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Abstract. The new massive DNA sequencing methods demand both computer 
hardware and bioinformatics software capable of handling huge amounts of 
data. This paper shows how the many-core processors (in which each core can 
execute a whole operating system) can be exploited to address problems which 
previously required expensive supercomputers. Thus, the Needleman-
Wunsch/Smith-Waterman pairwise alignments will be described using long 
DNA sequences (>100 kb), including the implications for progressive multiple 
alignments. Likewise, assembling algorithms used to generate contigs on 
sequencing projects (therefore, using short sequences) and the future in peptide 
(protein) folding computing methods will be also described. Our study also 
integrates the last trends in many-core processors and their applications in the 
field of bioinformatics. 

Keywords: Parallel Computing, Grid and Cloud Computing, Biotechnology, 
Agrifood and Agribusiness. 

1 Introduction 

After fifty years of using computers in order to solve scientific problems, computing 
limits are still a real challenge in many knowledge fields. During the first three 
decades of this period, high-performance computing was accomplished via computers 
equipped with specialized vector processors, where advances in performance were 
obtained by increasing the number of transistors and clock frequency, using greater 
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amounts of memory and making them capable of dealing with larger data sets by 
means of increasing their bus size. This scenario has been exploited to solve scientific 
problems by the development of faster algorithms and by using increasingly 
sophisticated programming languages, which are based on sequential processes. Yet, 
the processor performance cannot be indefinitely increased by simply rising its 
transistors amount and clock frequency, due to physics law limits, like the power 
consumption associated to the silicon geometry used in the chips. 

With the popularization of computers in the late 80’s decade, followed by the 
advances in computer networks, more affordable computing power was possible. 
Indeed, complex scientific problems could be resolved at the cost of developing a new 
paradigm: parallel computing, where many tasks can be executed simultaneously, 
instead of sequentially. From this point on, the parallelization methods have evolved 
continuously, involving: i) implementing more than one Central Processing Unit 
(CPU) into a computer, using Symmetric MultiProcessor (SMP) systems; ii) assisting 
the main processing with coprocessors specialized in mathematics or graphics tasks, 
using ASymmetric MultiProcessor (ASMP) systems; iii) increasing the integration 
levels, using more than one processor in the same silicon die (multicore systems); iv) 
using coprocessors in general and specially Graphic Processing Units (GPU), which 
have eventually left their specificity to become general-purpose processors; v) using 
Accelerated Processing Units (APU) which represent a CPU-GPU hybrid for High-
Definition (HD) imaging, Three-Dimensional (3D) rendering and data-intensive 
workloads in a single-die processor; and vi) using many-core systems capable of 
running a whole operating system in each core. 

Our research group has previously demonstrated the usefulness of the Tile64 
processor (from Tilera <http://www.tilera.com>) with 64 tiles (cores) in the field of 
bioinformatics [1]. In the present work, we deal with pairwise alignments, multiple 
alignments and sequence assembly of DeoxyriboNucleic Acids (DNA), Ribonucleic 
Acids (RNA) and peptides (proteins). The application to protein folding is also 
considered, as well as other academic and commercial initiatives and many-core 
products that can be of relevance for life-science researchers. 

2 Tile64 Architecture 

The Tile64 architecture consists of a Reduced Instruction Set Computing (RISC)- 
based processor which contains 64 general-purpose processor cores, connected by a 
low-latency network (with more than a terabit/sec of interconnect bandwidth) called 
Intelligent Mesh (iMesh), in which the core geometry does not affect the performance 
obtained. Each tile runs at 500-866 MHz, executing a customized Linux operating 
system in it. A few dedicated tiles may be needed for coordinating tasks, so that the 
number of available tiles to optimally run applications is always less than 64. As an 
example, five tiles may be needed for administrative and coordinating tasks (one for 
communications with the host, three shared for internal operations and one to 
distribute the jobs amongst the worker tiles), reducing the available tiles to run 
applications to 59 [1]. The processor is boarded on a Peripheral Component 
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Interconnect Express (PCIe) card, along with a given amount of Random Access 
Memory (RAM) and a set of Ethernet ports. We have used the TILExpress-20G card, 
with 8 GB RAM and two 10GBase-CX4 Ethernet connectors. In this card, the tiles of 
Tile64 run at 866 MHz. 

