

M.L. Reyes et al. (Eds.): IT Revolutions 2011, LNICST 82, pp. 172–188, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Many-Core Processor Bioinformatics
and Next-Generation Sequencing

Francisco J. Esteban1,∗, David Díaz2, Pilar Hernández3, Juan Antonio Caballero4,
Gabriel Dorado5,**, and Sergio Gálvez2,**

1 Servicio de Informática, Campus Rabanales, Universidad de Córdoba, 14071 Córdoba (Spain)
2 Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 17,

Universidad de Málaga, 29071 Málaga (Spain)
3 Instituto de Agricultura Sostenible (IAS – CSIC), Alameda del Obispo s/n,

14080 Córdoba (Spain)
4 Dep. Estadística, Campus Rabanales, Universidad de Córdoba, 14071 Córdoba (Spain)

5 Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17,
Campus de Excelencia Internacional Agroalimentario (ceiA3),

Universidad de Córdoba, 14071 Córdoba (Spain)
{fjesteban,ma1camoj,bb1dopeg}@uco.es,

{david.diaz,galvez}@lcc.uma.es, phernandez@ias.csic.es

Abstract. The new massive DNA sequencing methods demand both computer
hardware and bioinformatics software capable of handling huge amounts of
data. This paper shows how the many-core processors (in which each core can
execute a whole operating system) can be exploited to address problems which
previously required expensive supercomputers. Thus, the Needleman-
Wunsch/Smith-Waterman pairwise alignments will be described using long
DNA sequences (>100 kb), including the implications for progressive multiple
alignments. Likewise, assembling algorithms used to generate contigs on
sequencing projects (therefore, using short sequences) and the future in peptide
(protein) folding computing methods will be also described. Our study also
integrates the last trends in many-core processors and their applications in the
field of bioinformatics.

Keywords: Parallel Computing, Grid and Cloud Computing, Biotechnology,
Agrifood and Agribusiness.

1 Introduction

After fifty years of using computers in order to solve scientific problems, computing
limits are still a real challenge in many knowledge fields. During the first three
decades of this period, high-performance computing was accomplished via computers
equipped with specialized vector processors, where advances in performance were
obtained by increasing the number of transistors and clock frequency, using greater

∗ Corresponding author.
** Authors who contributed to the project leadership.

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 173

amounts of memory and making them capable of dealing with larger data sets by
means of increasing their bus size. This scenario has been exploited to solve scientific
problems by the development of faster algorithms and by using increasingly
sophisticated programming languages, which are based on sequential processes. Yet,
the processor performance cannot be indefinitely increased by simply rising its
transistors amount and clock frequency, due to physics law limits, like the power
consumption associated to the silicon geometry used in the chips.

With the popularization of computers in the late 80’s decade, followed by the
advances in computer networks, more affordable computing power was possible.
Indeed, complex scientific problems could be resolved at the cost of developing a new
paradigm: parallel computing, where many tasks can be executed simultaneously,
instead of sequentially. From this point on, the parallelization methods have evolved
continuously, involving: i) implementing more than one Central Processing Unit
(CPU) into a computer, using Symmetric MultiProcessor (SMP) systems; ii) assisting
the main processing with coprocessors specialized in mathematics or graphics tasks,
using ASymmetric MultiProcessor (ASMP) systems; iii) increasing the integration
levels, using more than one processor in the same silicon die (multicore systems); iv)
using coprocessors in general and specially Graphic Processing Units (GPU), which
have eventually left their specificity to become general-purpose processors; v) using
Accelerated Processing Units (APU) which represent a CPU-GPU hybrid for High-
Definition (HD) imaging, Three-Dimensional (3D) rendering and data-intensive
workloads in a single-die processor; and vi) using many-core systems capable of
running a whole operating system in each core.

Our research group has previously demonstrated the usefulness of the Tile64
processor (from Tilera <http://www.tilera.com>) with 64 tiles (cores) in the field of
bioinformatics [1]. In the present work, we deal with pairwise alignments, multiple
alignments and sequence assembly of DeoxyriboNucleic Acids (DNA), Ribonucleic
Acids (RNA) and peptides (proteins). The application to protein folding is also
considered, as well as other academic and commercial initiatives and many-core
products that can be of relevance for life-science researchers.

2 Tile64 Architecture

The Tile64 architecture consists of a Reduced Instruction Set Computing (RISC)-
based processor which contains 64 general-purpose processor cores, connected by a
low-latency network (with more than a terabit/sec of interconnect bandwidth) called
Intelligent Mesh (iMesh), in which the core geometry does not affect the performance
obtained. Each tile runs at 500-866 MHz, executing a customized Linux operating
system in it. A few dedicated tiles may be needed for coordinating tasks, so that the
number of available tiles to optimally run applications is always less than 64. As an
example, five tiles may be needed for administrative and coordinating tasks (one for
communications with the host, three shared for internal operations and one to
distribute the jobs amongst the worker tiles), reducing the available tiles to run
applications to 59 [1]. The processor is boarded on a Peripheral Component

174 F.J. Esteban et al.

Interconnect Express (PCIe) card, along with a given amount of Random Access
Memory (RAM) and a set of Ethernet ports. We have used the TILExpress-20G card,
with 8 GB RAM and two 10GBase-CX4 Ethernet connectors. In this card, the tiles of
Tile64 run at 866 MHz.

