
Evolving Presentity-Based Context Schemas

by Estimating Context Proximity

Jamie Walters and Theo Kanter

Department of Information Technology and Media
Mid Sweden University, Sundsvall Sweden
{jamie.walters,theo.kanter}@miun.se

Abstract. The definition of what constitutes context proximity has re-
mained largely unexplored but accepted as being a fundamental issue
towards realising an architecture of connected things. Existing solutions
aimed at enabling context awareness are often undermined by their de-
pendencies on centralized architectures limited with respect to their scal-
ability. Our previous work proposed the use of the so called Context
Schema; an encapsulated representation of the information points con-
stituting the context of a presentity. Building such a schema requires
support for determining set members limited by some metric; a prox-
imity metric. In this paper, we propose an algorithm for estimating the
context proximity among presentities, enabling complete schemata of en-
tities relevant to, and expressing the current context of a presentity. Sec-
ondly we propose an extension of a gossiping algorithm to optimize the
ability create schemata as one traverses a vast and dynamic connected
things infrastructure.

Keywords: Context, Context Awareness, Presentity, Self-Organization,
Real Time, Context Proximity.

1 Introduction

The increasing interest in the provisioning of applications and services that de-
liver experiences based on context mandates the continual research into method-
ologies, architectures and support for delivering the context information required.
Constraints on service delivery with respect to real-time availability underpins
any such solution [12].

A future connected things infrastructure, with an expected device base ex-
ceeding billions [21], may be expected to support a wide range of context centric
experiences ranging from personalized and seamless media access, to intelligent
commuting or environmental monitoring. Such seamless connectivity will ex-
tend to and include devices such as mobile phones, personal computers or IPTV
boxes. All converging towards the paradigm of everywhere computing [15]; the
seamlessly connected Internet of Things.

In response to this, previous and existing works attempt to enable measures of
context proximity by incorporating sensors, actuators and other intelligent arte-
facts into the real world. Research such as that undertaken with the AmbieSense

M.L. Reyes et al. (Eds.): IT Revolutions 2011, LNICST 82, pp. 137–152, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

138 J. Walters and T. Kanter

Fig. 1. Context Framework Model

project [9], sought to enable this derivation of context by means of utilizing em-
bedded context tags. Others such as the Smart-its Friends Project [10], [2] or [7]
uses devices attached to users as a means of establishing indicators of context.
Such approaches require the adoption of specific hardware devices, subsequently
creating a barrier to large scale user adoption. Alternative approaches sought to
derive context from existing pervasive devices such as temperature, pressure and
GPS sensors.

This is an integral part of projects such as Senseweb [13] and SENSEI [17].
The SENSEI project however does not provide support for dynamic changes in
context as it relates to the discovery of new sensor sources, requiring the explicit
modelling of the user-sensor relationships. However, the centralization of these
approaches undermine their ability to scale well impacting on performance with
respects to real time constraints. Citing this, we acknowledge the need to create
solutions that are capable of disseminating sensor information within real-time
constraints and scaling to accommodate the vast infrastructures of connected
things existing in the future.

Acknowledging that sensor information required more meaning in order to
realise useful services, we extended our work by creating an object-oriented on-
tology capable of being distributed across a peer-to-peer overlay [6]. With such a
model, we enforce a metaobject/value split, permitting us to reason over a model
without reference to its current values.

We separated the concept of a Presentity [5] from other entities such as sensors
and actuators and additionally, introduced the concept of a Context Schema,
defined as:

The collection of information points associated with and contributing to a
presentity’s current context

where an Information Point is defined as:

Any source providing information about the context of an entity or any sink
capable of accepting an input effecting changes to an entity’s context

Distributed Context Models 139

Such a schema is attached to a presentity and encapsulates all its information
points and relationships. An application or service with a requirement to deliver
some user context-centric experience, subscribes to the current schema descrip-
tion; it realises a publish/subscribe interface to the entities described by the
schema and retrieves the current context information. As a presentity traverses
a connected things infrastructure it discovers new entities and consequently up-
dates its schema to reflect this. As a result, all subscribing end points receive an
updated schema and can adjust their services to accommodate this. For simplic-
ity, we refer to information points as points.

