + x2·h2 + x3·h1 + x4·h0
 y5 = x2·h3 + x3·h2 + x4·h1
 y6 = x3·h3 + x4·h2
 y7 = x4·h3

(7)

3.1 The Input Side Algorithm

The first point of view (the input side algorithm) performs the calculation of the
convolution of Equations (7) vertically (by columns). It analyzes how each sample in
the input signal affects several samples of the output signal, i.e., it takes x0 and
multiplies it by all samples of the response to the impulse h3, h2, h1, h0. In the first
cycle, it would calculate y0 = x0 • h0, then it calculates the product terms of each
sample output: x0 • h1, x0 • h2, x0 • h3, etc. Subsequently, it takes x1 and carries out the
product for all h entries, i.e., it calculates x1 • h0, which when added to its first already
calculated term product, obtains the second sample of the output signal y1, and then, it
calculates x1• h1, x1 • h2, x1 • h3, etc. Then, it continues the operations with all samples
of the input signal.

Convolution Computation in FPGA Based on Carry-Save Adders and Circular Buffers 241

This point of view of convolution is based on the fundamental concept of signal
digital processing: it decomposes the input, passes the components through the
system, and synthesizes the output.

3.2 The Output Side Algorithm

The second point of view (the output side algorithm) performs the calculation of the
convolution of Equations (7) horizontally (by rows). It examines how each sample of the
output signal receives information from many points of the input signal. This viewpoint
describes the mathematics of the convolution operation. The value of each sample of the
output signal can be calculated regardless of the value of the other samples.

4 Architecture MAC/CSA

The convolution function is the key to many signal digital processing applications
(filtering, FFT, correlation, neural networks, etc.). It is based on multiplication and
accumulation (MAC), and this is why many high-performance FPGA devices have
added special hardware to perform these operations. However, this is not to be found
in low-cost FPGA devices.

To reduce the cost of the multiplications involved in applications with constant
terms, a constant multiplier is usually implemented or distributed arithmetic is used.
However, in other applications, multiplication cannot be avoided, due to which the
FPGA device manufacturers use embedded multipliers to efficiently perform this
operation.

The convolution involves many multiplications and accumulations. If an FPGA
device has few multipliers, it is common to use them in an iterative way to implement
a function. To increase performance, it is necessary to reduce cycle time, especially
when many operations need to be performed. As the size of the multiplier is fixed in
the FPGA and the accumulator is defined by the user, a suitable design of the hub will
lead to further optimization of the final operation.

Many authors have implemented different designs for the output carrying of the
convolution operation. Current FPGA devices include fast carry logic, which allows
the implementation of adders with carry spread (CPA) fast. More specifically, the
path for the propagation of the carry has been specially optimized so that it is a basic
element for the next stage, and so that together with the carry logic, and spread the
value of the carry. For this reason, we prefer the carry propagated adders (CPA)
against the stored carry adders (carry save adders, CSA). For not very long word
lengths CSAs and CPAs have similar delays, but CPA uses twice the amount of
logical resources.

Current FPGAs are primarily designed for signal digital processing applications
which involve quite smaller operands (16 to 32 bits). FPGA manufacturers decided to
include additional carry logic for the implementation of fast carry-ripple adders for
these operation sizes. Let us consider, for example, FPGA Xilinx Spartan-3 (low
cost). Figure 2 describes the simplified architecture of a slice of this device [4], which
is the main logical resource to implement combinational and sequential circuits.

242 C.D. Moreno et al.

Fig. 2. Simplified diagram of a slice of a Spartan-3 FPGA device [4]

Each slice includes two four-input function generators (lookup table, G-LUT, and
F-LUT), two flip-flops (FFY and FFX), carry logic (CYSELG, CYMUXG, CYSELF,
CYMUXF, and CYINIT), logic gates (GAND, FAND, XORG AND XORF), and
multiplexers with multiple functions. Each function generator is implemented using a
programmable lookup table (LUT).