Regarding the software, the programs to be run on the Tile64 processor can be 
developed with the Eclipse-based Tilera’s Multicore Development Environment 
(TileMDE), which includes a C/C++ cross-compiler, so native RISC code for the 
processor can be generated and later deployed to the card via the PCIe interface. This 
tool can be used in any standard Linux distribution, although Red Hat or CentOS are 
the recommended distros. 

In order to exploit parallelism, two main Application Programming Interfaces 
(API) are provided, named iLib and NetIO. The former allows the programmer using 
iMesh to provide common parallel functionality: task processing, message passing, 
channel communication and shared memory. The latter gives access to the Ethernet 
ports. In both cases, no widely used implementation like Message Passing Interface 
(MPI) or Parallel Virtual Machine (PVM) is followed, which leads to the fact that, 
although a direct porting is possible when using existing C/C++ sources, rewriting at 
least some code is always mandatory to allow it running in parallel. 

3 Sequence Alignments 

The goal of a pairwise alignment algorithm is to identify similar or discrepant regions 
of a DNA, RNA or peptide sequence when comparing it to just another sequence. On 
the other hand, multiple sequence alignments allow to find similarities and differences 
in a set of two or more sequences. This way, evolutionary relationships can be 
established, including the generation of phylogenetic trees (dendrograms). Likewise, 
the polymorphisms in the sequences can be identified, which can be useful, for 
instance, to design specific molecular markers for DNA, RNA or peptide 
fingerprinting. We have used such approach to identify Single Nucleotide 
Polymorphisms (SNP) in DNA, in order to enforce quality control and prevent fraud 
of olive oil [2]. 

3.1 Pairwise Alignments 

From a programmer’s point of view, a sequence is represented by a string of symbols 
from a reduced alphabet. Each symbol represents the molecular element relevant for 
the study (nitrogenous base residues for RNA and DNA or amino acid residues for 
peptides). A pairwise alignment is a matching between two sequences without 
altering the order in their elements (residues), taking into account inserted or deleted 
residues, which leads to the presence of extra residues or gaps in one or another 
sequence, respectively. Depending on the alignment nature, a global alignment can be 
considered if the sequences are completely compared, and an alignment is considered 
to be local when it focuses on the sequence stretch where the sequences show the 
maximum similarity. There are several methods to calculate pairwise alignments, both 
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local and global, like the global aligner Needleman-Wunsch (NW) algorithm [3], the 
first suitable to be obtained by a computer, proposed by such authors in 1970. The 
local alignment concept was introduced by Smith and Waterman (SW) [4] later in 
1981. During the following years, further improvements were made, like Gotoh’s [5], 
Hirschberg's [6] or FastLSA [7]. For our study, we have programmed from scratch a 
new implementation of these algorithms for the Tile64 platform, called MC64-
NW/SW [1]. 

The Needleman-Wunsch algorithm uses dynamic programming to maximize scores 
in a matrix, whose dimensions are the respective sizes of the two sequences being 
compared. The scores are calculated taking into account the residue changes, 
insertions and deletions, so each cell of the matrix stores the best score to align the 
elements of both sequences up to this point. To compute this score, a reference table 
or substitution matrix is used, considering also a gap insertion or deletion penalty 
cost. Several substitution matrices have been proposed over the years, all of them 
experimentally obtained. The Dynamic Programming Matrix (DPM) is calculated 
from left to right and from top to bottom, initializing the first row and column and 
getting the remaining positions from its upper, left and upper-left neighbor. Once the 
entire matrix is calculated, the global alignment is obtained in a backward stage, from 
the bottom right corner, following the maximum score path in horizontal, vertical or 
diagonal ways. 