Regarding the software, the programs to be run on the Tile64 processor can be
developed with the Eclipse-based Tilera’s Multicore Development Environment
(TileMDE), which includes a C/C++ cross-compiler, so native RISC code for the
processor can be generated and later deployed to the card via the PCIe interface. This
tool can be used in any standard Linux distribution, although Red Hat or CentOS are
the recommended distros.

In order to exploit parallelism, two main Application Programming Interfaces
(API) are provided, named iLib and NetIO. The former allows the programmer using
iMesh to provide common parallel functionality: task processing, message passing,
channel communication and shared memory. The latter gives access to the Ethernet
ports. In both cases, no widely used implementation like Message Passing Interface
(MPI) or Parallel Virtual Machine (PVM) is followed, which leads to the fact that,
although a direct porting is possible when using existing C/C++ sources, rewriting at
least some code is always mandatory to allow it running in parallel.

3 Sequence Alignments

The goal of a pairwise alignment algorithm is to identify similar or discrepant regions
of a DNA, RNA or peptide sequence when comparing it to just another sequence. On
the other hand, multiple sequence alignments allow to find similarities and differences
in a set of two or more sequences. This way, evolutionary relationships can be
established, including the generation of phylogenetic trees (dendrograms). Likewise,
the polymorphisms in the sequences can be identified, which can be useful, for
instance, to design specific molecular markers for DNA, RNA or peptide
fingerprinting. We have used such approach to identify Single Nucleotide
Polymorphisms (SNP) in DNA, in order to enforce quality control and prevent fraud
of olive oil [2].

3.1 Pairwise Alignments

From a programmer’s point of view, a sequence is represented by a string of symbols
from a reduced alphabet. Each symbol represents the molecular element relevant for
the study (nitrogenous base residues for RNA and DNA or amino acid residues for
peptides). A pairwise alignment is a matching between two sequences without
altering the order in their elements (residues), taking into account inserted or deleted
residues, which leads to the presence of extra residues or gaps in one or another
sequence, respectively. Depending on the alignment nature, a global alignment can be
considered if the sequences are completely compared, and an alignment is considered
to be local when it focuses on the sequence stretch where the sequences show the
maximum similarity. There are several methods to calculate pairwise alignments, both

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 175

local and global, like the global aligner Needleman-Wunsch (NW) algorithm [3], the
first suitable to be obtained by a computer, proposed by such authors in 1970. The
local alignment concept was introduced by Smith and Waterman (SW) [4] later in
1981. During the following years, further improvements were made, like Gotoh’s [5],
Hirschberg's [6] or FastLSA [7]. For our study, we have programmed from scratch a
new implementation of these algorithms for the Tile64 platform, called MC64-
NW/SW [1].

The Needleman-Wunsch algorithm uses dynamic programming to maximize scores
in a matrix, whose dimensions are the respective sizes of the two sequences being
compared. The scores are calculated taking into account the residue changes,
insertions and deletions, so each cell of the matrix stores the best score to align the
elements of both sequences up to this point. To compute this score, a reference table
or substitution matrix is used, considering also a gap insertion or deletion penalty
cost. Several substitution matrices have been proposed over the years, all of them
experimentally obtained. The Dynamic Programming Matrix (DPM) is calculated
from left to right and from top to bottom, initializing the first row and column and
getting the remaining positions from its upper, left and upper-left neighbor. Once the
entire matrix is calculated, the global alignment is obtained in a backward stage, from
the bottom right corner, following the maximum score path in horizontal, vertical or
diagonal ways.

Yet, the original algorithm described above lacked precision, because it severely
penalized longs gaps caused by insertions or deletions, a circumstance that can arise
in nature from mutation events. To avoid such issue, Smith and Waterman introduced
the concept of “local alignment”, which means finding the longest pair of segments
from each sequences to align, so that there is no other one with greater similarity. To
implement this idea, three changes were included in the Needleman-Wunsch
algorithm: i) recalculating the penalty cost in each position from the dynamic
programming submatrix, already calculated up to this point; ii) suppressing negative
values in the initialization; and iii) saving the highest score achieved during the matrix
calculations. Thus, the backward stage starts from this highest score node, finishing
when the first zero value is reached. In order to avoid the higher time complexity in
the new algorithm, getting it back from n2xm to nxm, Gotoh introduced the idea of
“affine gap”, using two additional matrices instead of recalculating the gap penalty for
each cell [5]. In order to avoid memory limitations, a first “divide and conquer”
approach to this problem was proposed by Hirschberg, obtaining the results in linear
space and double quadratic time by means of a double calculation of the DPM [6]. A
further improvement by the FastLSA proposed to save temporal values from the first
stage in a grid cache, so when the backward stage is executed, only the matrices in the
optimal path are recalculated.