It is necessary to remember that a full adder (FA) is a combinational circuit with
three input bits (the bits to be added xi and yi, and the input carry cin) and two output
bits (the sum bit si and the carry output cout).We have that si = xi ⊕ yi ⊕ cin, and
output carry cout = xi , si xi = yi , and cout = cin in any other case. Let us suppose that F-
LUT calculates xi ⊕ yi, then XORF door obtains the si sum bit, whereas the cout output
carry calculation involves three multiplexers (CYOF, CYSELF, and CYMUX). The si
sum bit is sent to another slice (X output) or stored in the FFX flip-flop. The G-LUT
could implement a second adder within the same slice, thus integrating two bits of a
CRA adder. Some authors [1] state that in a conventional CSA adder, it is impossible

Convolution Computation in FPGA Based on Carry-Save Adders and Circular Buffers 243

to implement two full adders with independent input carries in the same slice, since
each slice has only one carry input, which would require then double of the hardware
resources. Therefore, the hardware design tools assign two slices when a VHDL
description of de si and cout is carried out, without using a G-LUT.

Figure 3 describes the simplified architecture of a slice implementing a Carry
Propagate adder (CPA).

Fig. 3. Simplified diagram of a slice implementing a CPA

In summary, for a carry save addition (CSA) implementation on FPGA, the carry-
out bit and the sum bit are generated using two LUTs whereas a carry propagate
addition (CPA) only needs one LUT. Thus, the hardware required for a CSA is double
than that for a CPA. Besides, the CSA implementation does not take advantage of the
carry propagation logic.

In an attempt to use the available carry-logic while keeping an adder maximum delay
bounded regardless of the word length, authors from [1] present a solution making use
of a high radix carry-save representation. Due to this high radix representation, initially
introduced to reduce the number of wires and registers required to store a value, the sum
word from a carry-save number is represented in radix-r (i. e. log2 r bits per digit) and
the carry word requires one only bit per radix-r digit, as shown in [6].

Using this representation allows the use of standard CPAs to add each of the sum
word radix-r digit, connecting the carry word to the CPA carry-in inputs, hence
obtaining the final carry word at the CPA carry-out outputs. Thanks to this, when this
adder is implemented in an FPGA, we make use of the whole slice resources,
including the carry logic, at the expense of increasing the addition delay. However,
due to the great optimization of FPGAs carry logic, this delay increase is not very
significant if the radix r is not high.

244 C.D. Moreno et al.

However, the high radix carry save representation shows an important drawback, i.
e., numbers shifts are not an easy task. In this case, complete shifts are only available
for radix-r digits (groups of log2 r bits), i. e., shifts are only allowed for multiple of r
numbers. This restriction comes from the carry word processing, since it is only
available at some specific positions within the addition operation. This limitation
becomes an important obstacle when applying the high radix carry save representation
to many shift and add based algorithms, and even the work presented in [1] has to
deal with this problem. For this reason, it is interesting to look for some other ways of
using the carry logic when implementing carry save adders.

The authors in [2] show two different solutions for a more efficient implementation
of FPGA-CSA than those presented in [1]. This article shows that it is possible to use
half of the slice to implement other functions such as a 3:2 counter or 4:2 compressor.

5 Circular Buffer Architecture for Convolution Algorithms

The architecture proposed in [6] presents an iterative architecture for convolution
computation which is faster than previous implementations. It is achieved by using
redundant arithmetic. In spite of redundant arithmetic, which involves an increase of
hardware, we have developed a technique which allows to reuse the hardware
resources to obtain the final result in conventional arithmetic. The architecture that we
propose for convolution is based on an iterative use of the embedded multipliers
presented in most of modern FPGA devices.

In this article, a combined CSA-CPA accumulator was proposed using the carry
logic when implementing carry save adders. This combined CSA–CPA accumulator
requires the hardware of one CSA accumulator only, without adding additional
penalty time. However, the way in which the records where the signals which were
going to be convolved were stored was not described.