Yet, the original algorithm described above lacked precision, because it severely 
penalized longs gaps caused by insertions or deletions, a circumstance that can arise 
in nature from mutation events. To avoid such issue, Smith and Waterman introduced 
the concept of “local alignment”, which means finding the longest pair of segments 
from each sequences to align, so that there is no other one with greater similarity. To 
implement this idea, three changes were included in the Needleman-Wunsch 
algorithm: i) recalculating the penalty cost in each position from the dynamic 
programming submatrix, already calculated up to this point; ii) suppressing negative 
values in the initialization; and iii) saving the highest score achieved during the matrix 
calculations. Thus, the backward stage starts from this highest score node, finishing 
when the first zero value is reached. In order to avoid the higher time complexity in 
the new algorithm, getting it back from n2xm to nxm, Gotoh introduced the idea of 
“affine gap”, using two additional matrices instead of recalculating the gap penalty for 
each cell [5]. In order to avoid memory limitations, a first “divide and conquer” 
approach to this problem was proposed by Hirschberg, obtaining the results in linear 
space and double quadratic time by means of a double calculation of the DPM [6]. A 
further improvement by the FastLSA proposed to save temporal values from the first 
stage in a grid cache, so when the backward stage is executed, only the matrices in the 
optimal path are recalculated. 

To estimate the potential of the many-core processor, we have implemented a 
parallel version of the FastLSA in the Tile64 architecture, both for the global 
Needleman-Wunsch and the local Smith-Waterman aligners. We have run several 
comparatives and benchmarking tests, optimizing the performance of the algorithms 
to exploit the Tile64 features. We decided to write the MC64-NW/SW as an entirely 
new development, instead of porting an existing FastLSA implementation. Thus, at 



176 F.J. Esteban et al. 

 

the cost of a greater development effort, updates, adding functions and specially 
optimizing code fragments (our main goal) were easier to accomplish. As stated 
before, the most time-consuming task in our algorithm was to calculate the DPM, 
being the task that should be distributed among the available tiles. The way to do this 
in FastLSA is using a wavefront parallelism, where sub-matrices can be calculated 
progressively, once their upper-left elements are available. Thus, at the time that a 
sub-matrix is available, its bottom-right elements become the initial data to the next 
calculus, repeating this process until the last row and column are reached. With a 
controller-worker scheme, a master tile is assigned with the role of getting the initial 
data, passing them to the available slave tiles (assigned with the role of matrix 
calculations), and finally collecting results to make the overall work progress. 

With this general approach, which offered impressive results from the first 
implementation due to its inherent high parallelization factor, several variants were 
used, effectively exploiting the potential of the TILExpress-20G hardware. The 
Figure 1 shows the MC64-NW/SW version history and the performance when 
aligning a given sample pair of sequences of about 360 kilobases (kb) in the same 
hardware environment and with all possible executing parameters alike. 

 

Fig. 1. MC64-NW/SW version history and performance 

The key change to improve our implementation’s performance occurred with the 
arrival of version 1.2, transferring some data from shared memory to the local 
memory of the tile requiring it. This amazing speedup factor was reached because a 
tile can access data much faster when it is allocated into its local memory space. The 
conclusion is that the Tile64 can be an effective environment to execute 
bioinformatics applications, when parallel implementations are well structured and 
fine-tuned to meet the architecture peculiarities. Our work in progress under this 
development includes a new version, where intermediate results are stored in a host 
database, freeing the memory resources onboard the card, and thus allowing to align 
sequences up to 16 megabases (Mb). 
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3.2 Multiple Alignments 

Once the usefulness of the Tile64 platform in pairwise alignment was demonstrated, 
the next natural step was to complete this work adding the feature of multiple 
sequence alignments. In fact, that can be derived from a triangular matrix of 
distances, obtained from the full pairwise alignments between the sequences. In this 
scenario, the pairwise alignments derived from the MC64-NW can have the additional 
advantage of being optimal, in the sense that no heuristics are used to speed up the 
alignment process. 

The most widely used multiple alignment tool throughout the last years has been 
Clustal W [8]. Its source code has been ported to many platforms, entire rewritten in 
C++ to give it a modern interface [9] and being slightly parallelized using MPI [10].  
 