To estimate the potential of the many-core processor, we have implemented a
parallel version of the FastLSA in the Tile64 architecture, both for the global
Needleman-Wunsch and the local Smith-Waterman aligners. We have run several
comparatives and benchmarking tests, optimizing the performance of the algorithms
to exploit the Tile64 features. We decided to write the MC64-NW/SW as an entirely
new development, instead of porting an existing FastLSA implementation. Thus, at

176 F.J. Esteban et al.

the cost of a greater development effort, updates, adding functions and specially
optimizing code fragments (our main goal) were easier to accomplish. As stated
before, the most time-consuming task in our algorithm was to calculate the DPM,
being the task that should be distributed among the available tiles. The way to do this
in FastLSA is using a wavefront parallelism, where sub-matrices can be calculated
progressively, once their upper-left elements are available. Thus, at the time that a
sub-matrix is available, its bottom-right elements become the initial data to the next
calculus, repeating this process until the last row and column are reached. With a
controller-worker scheme, a master tile is assigned with the role of getting the initial
data, passing them to the available slave tiles (assigned with the role of matrix
calculations), and finally collecting results to make the overall work progress.

With this general approach, which offered impressive results from the first
implementation due to its inherent high parallelization factor, several variants were
used, effectively exploiting the potential of the TILExpress-20G hardware. The
Figure 1 shows the MC64-NW/SW version history and the performance when
aligning a given sample pair of sequences of about 360 kilobases (kb) in the same
hardware environment and with all possible executing parameters alike.

Fig. 1. MC64-NW/SW version history and performance

The key change to improve our implementation’s performance occurred with the
arrival of version 1.2, transferring some data from shared memory to the local
memory of the tile requiring it. This amazing speedup factor was reached because a
tile can access data much faster when it is allocated into its local memory space. The
conclusion is that the Tile64 can be an effective environment to execute
bioinformatics applications, when parallel implementations are well structured and
fine-tuned to meet the architecture peculiarities. Our work in progress under this
development includes a new version, where intermediate results are stored in a host
database, freeing the memory resources onboard the card, and thus allowing to align
sequences up to 16 megabases (Mb).

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 177

3.2 Multiple Alignments

Once the usefulness of the Tile64 platform in pairwise alignment was demonstrated,
the next natural step was to complete this work adding the feature of multiple
sequence alignments. In fact, that can be derived from a triangular matrix of
distances, obtained from the full pairwise alignments between the sequences. In this
scenario, the pairwise alignments derived from the MC64-NW can have the additional
advantage of being optimal, in the sense that no heuristics are used to speed up the
alignment process.

The most widely used multiple alignment tool throughout the last years has been
Clustal W [8]. Its source code has been ported to many platforms, entire rewritten in
C++ to give it a modern interface [9] and being slightly parallelized using MPI [10].

Fig. 2. Clustal W parameter form at our Web page http://www.sicuma.uma.es/manycore/
index.jsp?seccion=m64cl/run

178 F.J. Esteban et al.

The algorithm has three stages, all of them allowing variations. First of all, all
possible pairs of sequences are aligned, building a matrix representing the degree of
divergence between sequences by means of scoring or “Weighting” (the “W” stands
for it) the quality of the pairwise alignments. In the second stage, a guide tree is
derived from the distance matrix, in order to simplify the generation of the final
alignment, making it computationally affordable. Finally, a progressive alignment is
run using a clustering method. The first and last stages are the most computationally
demanding. Regarding to the variants, any of the available pairwise alignment
methods can be used in the first stage, either heuristic or fully dynamic programming,
with the above mentioned advantage in accuracy in the second option. In the second
stage, the Neighbor-Joining (NJ) [11] or Unweighted Pair Group Method Average
(UPGMA) [12] approaches are usually employed.

A preliminary parallel implementation of the Clustal W for the Tile64 (MC64-
ClustalW) is already available. We have replaced the Clustal W’s first stage of
pairwise alignments with our MC64-NW/SW local aligner. Thus, for 10 sequences of
approximately 100 kb, the 45 elements of the distance matrix are calculated in 860
seconds (less than 15 minutes) instead of 8,067 seconds (more than two hours) in the
non-parallelized first stage of Clustal W in a quad-core Xeon microprocessor. The
MPI Clustal W version in the same quad-core system completes this same task in
3,121 seconds (about 52 minutes). The Figure 2 shows the parameter page available at
our web site <http://www.sicuma.uma.es/manycore/index.jsp?seccion=m64cl/run> to
access this preliminary MC64-ClustalW implementation.