While this presents a scalable distributed means of deriving continual changes
to context, questions concerning the means of accomplishing such an evolving
schema remains unresolved. A solution would require that we are able to derive
and disseminate localized relationships from a global context infrastructure while
remaining within real-time constraints. Such a solution, coupled with a context
model and sensor information distribution will serve to further enable distributed
context information in support of the proliferation of ubiquitous computing ap-
plications and services.

2 Motivation

The need to derive proximity metrics is critical component of any infrastructural
approach to context aware computing [11]. Users navigating an interconnected
Internet of Things require infrastructures capable of responding to queries con-
cerning context as well as enable experiences based on the available information
points within proximity.

As with any typical day within an urban environment, people are constantly
on the move for business or pleasure. Within such a future cityscape, there
exists multiple information points which maybe used to inform a person on
the state of his surroundings. A digital ecosystem capable of providing enough
information in order to derive support for services wishing to effect changes or
deliver experiences to a user, based on context. Such information might include
audio devices, internet connections or video devices; a range sensors including
temperature, humidity, lighting and capacity sensors or even location, traffic and
air quality sensors. A person with a smart device would be able to connect to
and derive representations of context from these points in order to support his
applications. A hearing-impaired person may simply need to find a store with a
hearing-aid loop in order to be able to comfortably make a purchase.

Existing solutions such as [10], [2] and [3] could enable the discovery of such
points. However, they would require the installation of additional devices. Firstly,
devices attached to points around the cityscape or within buildings and secondly
a device attached to each user. This solution has some advantages with respects
to providing known anchor points, and partially negating the problems of GPS
dead-spots. However, the user would be required to position himself within some
spatial proximity of the device connected and perhaps motioning in order to
initiate a proximity indicator to the supporting architecture. This would then

140 J. Walters and T. Kanter

create a connection between the user and some artefact; providing access to
the information points available. Such a solution requires the explicit interven-
tion of the user and be dependent on the user knowing the location of such
points with which to synchronize. With a large population, this could become
a nuisance with people queuing in order to be synced with the infrastructure,
negating much of the progress made in realizing seamless ubiquitous computing.
Any solution to deriving context within such a heterogeneous landscape must
consider all indicators and be able to derive context information with minimal
user interaction.

Other solutions enabling the ability to derive proximity through the use of
spatial locating techniques such as GPS, have functional limits, such as being on
a subway train. We concur with [20] and [19] and divert from the concept that
physical location provides the overarching indicator of context and is required in
order to enable useful context dependent services. Other work such as [17] would
allow for users to be connected to the cityscape but achieves this by using largely
static determinations of what constitutes the information points connected to a
presentity. This gets challenged however, if the city won the Olympic Bid, and
an impromptu concert was being held in the city; the user would have no access
to the resources as [17] does not permit additions in such an ad hoc manner but
rather an infrastructure created, designed and instantiated by administrators.
This further undermines the actual dynamic behaviour of the connections and
people in the real world.

Each person however, possesses context indicators hinting at his proximity
with regards to other presentities within the digital ecosystem. He might have a
GPS sensors, a physical proximity sensor or just a calendar event indicating his
expected location.

Indexing approaches such as search engines considered this theory of con-
nected things relative to static document content on the Internet. A document’s
connectivity determines its relevance with regards to the size of the entire docu-
ment collection. This concept of page ranking has been explored and used both
in a centralized solutions [1] as well as distributed solutions [22]. Centralized so-
lutions such as Google index a tiny portion, less than 10 billion of the estimated
550 billion pages, on the relatively static Internet [16] [22]. Any attempt to apply
such a centralized solution to locating and building context models representing
such dynamic situations would be undermined by their ability to scale well. Dis-
tributed solutions based directly on the PageRank concept would not scale well
to accommodate highly dynamic document sets. Current real-time searches are
realized by targeting known content providers which could not scale to accom-
modate the vast and mostly ad hoc nature of a connect things infrastructure.