 

Fig. 2. Clustal W parameter form at our Web page http://www.sicuma.uma.es/manycore/ 
index.jsp?seccion=m64cl/run 
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The algorithm has three stages, all of them allowing variations. First of all, all 
possible pairs of sequences are aligned, building a matrix representing the degree of 
divergence between sequences by means of scoring or “Weighting” (the “W” stands 
for it) the quality of the pairwise alignments. In the second stage, a guide tree is 
derived from the distance matrix, in order to simplify the generation of the final 
alignment, making it computationally affordable. Finally, a progressive alignment is 
run using a clustering method. The first and last stages are the most computationally 
demanding. Regarding to the variants, any of the available pairwise alignment 
methods can be used in the first stage, either heuristic or fully dynamic programming, 
with the above mentioned advantage in accuracy in the second option. In the second 
stage, the Neighbor-Joining (NJ) [11] or Unweighted Pair Group Method Average 
(UPGMA) [12] approaches are usually employed. 

A preliminary parallel implementation of the Clustal W for the Tile64 (MC64-
ClustalW) is already available. We have replaced the Clustal W’s first stage of 
pairwise alignments with our MC64-NW/SW local aligner. Thus, for 10 sequences of 
approximately 100 kb, the 45 elements of the distance matrix are calculated in 860 
seconds (less than 15 minutes) instead of 8,067 seconds (more than two hours) in the 
non-parallelized first stage of Clustal W in a quad-core Xeon microprocessor. The 
MPI Clustal W version in the same quad-core system completes this same task in 
3,121 seconds (about 52 minutes). The Figure 2 shows the parameter page available at 
our web site <http://www.sicuma.uma.es/manycore/index.jsp?seccion=m64cl/run> to 
access this preliminary MC64-ClustalW implementation. 

4 Sequence Assembly 

A single chromosome from higher organisms (eukaryotes) may have about 100 to 200 
million base pairs. Current technologies do not allow to “read” full chromosomes 
from one end to the other on a single sequencing reaction. The different sequencing 
platforms can only read from about 30 to 1,000 bases per reaction (depending on the 
technology used). Thus, sequencing full genomes is time-consuming and expensive. 
Some of the current limitations stem from the fact that, to sequence a chromosome, 
not a single molecule but millions of them may be required. Such DNA is randomly 
broken into small pieces, generating a huge library of redundant and overlapping 
fragments, which are subsequently sequenced by “brute force”. 

The bioinformatics tools are then required to sort such complex maze and generate 
contiguous overlapping fragments (“reads”) known as contigs (name derived from 
“contiguous”), with enough redundancy to overcome possible sequencing errors. 
Some reads may be small, may contain homopolymeric stretches (eg., tens of T bases 
in a row) and repetitive sequences (eg., AC many times in a row). Such kinds of 
sequences may exist on many locations on the genome, which may prevent proper 
contig generation. As expected, these issues are more significant for technologies 
generating small reads (eg., 30 bases), being therefore more difficult to assemble into 
contigs. Consequently, gaps may remain in the sequence, requiring further efforts to 
fill using other sequencing approaches. Actually, most of the times such gaps are not 
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even filled, due to the cost involved, and the genome is assembled using a reference 
one if available. Indeed, virtually all published genomes to date include many 
unsequenced stretches or gaps. 

There are two main scenarios when assembling genomic sequencing reads into 
contigs: i) de novo sequencing, when such species genome is being sequenced for the 
first time; and ii) resequencing, when the species genome has been previously 
sequenced (eg., from a different individual). In the latter case, the previous sequenced 
genome is used as reference, to align the other from the new sequencing data. 
Sequencing-data assembly has been tackled by different bioinformatics strategies 
[13], but it has been a fully computational task only for the last years. This has been a 
consequence of the huge amount of sequencing data generated by the so-called “next-
generation” sequencing technologies. The first approach to the problem consists of 
finding the shortest common superstring (contig) of a set of sequences. This task can 
be efficiently accomplished by a “greed” algorithm, starting by finding all possible 
overlaps between the initial samples. Later on, a score is assigned to each potential 
overlap, and finally the samples are iteratively merged into a single contig, by 
combining the ones with the highest scores. The process ends when no more samples 
can be merged (albeit, leaving gaps in some instances, as previously explained). As 
examples, TIGR Assembler [14], Phrap [15] and CAP3 [16] follow this paradigm. 
However, this approach has one big problem: it is useful only for short genomes, due 
to its large RAM requirements, so its applicable field is limited to prokaryotes 
(bacteria) and a few lower (single-celled) eukaryotes. 