4 Sequence Assembly

A single chromosome from higher organisms (eukaryotes) may have about 100 to 200
million base pairs. Current technologies do not allow to “read” full chromosomes
from one end to the other on a single sequencing reaction. The different sequencing
platforms can only read from about 30 to 1,000 bases per reaction (depending on the
technology used). Thus, sequencing full genomes is time-consuming and expensive.
Some of the current limitations stem from the fact that, to sequence a chromosome,
not a single molecule but millions of them may be required. Such DNA is randomly
broken into small pieces, generating a huge library of redundant and overlapping
fragments, which are subsequently sequenced by “brute force”.

The bioinformatics tools are then required to sort such complex maze and generate
contiguous overlapping fragments (“reads”) known as contigs (name derived from
“contiguous”), with enough redundancy to overcome possible sequencing errors.
Some reads may be small, may contain homopolymeric stretches (eg., tens of T bases
in a row) and repetitive sequences (eg., AC many times in a row). Such kinds of
sequences may exist on many locations on the genome, which may prevent proper
contig generation. As expected, these issues are more significant for technologies
generating small reads (eg., 30 bases), being therefore more difficult to assemble into
contigs. Consequently, gaps may remain in the sequence, requiring further efforts to
fill using other sequencing approaches. Actually, most of the times such gaps are not

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 179

even filled, due to the cost involved, and the genome is assembled using a reference
one if available. Indeed, virtually all published genomes to date include many
unsequenced stretches or gaps.

There are two main scenarios when assembling genomic sequencing reads into
contigs: i) de novo sequencing, when such species genome is being sequenced for the
first time; and ii) resequencing, when the species genome has been previously
sequenced (eg., from a different individual). In the latter case, the previous sequenced
genome is used as reference, to align the other from the new sequencing data.
Sequencing-data assembly has been tackled by different bioinformatics strategies
[13], but it has been a fully computational task only for the last years. This has been a
consequence of the huge amount of sequencing data generated by the so-called “next-
generation” sequencing technologies. The first approach to the problem consists of
finding the shortest common superstring (contig) of a set of sequences. This task can
be efficiently accomplished by a “greed” algorithm, starting by finding all possible
overlaps between the initial samples. Later on, a score is assigned to each potential
overlap, and finally the samples are iteratively merged into a single contig, by
combining the ones with the highest scores. The process ends when no more samples
can be merged (albeit, leaving gaps in some instances, as previously explained). As
examples, TIGR Assembler [14], Phrap [15] and CAP3 [16] follow this paradigm.
However, this approach has one big problem: it is useful only for short genomes, due
to its large RAM requirements, so its applicable field is limited to prokaryotes
(bacteria) and a few lower (single-celled) eukaryotes.

Three other work lines can solve the limitations of a greed algorithm: the DeBruijn
graph [17] representation, the prefix-tree approach, and the overlap-layout-consensus.
The first work on short reads by de novo assembly was a pioneering DeBruijn graphs-
based implementation by Prevzner [18] in the first year of this century. Velvet [19],
EULER-SR [20] and ALLPATHS [21] also follow this paradigm, which is the most
recurrent in scientific literature. The SSAKE [22] by Warren was the first prefix-tree
approach, followed by the VCAKE [23] and SHARCGS [24]. Finally, the Edena [25]
represents the last step in the overlap-layout-consensus tradition.

The parallelism has come late to this field. The first algorithm capable of
distributing a DeBruijn graph across a network of computers has been ABySS [26],
breaking its inherent memory usage limit and providing the potential ability to
assemble genomes of virtually any size. This brand new parallel implementation in a
new bioinformatics field (like the de novo assembly of full genomes from short
sequencing reads) was really interesting, so we tried to develop a Tile64 ABySS
implementation of it. In this case, we started from the C++ code freely available at the
author’s web site. To get it run in parallel, a message passing technique was used in
the original source code, by means of exploiting the widely used MPI library.

Due to the lack of this library in the Tilera’s software environment, we carried out
a previous study of MPI usage in ABySS, analyzing its communication behavior. We
found it rather simple: only a small subset of MPI functions was used, consisting of
“blocking send” to exchange data messages, “synchronous blocking send” to
exchange control messages, and “non-blocking receive” to answer both kinds of
messages. Moreover, byte is the only data type used in any call. The control flow is

180 F.J. Esteban et al.

always between a master node and the others, whereas the data flow can be
exchanged between any two nodes. Additionally, the barrier mechanism was used to
control the algorithm progress. The code was also well structured, with all the
communication stuff concentrated in a single module, which contains most of the MPI
calls.