Now we propose a new architecture based on the previous one [6], which includes
circular buffers to record the samples of the input or output signals depending on the
algorithm that we use for the calculation: from the view point of the input (input side
algorithm) or from the point of view of the output (output side algorithm).

The output side algorithm examines how each sample of the output signal receives
information from many points of the input signal. This viewpoint describes the
mathematics of the convolution operation. You can calculate the value of each sample
of the output signal regardless of the value of the other samples. The code for this
algorithm is as follows:

For i=0 to M+N-1
 y[i] = 0
 For j=0 to N
 If (i-j ≥ 0)
 If (i-j < M)
 y[i] = y[i] + x[j] * h[i-j]
 End for
End for

The architecture which we propose would be the one shown in Figure 4.

Convolution Computation in F

Fig. 4. Propo

In this architecture, we h
of each input signal x [n] h
carries out the product and
CPA accumulator as describ

Here, the functionality
CSA&CPA of Fig. 4) appe
participate in the operation
mode, whereas the right fig
the multiplier, whereas C
respectively. The input Se
(Sel=1).

Fig

In CSA mode, the F-LU
the lower XOR gate opera
flip-flop). The carry bit is t
upper register, since Sel=0
transmitted using the upper

FPGA Based on Carry-Save Adders and Circular Buffers

osed architecture from the output side algorithm

have been introduced two circular buffers for the samp
h [n] that are stored in registers RX and RH, a multip
in order to execute the sum, we used the combined CS

bed below in Figure 5.
of the combined CSA–CPA accumulator (box entit

ears, where the gray lines represent the signals that do
n. The left figure shows the accumulator working in C
gure shows CSA mode. Xi represents a bit of the outpu

Ci and Si represent a bit of the carry and sum wor
el selects either the CSA mode (Sel=0) or CPA m

g. 5. Combined CSA-CPA accumulator

UT is in charge of performing the addition of Xi and Si,
ates to have the final sum bit (stored in the correspond
transmitted through the lower multiplexor and stored in
0 forces the output of the G-LUT to zero. Also, Cs
r mux. In CPA mode, the sum bit is generated from C

245

ples
plier
SA-

tled
not

CPA
ut of
rds,

mode

and
ding

the
si is
si+1,

246 C.D. Moreno et al.

Si, and Cpi−1 by means of the F-LUT and the associated XOR gate, whereas the carry
is transmitted to the next slice by crossing both multiplexors (the output of the G-LUT
is forced to one if Sel=1).

The input side algorithm analyzes how each sample in the input signal affects
several samples of the output signal. The code for the implementation of this
algorithm would be as follows:

For i=0 to M+N-1
For j=0 to M
 y[i+j] = y[i+j] + x[i] * h[j]
End for
End for

The architecture which we propose for this algorithm is shown in Figure 6:

Fig. 6. Proposed architecture from the input side algorithm

In this case, the CPA-CSA combined accumulator has been changed by a CSA
accumulator and two buffers for the outputs of the registers of the sum and the carries
(RS and RC, respectively), but in order to get the final sum, it is necessary to add a
conventional CPA adder to perform the final sum, as determined by the carry-save
arithmetic. We can see that the iterative structure uses the RC and RS registers to
allocate the sum and carry words in each iteration, and a final CPA is required to
convert the result from redundant to conventional representation. The length of the RS
and RC buffers should be the number of samples of h [n] minus one.

Otherwise, Spartan-3 FPGAs can configure the look-up table (LUT) in a slice as a
16-bit shift register without using the flip-flops available in each slice. Therefore,
each input or output buffer uses a lookup table if it consists of 16 samples or less, two
LUTs if the samples are between 16 and 32, and so on.