Three other work lines can solve the limitations of a greed algorithm: the DeBruijn 
graph [17] representation, the prefix-tree approach, and the overlap-layout-consensus. 
The first work on short reads by de novo assembly was a pioneering DeBruijn graphs-
based implementation by Prevzner [18] in the first year of this century. Velvet [19], 
EULER-SR [20] and ALLPATHS [21] also follow this paradigm, which is the most 
recurrent in scientific literature. The SSAKE [22] by Warren was the first prefix-tree 
approach, followed by the VCAKE [23] and SHARCGS [24]. Finally, the Edena [25] 
represents the last step in the overlap-layout-consensus tradition. 

The parallelism has come late to this field. The first algorithm capable of 
distributing a DeBruijn graph across a network of computers has been ABySS [26], 
breaking its inherent memory usage limit and providing the potential ability to 
assemble genomes of virtually any size. This brand new parallel implementation in a 
new bioinformatics field (like the de novo assembly of full genomes from short 
sequencing reads) was really interesting, so we tried to develop a Tile64 ABySS 
implementation of it. In this case, we started from the C++ code freely available at the 
author’s web site. To get it run in parallel, a message passing technique was used in 
the original source code, by means of exploiting the widely used MPI library. 

Due to the lack of this library in the Tilera’s software environment, we carried out 
a previous study of MPI usage in ABySS, analyzing its communication behavior. We 
found it rather simple: only a small subset of MPI functions was used, consisting of 
“blocking send” to exchange data messages, “synchronous blocking send” to 
exchange control messages, and “non-blocking receive” to answer both kinds of 
messages. Moreover, byte is the only data type used in any call. The control flow is 
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always between a master node and the others, whereas the data flow can be 
exchanged between any two nodes. Additionally, the barrier mechanism was used to 
control the algorithm progress. The code was also well structured, with all the 
communication stuff concentrated in a single module, which contains most of the MPI 
calls. 

In this situation, our first step was to analyze the similarities and differences 
between the MPI and the message passing capabilities of the Tilera’s iLib library. We 
encountered two major differences regarding the absence of distinction between 
synchronous send and “normal” blocking send and, on the other hand, the absence of 
a function to open a receive call without identifying the expected sender. The first 
issue can be overcome by considering the iLib blocking send implementation as 
synchronous, and thus introducing the concept of a router tile to simulate “normal” 
MPI blocking send, according to the blocking send definition in the MPI 
specification. For the second issue, taking into account that the participant tiles were 
established at the very first stage of execution, we made a separate receive call for 
each other participant tile to deal with control messages, whereas the router tile 
concept solved this problem inherently for the data messages exchanges. Therefore, 
the router tile must issue a non-blocking receive call to the rest of participant tiles, 
and the other tiles must issue only a non-blocking receive call to the router tile. In this 
final situation, the message format needs a slight modification, adding a 
source/destination header in order to keep the communication participants identified. 

With the above constraints, we have carried out a parallel ABySS porting to the 
Tile64 platform. As a reference for our porting, we have run the original algorithm in 
an Intel quad-core Xeon workstation, equipped with the same amount of RAM 
present in the TILExpress-20G cards (8 GB), in which we installed the MPI 
distribution recommended by the original algorithm’s authors (OpenMPI). As we 
were interested in evaluating the Tilera’s platform performance, we conducted our 
tests only with the same synthetic data used by the authors, checking the accuracy of 
our solution first, which could be consistently established. Thus, with the same input 
data, results from our implementation and from the Xeon reference were always the 
same, resulting in the same assembled sequences in every execution. 