In this situation, our first step was to analyze the similarities and differences
between the MPI and the message passing capabilities of the Tilera’s iLib library. We
encountered two major differences regarding the absence of distinction between
synchronous send and “normal” blocking send and, on the other hand, the absence of
a function to open a receive call without identifying the expected sender. The first
issue can be overcome by considering the iLib blocking send implementation as
synchronous, and thus introducing the concept of a router tile to simulate “normal”
MPI blocking send, according to the blocking send definition in the MPI
specification. For the second issue, taking into account that the participant tiles were
established at the very first stage of execution, we made a separate receive call for
each other participant tile to deal with control messages, whereas the router tile
concept solved this problem inherently for the data messages exchanges. Therefore,
the router tile must issue a non-blocking receive call to the rest of participant tiles,
and the other tiles must issue only a non-blocking receive call to the router tile. In this
final situation, the message format needs a slight modification, adding a
source/destination header in order to keep the communication participants identified.

With the above constraints, we have carried out a parallel ABySS porting to the
Tile64 platform. As a reference for our porting, we have run the original algorithm in
an Intel quad-core Xeon workstation, equipped with the same amount of RAM
present in the TILExpress-20G cards (8 GB), in which we installed the MPI
distribution recommended by the original algorithm’s authors (OpenMPI). As we
were interested in evaluating the Tilera’s platform performance, we conducted our
tests only with the same synthetic data used by the authors, checking the accuracy of
our solution first, which could be consistently established. Thus, with the same input
data, results from our implementation and from the Xeon reference were always the
same, resulting in the same assembled sequences in every execution.

However, the performance results were not satisfactory. From the first tests we
could see that, despite of the larger number of tiles of the Tile64 platform, they could
not beat the execution times offered by the four Xeon cores, nor even approaching
them. The reason for this poor performance remained in the fact that the distribution
of the DeBruijn graph among the participant tiles resulted to be a more time-
consuming task than the actual assembly. Thus, the iMesh behavior with a router tile
could not compete this time with the fine-tuned mechanism used by OpenMPI when
distributing processes inside the quad-core processor. Given this situation, we
introduced a change in our communication strategy, dedicating more tiles to the router
role than to execute the assembling algorithm itself. The remaining tasks alternate its
router in a round-robbing fashion. An optimal execution time could be obtained fine-
tuning the number of routers and assembler tiles, given a number of samples to
assemble. The Table 1 shows these times, with the same consideration that they are
far from the Xeon platform scores.

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 181

Table 1. MC64-ABySS best execution times

Finally, we made a second implementation based upon the iLib channel

communication paradigm, maintaining the idea of the router tile in order to meet the
MPI requirements. With this, we tried to emulate most of the MPI interface in order to
get a small MPI implementation in the Tilera platform. The performance of this
second implementation was equally unsatisfactory. As conclusion for this section, we
can see that a partial porting of an existing algorithm may not yield better
performance on some many-core platforms. Thus, if the parallelization factor cannot
be exploited or other constraints arise, results could be frustrating. As we could see,
this particular algorithm was best suited to multicore platforms (instead of current
many-core ones), where less, yet more powerful and better-communicated processors
can beat many, less powerful and worse-communicated ones.

5 Protein Folding

The central dogma of molecular biology states that “DNA makes RNA makes
protein”. Once a sequence is obtained, it may be useful to determine its 3D structure.
This process is usually less relevant in DNA, somewhat useful in RNA and most
important in peptides (like proteins). In fact, a wrong protein folding may generate
severe pathologies like the Alzheimer disease or the Creutzfeldt-Jakob disease
(similar to the “mad cow” disease). Interestingly, some proteins can auto-fold
spontaneously, but others require the participation of specialized cellular machinery
like the chaperons and chaperonins.

The 3D structure of molecules can be experimentally obtained after crystallization
and further X-ray diffraction. Yet, such approach may be difficult, time consuming
and expensive in some instances. An alternative approach is to computationally
simulate the molecule folding by means of prediction or modeling techniques.
However, this process presents vast computationally challenges, that may be even
higher than the experimental ones. For instance, protein folding processes typically
take only tens of microseconds in the cells, but a computer simulation on a single
current computer may take one day to simulate just a single folding nanosecond. So,
the parallel and distributing computing is the only way to tackle such challenge
nowadays.

Samples

MPI execution

 time (seconds)

Tile64 execution

 time (seconds)

Working

 tiles

Router

 tiles

1,000 1,170 6,930 31 32

 10,000 4,460 19,090 47 16

 100,000 41,780 167,620 31 32

 200,000 79,610 287,180 31 32

 500,000 198,900 711,570 47 16

 1,000,000 493,700 1676,810 47 16

182 F.J. Esteban et al.

Many approaches have addressed the protein folding in silico. Perhaps, the most
widely known project is Folding@home [27] at Stanford University, and its
homonyms Predictor@home and Rosetta@home, all of them relaying in a principle
already used in previous projects: to harvest unused personal computer (PC) cycles
distributed in the Internet to develop protein folding. The amazing amount of
published results based on this lose-connected medium-powered computer cluster
(see, for example [28]) widely demonstrates the usefulness of this paradigm for this
bioinformatics challenge. Other approaches in this field fall in the subject of ab initio
prediction of RNA [29] and protein [30] folding structure or protein structure
comparison [31], whose parallelization has been afforded with the omnipresent MPI.
A general algorithm review can be found at [32], compiling the most usefulness and
the state of the art in parallelization, exploiting already existing grid infrastructures.