Previous work concerning data mining within context centric architectures [18]
[4] provided a means of deriving relationships between presentities and other
entities or identifying patterns in the information they contain. We however,
are not in search of data mining algorithms which require a collection of data
capable of supporting inference. The dynamic nature of context information
undermines this and results in solutions where data-mining is carried out over

Distributed Context Models 141

historical records on the presumption that it represents an indication of current
context. In contrast, consider a user entering a city for the first time, his current
context would display a change in patterns rendering all services based on his
previous behaviour irrelevant. Such expectations of a context support system
is not unusual in a world where people are becoming increasingly mobile and
dynamic.

The need therefore exists for methodologies capable of evolving and establish-
ing localized sets of information points capable of answering a query concerning
a user in real-time. Mandated are solutions that, in real-time, identifies and
collates information sources considered to be within close proximity [11] to a
user’s context and are therefore able to provide context information supporting
applications and services. The remainder of this paper is divided as follows: sec-
tion 3 addresses some background work related to this paper; section 4 looks at
the proposed approach to calculating context proximity; section 5 looks at how
our solution would work in a distributed architecture while section 6 details our
conclusions and future work.

3 Background

3.1 Distributed Context Exchange Protocol and Overlay - DCXP

DCXP [14] is an XML-based application level P2P protocol which offers reliable
communication among nodes that have joined the P2P network. Any end-device
on the Internet that is DCXP capable may register with the P2P network and
share context information. The DCXP naming scheme uses Universal Context
Identifiers (UCIs) to refer to Context Information (CI) such as sensors that are
stored in the DCXP network.

3.2 The Gossiping Algorithm

Previous work [8] presented a lightweight peer-to-peer algorithm for organizing
entities into small dynamic groups based on some indicator value. The main aim,
was to derive the ability to maintain groups that were centred around an entity
according to the preferences of the entity expressed as a known measurable value.
Such organization was unstructured and occurred as values changed with respect
to changes in the entity itself or changes to the entity’s affinity to the value.

At its core, the algorithm is based on simple gossiping, targeted at keeping
all interesting entities within a single hop from the interested entity, thereby
enabling quick communication and exchange of information. At runtime, an en-
tity, A, on initialization queries a database for another entity that is within its
preferred value range, eg: 5km from its location. It then connects to this entity,
B, and queries B for any known entities within its range. Such entities are for-
warded to A, evaluated and add added to its list of neighbours. It continues to
probe all nodes it knows, continually updating its list of neighbours. A now has
a list of all relevant entities with which it may communicate in order to fulfil
some application or service dependent on proximity.

142 J. Walters and T. Kanter

In a distributed environment, such an algorithm requires that any element
of centralization be completely removed in order to achieve an ad hoc and dis-
tributed solution. In support of this, we create a resource index on a distributed
overlay which provides a starting point for finding entities. A presentity issues,
on joining, a search for other presentities matching its proximity criteria, re-
trieve an initialization list with which to start probing for entities within close
proximity, recursively doing so to locate all known entities matching its criteria.

3.3 The Distributed Object Model

The CII ontology as described in [6] details an entity-predicate-entity triple im-
plemented in an object-oriented framework. Such a model is similar in concepts
to the semantic web approaches, however it remains advantageous with regards
to the time taken to traverse and reason over an object-based model. It provides
for a way to represent the relationships and interactions in an connected things
within an Internet of Things. Where things can range from sensors and actua-
tors to virtual information sources such as social networks, media, people and
infrastructure.