However, the performance results were not satisfactory. From the first tests we 
could see that, despite of the larger number of tiles of the Tile64 platform, they could 
not beat the execution times offered by the four Xeon cores, nor even approaching 
them. The reason for this poor performance remained in the fact that the distribution 
of the DeBruijn graph among the participant tiles resulted to be a more time-
consuming task than the actual assembly. Thus, the iMesh behavior with a router tile 
could not compete this time with the fine-tuned mechanism used by OpenMPI when 
distributing processes inside the quad-core processor. Given this situation, we 
introduced a change in our communication strategy, dedicating more tiles to the router 
role than to execute the assembling algorithm itself. The remaining tasks alternate its 
router in a round-robbing fashion. An optimal execution time could be obtained fine-
tuning the number of routers and assembler tiles, given a number of samples to 
assemble. The Table 1 shows these times, with the same consideration that they are 
far from the Xeon platform scores. 
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Table 1. MC64-ABySS best execution times 

 
Finally, we made a second implementation based upon the iLib channel 

communication paradigm, maintaining the idea of the router tile in order to meet the 
MPI requirements. With this, we tried to emulate most of the MPI interface in order to 
get a small MPI implementation in the Tilera platform. The performance of this 
second implementation was equally unsatisfactory. As conclusion for this section, we 
can see that a partial porting of an existing algorithm may not yield better 
performance on some many-core platforms. Thus, if the parallelization factor cannot 
be exploited or other constraints arise, results could be frustrating. As we could see, 
this particular algorithm was best suited to multicore platforms (instead of current 
many-core ones), where less, yet more powerful and better-communicated processors 
can beat many, less powerful and worse-communicated ones. 

5 Protein Folding 

The central dogma of molecular biology states that “DNA makes RNA makes 
protein”. Once a sequence is obtained, it may be useful to determine its 3D structure. 
This process is usually less relevant in DNA, somewhat useful in RNA and most 
important in peptides (like proteins). In fact, a wrong protein folding may generate 
severe pathologies like the Alzheimer disease or the Creutzfeldt-Jakob disease 
(similar to the “mad cow” disease). Interestingly, some proteins can auto-fold 
spontaneously, but others require the participation of specialized cellular machinery 
like the chaperons and chaperonins. 

The 3D structure of molecules can be experimentally obtained after crystallization 
and further X-ray diffraction. Yet, such approach may be difficult, time consuming 
and expensive in some instances. An alternative approach is to computationally 
simulate the molecule folding by means of prediction or modeling techniques. 
However, this process presents vast computationally challenges, that may be even 
higher than the experimental ones. For instance, protein folding processes typically 
take only tens of microseconds in the cells, but a computer simulation on a single 
current computer may take one day to simulate just a single folding nanosecond. So, 
the parallel and distributing computing is the only way to tackle such challenge 
nowadays. 

Samples 

MPI execution 

 time (seconds) 

Tile64 execution 

 time (seconds) 

Working 

 tiles 

Router 

 tiles 

1,000  1,170 6,930 31 32 

 10,000  4,460 19,090 47 16 

 100,000  41,780 167,620 31 32 

 200,000  79,610 287,180 31 32 

 500,000  198,900 711,570 47 16 

 1,000,000 493,700 1676,810 47 16 
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Many approaches have addressed the protein folding in silico. Perhaps, the most 
widely known project is Folding@home [27] at Stanford University, and its 
homonyms Predictor@home and Rosetta@home, all of them relaying in a principle 
already used in previous projects: to harvest unused personal computer (PC) cycles 
distributed in the Internet to develop protein folding. The amazing amount of 
published results based on this lose-connected medium-powered computer cluster 
(see, for example [28]) widely demonstrates the usefulness of this paradigm for this 
bioinformatics challenge. Other approaches in this field fall in the subject of ab initio 
prediction of RNA [29] and protein [30] folding structure or protein structure 
comparison [31], whose parallelization has been afforded with the omnipresent MPI. 
A general algorithm review can be found at [32], compiling the most usefulness and 
the state of the art in parallelization, exploiting already existing grid infrastructures. 