In this scenario, multi-core and General-Purpose GPU (GPGPU) architectures
usually serve as building blocks, to increase the computing power of the overall
distributed or grid system within a single node. As an example, the Table 2 shows the
number of clients in the Folding@home project and its computer power. This implies
the cost of adapting grid-enabled software to exploit this first-order parallelism, using
the appropriate technique like the Compute Unified Device Architecture (CUDA) for
the nVidia GPU, and multiprocessing or multithreading for SMP. Another alternative
consists of using a parallel-capable middleware. Again, as an example, the MPI is
used to build the SMP-ready clients at Folding@home.

Table 2. Client statistics in the Folding@home project. Source:<http://fah-web.stanford.edu/
cgi-bin/main.py?qtype=osstats> as of 28th October, 2010

Operating system TFLOPS x86-equivalent TFLOPS Active CPU Total CPU
Windows 212 212 223,062 3,494,452
Mac OS X (PPC) 4 4 4,466 141,183
Mac OS X (Intel) 22 22 7,192 133,576
Linux 62 62 36,354 532,490
ATI GPU 655 691 6,419 138,782
NVIDIA CPU 1,037 2,188 8,716 221,109
Cell B3 785 1,656 27,833 1,030,352

Total 2,777 4,835 314,046 5,691,944

Regarding the many-core architectures (like Tilera), as we have demonstrated

before, we can surpass other implementations in a single PC when addressing
bioinformatics problems with medium to high computational challenges and
medium to low communication tightness. Thus, a cluster of the Tilera cards could
offer good performance for some of these problems, if they can be re-scaled to the
dimension of the cluster. Another strategy is building a regular client architecture.
In this scenario, each tile could be an independent client, given its capability to
execute a whole operating system, accessing the grid through the card built in
Ethernet interfaces.

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 183

6 Future Many-Core Trends

To conclude this work, we present a short review of the available (or announced)
many-core products, as well as their possible usefulness in bioinformatics.

Intel has released a research program called Single-chip Cloud Computer (SCC)
[33], developing a 48-core chip currently tested by academic and research groups.
This product is in the line with other manufacturers like Tilera, with each core
having the ability to run an entire operating system and with hardware message-
passing support, so meeting the requirements of nowadays widely available parallel
implementations. The Figure 3 shows the SCC die. The first pre-commercial bundle
of such architecture has been a PCIe card (codenamed “Knights Ferry”) with a 32-
core Aubrey Isle die in it. Future plans in this line includes 80- and 100-core single-
chip developments at up to 5.7 GHz for CPU clock and 1.81 TFLOPS of
performance [34]. As we have demonstrated with the Tilera’s cards, this architecture
can be exploited for bioinformatics applications [1]. Intel may have some advantages
in this scenario, including its capability to use floating point instructions in
hardware, its use of the well-known x86 architecture and its efficient use or power
consumption, with the built-in capability of independently regulating such parameter
in each individual core.

Fig. 3. Intel SCC die. Source: Intel SCC symposium (2010)

184 F.J. Esteban et al.

On the other hand, AMD has changed its strategy after acquiring the GPU
manufacturer ATI. Its future plans are centered on its Fusion platform, [35]
announcing the idea of the Accelerated Processing Unit (APU). The rationale behind
this concept is the integration of traditional x86 CPU and many GPU cores in the
same die, adding also critical elements like memory controllers, specialized video
decoders, display outputs and bus interfaces. The idea resembles the System on Chip
(SoC) products, with a difference in application. Thus, the goal of AMD Fusion is not
making a specialized limited system, but a general-purpose high-performance one,
capable of combining scalar or serial computing abilities (present in CPU), as well as
parallel or vector computing features (associated with GPU) in an heterogeneous
blend. At the time of writing this paper, no Fusion product was commercially
available. However, two processors have been announced for 2011: one oriented to
netbooks and laptops (codenamed “Llano”) and another for desktops (codenamed
“Zambezi”). The Figure 4 shows a Llano die. Although the programming methods are
not known at the moment, no change of paradigm is expected.

Fig. 4. AMD Fusion “Llano” die. Source: ISSCC 2010

In the pure GPU manufacturer’s side, nVidia continues its GeForce/Tesla
development. Its strategy is far from other manufacturers: its CUDA technology is
based in distributing massively parallel threads of execution among the available
cores, specialized in this scheme and so not interested in running an entire operating
system. At present, its top of the line product in the GPGPU brand is the Tesla
C2070 PCIe card [36]. Its 448 cores are far away from any other current product,
but this leadership could be conditioned by the specialization of cores above
mentioned. Thus, when operations per second are used as the measuring unit, its
performance is in the same range than the remaining products in this revision. In the

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 185

pure GPU arena, its recent GeForce GTX 580 announcement [37] makes a step
forward, with 512 cores and an innovative vapor chamber design for more efficient
heat dissipation. It is important to note that a strength in this solution is the full
floating point operations hardware support. In the downside, the use of this platform
requires a complete rethinking of algorithms, in order to maximize the number of
executing threads, and therefore limiting its usefulness for general bioinformatics
purposes.