The CII model can be extended with new sub-concepts of Entity and
Information-Source. These concepts would be presented as classes following a
standard interface. This integration would be made possible by adaptive soft-
ware techniques such as a combination of computational reflection, automated
compilation and dynamic class loading. Agents, applications and services reside
above and use the meta-model as a source of data and deriving context infor-
mation.

It was extended to include a Schema Entity which is attached to a presentity
and describes the current model of sensors and actuators that provide context
information supporting the presentity. In this way the watchers, regarded by [5]
as the entities interested in a presentity’s prescence, may has access to a defined
real-time picture of all the information points related to a presentity. It can then
choose which sensors to use in order to deliver its services.

Schema entities, however have one additional property; they expose a pub-
lish/subscribe interface. We take this approach in order to avoid having to syn-
chronize large datasets distributed around the architecture. Watchers [5] can
therefore subscribe to a schema and be notified as it changes. There is no need
to issue queries to nodes or databases or for watchers to be concerned with
checking for updated presence information.

4 Approach

A context network, within our definition, is comprised of presentities with at-
tached information points creating a directional graph as illustrated in figure 2.
A presentity connected to an information point undertakes this as a means of
deriving a representation of context or as a means of effecting a change in its
context. Such connections are highly volatile and dynamic but while they persist,

Distributed Context Models 143

Fig. 2. Presentity & Information Point Relationships

they provide an implicit link between presentities that are attached to and deriv-
ing their context from information points within a context-based infrastructure.
In figure 2, P1 while connected to S1, derives an implicit but existing relation to
P2 via S1. The implication being that their connection suggests that P1 and P2

share, to some extent a similar context. We consider also the alternative scenario
shown in figure 2 where P1 is connected to S1 and P2 is connected to S2. If S1

and S2 are expressing the same context indicator type, i.e. they are two infor-
mation points of the same type such as a temperature sensor, then P1 shares a
context similar to that of P2 by a function of the difference between S1 and S2;
their point proximity.

Further, one may view the relationships that are constructed between these
presentities as being states in a Markov Chain. The probability that P2 possesses
a close proximity to P1 is derived solely from the current context state at P1.
Similarly to link-based ranking algorithms used in static document ranking, this
probability is the degree of the relationship between P1 and P2. The current
context state of P1 on the other hand, has no influence on the relationships of
P2 and any other presentity within the architecture. Further, P ′

2s relationship to
P1 is only influenced by the current context state of P1, disregarding any past
or future states.

4.1 Sensor Proximity

With this assumption, we build localised directed graphs for each presentity
based on its relationships with other known entities at a given time. This presents
the first problem of finding entities that lay within X1; the context proximity
limit of P1. The architecture defined in figure 2 illustrates a multi-layered ap-
proach, comprising of an application layer residing on top of an API. We envision
that applications will be able to define limits of X1 such as: find all people within
3km with a temperature less than 5 ◦C difference permitting us to obtain param-
eters needed to derive the entity sets.

Further, we assume that all sensors are able to provide context values in some
discrete representation permitting comparison. We acknowledge situations where
there exist representations of context that are relatively more difficult to express

144 J. Walters and T. Kanter

as discrete values. However our previous work into creating object models for
context representation [6], addressed this by permitting information points to
implement a comparator interface. This would allow us to compare two values;
obtaining either a boolean comparison or some discrete value representing the
distance between context values. Such an example would occur when comparing
appointments on calender, where a simple true/false would suffice in comparing
current meeting availability.

With parameters for what constitutes the limit of context values that the
applications and services require, we proceed to query for presentities bearing
a similar context or a similar context to some degree. Firstly, we query each
dimension using the rules outlined below. The process is repeated for each point
attached to P1.

We create groups of points within proximity of S1. Figure 2 illustrates points,
S1 and S2 respectively connected to presentities P1 and P2. For each context
dimension, we find all the points within the context proximity, X , required by
the applications.