In this scenario, multi-core and General-Purpose GPU (GPGPU) architectures 
usually serve as building blocks, to increase the computing power of the overall 
distributed or grid system within a single node. As an example, the Table 2 shows the 
number of clients in the Folding@home project and its computer power. This implies 
the cost of adapting grid-enabled software to exploit this first-order parallelism, using 
the appropriate technique like the Compute Unified Device Architecture (CUDA) for 
the nVidia GPU, and multiprocessing or multithreading for SMP. Another alternative 
consists of using a parallel-capable middleware. Again, as an example, the MPI is 
used to build the SMP-ready clients at Folding@home. 

Table 2. Client statistics in the Folding@home project. Source:<http://fah-web.stanford.edu/ 
cgi-bin/main.py?qtype=osstats> as of 28th October, 2010 

Operating system TFLOPS x86-equivalent TFLOPS Active CPU Total CPU 
Windows 212 212 223,062 3,494,452 
Mac OS X (PPC) 4 4 4,466 141,183 
Mac OS X (Intel) 22 22 7,192 133,576 
Linux 62 62 36,354 532,490 
ATI GPU 655 691 6,419 138,782 
NVIDIA CPU 1,037 2,188 8,716 221,109 
Cell B3 785 1,656 27,833 1,030,352 

Total 2,777 4,835 314,046 5,691,944 

 
Regarding the many-core architectures (like Tilera), as we have demonstrated 

before, we can surpass other implementations in a single PC when addressing 
bioinformatics problems with medium to high computational challenges and 
medium to low communication tightness. Thus, a cluster of the Tilera cards could 
offer good performance for some of these problems, if they can be re-scaled to the 
dimension of the cluster. Another strategy is building a regular client architecture. 
In this scenario, each tile could be an independent client, given its capability to 
execute a whole operating system, accessing the grid through the card built in 
Ethernet interfaces. 
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6 Future Many-Core Trends 

To conclude this work, we present a short review of the available (or announced) 
many-core products, as well as their possible usefulness in bioinformatics. 

Intel has released a research program called Single-chip Cloud Computer (SCC) 
[33], developing a 48-core chip currently tested by academic and research groups. 
This product is in the line with other manufacturers like Tilera, with each core 
having the ability to run an entire operating system and with hardware message-
passing support, so meeting the requirements of nowadays widely available parallel 
implementations. The Figure 3 shows the SCC die. The first pre-commercial bundle 
of such architecture has been a PCIe card (codenamed “Knights Ferry”) with a 32-
core Aubrey Isle die in it. Future plans in this line includes 80- and 100-core single-
chip developments at up to 5.7 GHz for CPU clock and 1.81 TFLOPS of 
performance [34]. As we have demonstrated with the Tilera’s cards, this architecture 
can be exploited for bioinformatics applications [1]. Intel may have some advantages 
in this scenario, including its capability to use floating point instructions in 
hardware, its use of the well-known x86 architecture and its efficient use or power 
consumption, with the built-in capability of independently regulating such parameter 
in each individual core. 

 

Fig. 3. Intel SCC die. Source: Intel SCC symposium (2010) 
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On the other hand, AMD has changed its strategy after acquiring the GPU 
manufacturer ATI. Its future plans are centered on its Fusion platform, [35] 
announcing the idea of the Accelerated Processing Unit (APU). The rationale behind 
this concept is the integration of traditional x86 CPU and many GPU cores in the 
same die, adding also critical elements like memory controllers, specialized video 
decoders, display outputs and bus interfaces. The idea resembles the System on Chip 
(SoC) products, with a difference in application. Thus, the goal of AMD Fusion is not 
making a specialized limited system, but a general-purpose high-performance one, 
capable of combining scalar or serial computing abilities (present in CPU), as well as 
parallel or vector computing features (associated with GPU) in an heterogeneous 
blend. At the time of writing this paper, no Fusion product was commercially 
available. However, two processors have been announced for 2011: one oriented to 
netbooks and laptops (codenamed “Llano”) and another for desktops (codenamed 
“Zambezi”). The Figure 4 shows a Llano die. Although the programming methods are 
not known at the moment, no change of paradigm is expected. 