These designs have been simulated, evaluated, and synthesized using Mentor
Graphics ModelSim, Xilinx ISE 9.1i, and the Xilinx Spartan XC3S500E-5 FPGA
device. Even though new FPGA models have recently emerged, the LUT-based
models studied in this paper are currently the most widely used models for low cost

Convolution Computation in FPGA Based on Carry-Save Adders and Circular Buffers 247

applications. The proposed implementations use the embedded multipliers which can
be found in most modern FPGA devices. In this way, the time and resources of the
system are optimized. The implementation results for the convolution of 18 bits input
data are shown in Table 1. This architecture use one 18x18 embedded multiplier and
one 48 bit accumulator implemented using standard logic.

Table 1. Implementation results for 18x18 multiplier and 16 samples

Architecture Fq (MHz) LUTs
C-CPA 114 84

Input side 149 168
Output side 149 132

The number of lookup tables shown in Table 1 corresponds to the case of a number

of samples of 16 or less. In the case that h [n] or x [n] is larger than 16, 18 x 2 LUT
must be added to the results for each number of samples that exceed a multiple of 16.
Besides, in the case of the input side implementation, another 18x2 LUTs must be
added for each number of samples of h [n] that exceeds a multiple of 16, since the
size of the output buffers is the number of samples of h minus one.

6 Summary and Conclusions

In this paper, we have presented several architectures to deal with convolution
computation, using CSA to speed up the computation, and which are specially
adapted to the inner architecture of FPGA devices. The designs have been tailored to
the FPGA structure which allows to take full advantage of the FPGA resources. The
architectures are compared from a qualitative and quantitative point of view and the
implementation results over a specific FPGA are presented.

We have proposed a combined CSA-CPA architecture for the output side
algorithm based on reusing the hardware required by the CSA in such a way than no
CPA needs to be implemented in hardware for the last conversion from redundant to
conventional arithmetic. This leads to the same computation time than that using CSA
plus a final CPA for the input side algorithm. In other words, the final conversion
from redundant to conventional arithmetic has no hardware cost for the proposed
combined CSA-CPA architecture. On the other hand, the use of circular buffers does
not add significant delays for the final calculation, though it does add major resources
of the FPGA.

From the experimental results, we conclude that both CSA based architectures
presented have the best time results (about 30% speed up for both), and the combined
CSA-CPA achieves an important hardware reduction in comparison with the CSA
plus CPA architecture. When larger input data is used and high speed is demanded, it
is necessary to pipeline the multiplier. In this case, the speed up keeps and the extra
hardware required by the CSA has a relatively lower weight in the area of the full
system due to the large hardware required by the pipelined multipliers (only 8% more
hardware than a pure CPA design with almost 30% speed up for 36 bit input data).

248 C.D. Moreno et al.

References

1. Beuchat, J.L., Muller, J.M.: Automatic generation of modular multipliers for FPGA
applications. IEEE Transactions on Computers 57(12), 1600–1613 (2008)

2. Ortiz, M.A., Quiles, F.J., Hormigo, J., Jaime, F.J., Villalba, J., Zapata, E.L.: Efficient
implementation of carry–save adders in FPGAs. In: 20th IEEE International Conference on
Application-specific System, Architectures and Processors, ASAP 2009, pp. 207–210
(2009)

3. Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann Publishers (2004)
4. Steven, W.S.: Digital Signal Processing, a Practical Guide for Engineers and Scientists.

Elsevier Science (2003)
5. Xilinx, Spartan-3 FPGA Data Sheet,
 http://www.xilinx.com/support/documentation/spartan-3.htm

6. Moreno, C.D., Quiles, F.J., Ortiz, M.A., Brox, M., Hormigo, J., Villalba, J., Zapata, E.L.:
Efficient Mapping on FPGA of Convolution Computation based on Combined CSA-CPA
Accumulator. In: 16th IEEE International Conference on Electronics, Circuits, and Systems,
ICECS 2009, pp. 419–422 (2009)

	Convolution Computation in FPGA Based on Carry-Save Adders and Circular Buffers
	Introduction
	Convolution Sum
	Algorithms for Calculating Convolution
	The Input Side Algorithm
	The Output Side Algorithm

	Architecture MAC/CSA
	Circular Buffer Architecture for Convolution Algorithms
	Summary and Conclusions
	References