Finally, Tilera has announced the first 100-tile many-core processor, named Tile-
Gx [38]. Besides the number of tiles, many other features have been improved from
the Tile64 processor: faster CPU clock, 64 bit processors, more cache memory and
much better interfaces, including eight 10 GB Ethernet ones and three proprietary 20
GB/s connectors for twin card interconnection. Besides, it maintains the previous
philosophy (a whole Linux operating system running in each tile). The power
efficiency has been improved too, with a power consumption of 10 to 55 watts. A
downside is that it lacks floating point operations by hardware, which can be a barrier
for some scientific applications. But, fortunately, this is not the case for many
bioinformatics tasks, as we have previously shown [1]. The Figure 5 illustrates a
Tile64 processor die shot. Finally, the Table 3 shows a comparison amongst the main
features of the products described in this review.

Fig. 5. Tile64 processor die shot. Source: ISCC 2008

186 F.J. Esteban et al.

Table 3. Many-core platforms

Manufacturer Product Cores Speed Cache Memory Power

(W)

Intel SCC 48 1-2 GHz

CPU clock

16 + 16

kB L1

256 kB

L2

4 DDR3

controllers

24

AMD APU

(Fusion

“Llano”)

Up to

4 CPU

+

GPU

30 GFLOPS 1 MB

L2

1 DDR3

1600

controller

14

nVidia Tesla

C2070

448 1.15 GHz

CPU clock

515

GFLOPS

n/a 6 GB 238 (entire

board)

nVidia GeForce

GTX 580

512 1.54 GHz

CPU clock

515

GFLOPS

n/a n/a 244 (entire

board)

Tilera Tile-Gx 100 1.0-1.5 GHz

CPU clock

750 GOPS

32 + 32

kB L1

256 kB

L2

4 64-bit

DDR3

controllers

10-55

7 Conclusions and Future Work

After more than two years applying the first commercially available real many-core
architecture –in the sense that each core or tile can run a whole operating system– to
the field of bioinformatics, we have demonstrated its potential when addressing some
challenges, like optimal local or global pairwise alignments [1]. Furthermore, our
studies reveal that the GPU architectures can also yield good results in specific
situations, but that they do not apply to most bioinformatics scenarios, due to the in-
depth redesigning required to adopt the CUDA parallelization.

We have also demonstrated that these architectures are not yet capable to address
other challenges in its current state of software development, where further
methodological programming improvements are needed. These new methodologies
should establish the way an algorithm should behave, in order to meet its special
capabilities. They include a large amount of available processors, a moderate individual
computing power and a medium to high performance interconnection network. Our
work in progress is currently investigating solutions in this field, by the analysis of
current parallelization techniques and requirements. Our latest reviews also show that
the market trends are following this many-core line as a way to improve performance,
being the energy consumption one of the biggest challenges to address.

 Many-Core Processor Bioinformatics and Next-Generation Sequencing 187

Acknowledgments. We are grateful to Tilera for providing hardware and software
tools <http://www.tilera.com>. This work was supported by “Ministerio de Ciencia e
Innovación” [MICINN-FEDER grants BIO2011-15237 and AGL2010-17316];
“Consejería de Agricultura y Pesca” of “Junta de Andalucía” [041/C/2007 75/C/2009
& 56/C/2010]; “Grupo PAI” [AGR-248]; and “Universidad de Córdoba” [“Ayuda a
Grupos”], Spain.

References

1. Gálvez, S., et al.: Next-Generation Bioinformatics: Using Many-Core Processor
Architecture to Develop a Web Service for Sequence Alignment. Bioinformatics 26(5),
683–686 (2010)

2. Castillo, A., et al.: Genomic approaches for olive oil quality control. In: Plant Genomics
European Meetings (Plant GEM 6), Tenerife, Spain (2007)

3. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

4. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol.
Biol. 147(1), 195–197 (1981)

5. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol.
Biol. 162(3), 705–708 (1982)

6. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences.
Commun. ACM 18(6), 341–343 (1975)

7. Driga, A., et al.: FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for
Sequence Alignment. Algorithmica 45(3), 337–375 (2006)

8. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic. Acids Res. 22(22), 4673–4680 (1994)

9. Larkin, M.A., et al.: Clustal W and Clustal X version 2.0. Bioinformatics 23(21), 2947–
2948 (2007)

10. Li, K.-B.: ClustalW-MPI: ClustalW analysis using distributed and parallel computing.
Bioinformatics 19(12), 1585–1586 (2003)

11. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

12. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. The Principles and Practice of
Numerical Classification (1973)

13. Pop, M., Salzberg, S.L., Shumway, M.: Genome sequence assembly: Algorithms and
issues. Computer 35(7), 47–48 (2002)

14. Sutton, G.G., et al.: TIGR Assembler: A New Tool for Assembling Large Shotgun
Sequencing Projects. Genome Science & Technology 1(1), 11 (1995)

15. Green, P.: Phrap Documentation: Algorithms. Phred/Phrap/Consed System Home Page
(2002), http://www.phrap.org (cited October 31, 2010)

16. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome. Res. 9(9),
868–877 (1999)

17. De Bruijn, N.G.: A Combinational Problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 49, 758–764 (1946)

18. Pevzner, P.A., Tang, H.X., Waterman, M.S.: An Eulerian path approach to DNA fragment
assembly. Proceedings of the National Academy of Sciences of the United States of
America 98(17), 9748–9753 (2001)

19. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome. Res. 18(5), 821–829 (2008)

188 F.J. Esteban et al.

20. Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes.
Genome. Res. 18(2), 324–330 (2008)

21. Butler, J., et al.: ALLPATHS: de novo assembly of whole-genome shotgun microreads.
Genome. Res. 18(5), 810–820 (2008)

22. Warren, R.L., et al.: Assembling millions of short DNA sequences using SSAKE.
Bioinformatics 23(4), 500–501 (2007)

23. Jeck, W.R., et al.: Extending assembly of short DNA sequences to handle error.
Bioinformatics 23(21), 2942–2944 (2007)

24. Dohm, J.C., et al.: SHARCGS, a fast and highly accurate short-read assembly algorithm
for de novo genomic sequencing. Genome. Res. 17(11), 1697–1706 (2007)

25. Hernandez, D., et al.: De novo bacterial genome sequencing: millions of very short reads
assembled on a desktop computer. Genome. Res. 18(5), 802–809 (2008)

26. Simpson, J.T., et al.: ABySS: a parallel assembler for short read sequence data. Genome.
Res. 19(6), 1117–1123 (2009)

27. Shirts, M., Pande, V.S.: COMPUTING: Screen Savers of the World Unite!
Science 290(5498), 1903–1904 (2000)

28. Marianayagam, N.J., Fawzi, N.L., Head-Gordon, T.: Protein folding by distributed
computing and the denatured state ensemble. Proc. Natl. Acad. Sci. USA 102(46), 16684–
16689 (2005)

29. Ding, F., et al.: Ab initio RNA folding by discrete molecular dynamics: from structure
prediction to folding mechanisms. RNA 14(6), 1164–1173 (2008)

30. Ding, F., et al.: Ab initio folding of proteins with all-atom discrete molecular dynamics.
Structure 16(7), 1010–1018 (2008)

31. Shah, A.A., et al.: Parallel and Distributed Processing with Applications. In: Proceedings
of the 2008 International Symposium on Parallel and Distributed Processing with
Applications, pp. 817–822 (2008)

32. Shah, A.A., Barthel, D., Krasnogor, N.: Grid and Distributed Public Computing Schemes
for Structural Proteomics: A Short Overview. In: Thulasiraman, P., He, X., Xu, T.L.,
Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.) ISPA Workshops 2007. LNCS,
vol. 4743, pp. 424–434. Springer, Heidelberg (2007)

33. Intel, The SCC Platform Overview (2010), Web:
http://techresearch.intel.com/spaw2/uploads/files/SCC-
Overview.pdf (cited October 31, 2010)

34. Intel, Intel’s Teraflops Research Chip (2010), Web:
http://download.intel.com/pressroom/kits/Teraflops/Teraflops
_Research_Chip_Overview.pdf (cited October 31, 2010)

35. Brookwood, N.: AMD FusionTM Family of APUs: Enabling a Superior, Immersive PC
Experience (2010), Web:
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_W
EB.pdf (cited October 31, 2010)

36. nVidia, Tesla C2050 and Tesla C2070 Computing Processor Board Specification (2010),
Web: http://www.nvidia.com/docs/IO/43395/BD-04983-001_v04.pdf
(cited October 31, 2010)

37. nVidia, GeForce GTX 580 Specification (2010), Web:
http://www.geforce.com/#/Hardware/GPUs/geforce-gtx-
580/specifications (cited October 31, 2010)

38. Tilera, Tile-Gx Processor Family Product Brief, Web:
http://www.tilera.com/sites/default/files/productbriefs/PB02
5_TILE-Gx_Processor_A_v3.pdf (cited October 31, 2010)

	Many-Core Processor Bioinformatics and Next-Generation Sequencing
	Introduction
	Tile64 Architecture
	Sequence Alignments
	Pairwise Alignments
	Multiple Alignments

	Sequence Assembly
	Protein Folding
	Future Many-Core Trends
	Conclusions and Future Work
	References