From this, we create a cluster of points with a context value similar to that
of S1 within a context proximity calculated where:

(|VS1 − VSk|) ≤ XS1 (1)

here, VS1 is the current value of S1 and VSi is the current value of Si with XS1.
Therefore within a domain D, S1 obtains a set of related sensors at time t such
that:

Gt = {S : S ∈ Dt : (|VS1 − VSi | ≤ X)t} (2)

This is a dynamic set of information points with respect to P1 its context di-
mension S1, that continually evolves to reflect the addition or removal of sensors
with respect to their current values.

We consider the fact that not all instances of Si lie within the same proximity
to S1. This implies that S1 shares a closer context with some members of G and
subsequently those members must be given a higher preference with regards to
any context dependent application or services wishing to find context information
points in support of delivering some optimal user experience. Using the distance
X would not be a reliable indicator of such relevance, since the scales could
be different for each sensor Si attached to P1. We normalise these values as
a function of the value with respect to the scale and the distance from S1 as
follows:

RSi = f(Si) = (1− |VSi − VS1 | ·XS1

−1) (3)

where:

0 ≤ RSi ≤ 1 (4)

Distributed Context Models 145

Fig. 3. Single Dimension Context Proximity Cluster

A value of 0 being at the edge and 1 being identical to XS1 . This value is useful
for us for two reasons, firstly it can be used to apply a weighting to the edges
connecting S1 to Si and subsequently the edges connecting to P1. Secondly, we
use this value to calculate the average rank of the set of GS1; this we express as
follows:

RGS1
=

∑n
i=0(1− |VSi − VO| ·XS1

−1)

i
(5)

where:

0 ≤ RGS1
≤ 1 (6)

A value closer to 0 being not well connected and 1 being connected to a set of
sensors with similar context values. This represents an indicator of the connec-
tivity of S1 with respect to its current context value, and an indicator of the
probability that there exists good connections to presentities sharing a similar
context to P1. Assuming P1 treats each sensor equally, an application interested
in enabling some service based on P1

′s context can begin by exploring the groups
with the highest ranking attached to P1. Those groups would more likely con-
tain links to entities with a context similar to P1. Figure 3 illustrates once such
resulting cluster of information points.

4.2 Presentity Proximity

Figure 4 illustrates a set of presentities with implicit connections derived from
the algorithm discussed in section 4.1. Here we derive that the two presentities
posses some degree of context similarity owing to the fact that their underlying
sensors supporting their context are within close proximity. By deriving the
degree of this closeness, we can return to the applications and services, a list of

146 J. Walters and T. Kanter

Fig. 4. Determining Presentity Proximity

presentities within proximity and a recommendation of any sensors that could
be added to our schema. For example, discovering that we are in close proximity
to a conference room, we could recommend that the information sources such as
the whiteboard be made available.

For simplicity, we consider that P1 is connected to four sensors, each with a
cluster of sensors within its given proximity. Such that the set of sensor clusters
of P1 would be:

P1 = {Gw, Gx, Gy, Gz}
P2 is connected to three sensors, each with a cluster of sensors within its given
proximity, such that the set of sensor clusters of P2 would be:

P2 = {Gw, Gx, Gy, Gm}
Based on this, we calculate the similarity of the set of sensors shared by P1 and
P2. We consider each sensor cluster to which P1 and P2 are connected as being
common members of their sets of sensors; we disregard the proximities. Using
this, we calculate the set similarity as an indicator of their context similarity,
PS as follows:

PS(P1, P2) =
|P1 ∩ P2|
|P1 ∪ P2|=

|Gw, Gx, Gy|
|Gw, Gx, Gy, Gm, Gz | (7)

We do this in order to permit the comparison of values that cannot easily be
measured discretely such as favourite colour, mood, etc. While we cannot easily
apply metrics to such states of context, we may choose to apply non-discrete
measurements obtained from learning algorithms, etc. In these expressions of