 

Fig. 4. AMD Fusion “Llano” die. Source: ISSCC 2010 

In the pure GPU manufacturer’s side, nVidia continues its GeForce/Tesla 
development. Its strategy is far from other manufacturers: its CUDA technology is 
based in distributing massively parallel threads of execution among the available 
cores, specialized in this scheme and so not interested in running an entire operating 
system. At present, its top of the line product in the GPGPU brand is the Tesla 
C2070 PCIe card [36]. Its 448 cores are far away from any other current product, 
but this leadership could be conditioned by the specialization of cores above 
mentioned. Thus, when operations per second are used as the measuring unit, its 
performance is in the same range than the remaining products in this revision. In the 
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pure GPU arena, its recent GeForce GTX 580 announcement [37] makes a step 
forward, with 512 cores and an innovative vapor chamber design for more efficient 
heat dissipation. It is important to note that a strength in this solution is the full 
floating point operations hardware support. In the downside, the use of this platform 
requires a complete rethinking of algorithms, in order to maximize the number of 
executing threads, and therefore limiting its usefulness for general bioinformatics 
purposes. 

Finally, Tilera has announced the first 100-tile many-core processor, named Tile-
Gx [38]. Besides the number of tiles, many other features have been improved from 
the Tile64 processor: faster CPU clock, 64 bit processors, more cache memory and 
much better interfaces, including eight 10 GB Ethernet ones and three proprietary 20 
GB/s connectors for twin card interconnection. Besides, it maintains the previous 
philosophy (a whole Linux operating system running in each tile). The power 
efficiency has been improved too, with a power consumption of 10 to 55 watts. A 
downside is that it lacks floating point operations by hardware, which can be a barrier 
for some scientific applications. But, fortunately, this is not the case for many 
bioinformatics tasks, as we have previously shown [1]. The Figure 5 illustrates a 
Tile64 processor die shot. Finally, the Table 3 shows a comparison amongst the main 
features of the products described in this review. 

 

Fig. 5. Tile64 processor die shot. Source: ISCC 2008 
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Table 3. Many-core platforms 

Manufacturer Product Cores Speed Cache Memory Power 

(W) 

Intel  SCC  48 1-2 GHz 

CPU clock 

16 + 16 

kB L1 

256 kB 

L2 

4 DDR3 

controllers 

24  

AMD APU 

(Fusion 

“Llano”) 

Up to 

4 CPU 

+ 

GPU 

30 GFLOPS 1 MB 

L2 

1 DDR3 

1600 

controller 

14  

nVidia Tesla 

C2070 

448 1.15 GHz 

CPU clock 

515 

GFLOPS 

n/a 6 GB 238 (entire 

board) 

nVidia GeForce 

GTX 580 

512 1.54 GHz 

CPU clock 

515 

GFLOPS 

n/a n/a 244 (entire 

board) 

Tilera Tile-Gx 100 1.0-1.5 GHz 

CPU clock 

750 GOPS 

32 + 32 

kB L1 

256 kB 

L2 

4 64-bit 

DDR3 

controllers 

10-55  

7 Conclusions and Future Work 

After more than two years applying the first commercially available real many-core 
architecture –in the sense that each core or tile can run a whole operating system– to 
the field of bioinformatics, we have demonstrated its potential when addressing some 
challenges, like optimal local or global pairwise alignments [1]. Furthermore, our 
studies reveal that the GPU architectures can also yield good results in specific 
situations, but that they do not apply to most bioinformatics scenarios, due to the in-
depth redesigning required to adopt the CUDA parallelization. 

We have also demonstrated that these architectures are not yet capable to address 
other challenges in its current state of software development, where further 
methodological programming improvements are needed. These new methodologies 
should establish the way an algorithm should behave, in order to meet its special 
capabilities. They include a large amount of available processors, a moderate individual 
computing power and a medium to high performance interconnection network. Our 
work in progress is currently investigating solutions in this field, by the analysis of 
current parallelization techniques and requirements. Our latest reviews also show that 
the market trends are following this many-core line as a way to improve performance, 
being the energy consumption one of the biggest challenges to address. 
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