Distributed Context Models 147

context, we are unable to perform discrete distance measurements or limit prox-
imity based on this, however we can provide mechanisms for grouping together
similar values which might equate to a user saying: I like red, but pink, and
purple are also acceptable alternatives. While it is non-trivial to calculate a mea-
surable distance between this set of values, treating it as a set of information
points supporting a presentity permits us to compare it to another non-discrete
set. If a presentity was comprised entirely of non-discrete values, we could still
derive a measurement of distance based on the grouping of these values and find-
ing the degree of similarity between the presentities. Here an application could
define which dimensions of context must be taken into consideration when cal-
culating similarity, such that for an application only interested in distance and
temperature, the corresponding equation could be:

PS(P1, P2) =
|Gw, Gx|
|Gw, Gx| (8)

or for distance, temperature and humdity, where P2 had only two dimensions:

PS(P1, P2) =
|Gw, Gx|

|Gw, Gx, Gy| (9)

Further to this, we consider the equation in 3 and adjust the value derived in
equation 9 to reflect the distance between the underlying expressions of context
supporting the presentities. This is adjusted by a factor of the average of the
rank of all the connections between P1 and P2. Therefore, we state the distance
between two presentities, PR to be:

PR =

⎧
⎪⎪⎨

⎪⎪⎩

PS ·
∑k

n=0 RSn

k
, i=0

PS ·
∑k

n=0 RSn · PSn
∑k

n=0 PSn

, i>0
(10)

where i is the number of dimension restrictions, P , indicated by the application
or service. When applying such restrictions, all dimensions must be accounted
for. Each unaccounted for dimension will be ignored, effectively given a priority
of 0. We provide for this as we consider that an application or service will be
able to indicate context dimension priorities, eg. find all persons within a context
proximity of 0.7, prioritise by distance, then temperature or find all persons
within 5km, prioritise by distance then temperature. This would provide us with
two dimensions D1&D2. The dimensions are progressively used to adjust the
final ranking value of the results.

5 Presentity Proximity in a Distributed Architecture

Within a distributed architecture, the implementation of such a presentity prox-
imity algorithm gains the best implementation with respect to performance and

148 J. Walters and T. Kanter

Fig. 5. Overview of a Distributed Approach

its ability to scale. As shown in figure 5, an application does not have to exist
at the same node as the presentity it is trying to support. Such an application
subscribes to the presentity’s schema and uses this to derive the context metrics
required.

Our distributed solution, implemented on DCXP (section 3.3) for messaging
support, would implement the distributed gossiping algorithm described in sec-
tion 3.2. An application wishing to find entities close to P1 would accomplish
this by first locating some initial nodes with a context proximity X1 of S1. Since
our solution must remain fully distributed, we located initial nodes by issuing
a search using the the range querying function of the underlying PGrid overlay.
This returns a list of entities with respect to the query and constructs a running
query at each peer with the following constraints:

1. The peer is responsible for a sensor fitting the criteria of the search
2. The peer is responsible for a sensor Si with a range such that the set of

sensors fulfilling the query from S1 would be a subset of a query from Si

Each peer is then required to:

1. Forward the sensors matching the standing query to S1

2. Forward the query from S1 to any node it encounters that matches 1 & 2
above

This happens only while S1 maintains a relationship with Si. When this is not
the case, the peer responsible for Si cancels the standing query and no longer
forwards it. With this approach we minimize the number of sensors being for-
warded in response to an expired query. Further, since the indicators of context
such as temperature or location are likely to change gradually, applications re-
quiring a new set of nodes in response to changed context would benefit from Si

forwarding the query to current matching nodes. This, as the query would still
likely be valid for a subset of these nodes or nodes that are within their groups.
We summarize this in Algorithm 1.

Distributed Context Models 149

Algorithm 1. Finding and Ranking Relevant Information Points

loop
{at the local node}

for all information points attached to S1 do
determine maximum proximity value
issue a range query for information points within proximity

end for
for all results, Si received do

calculate proximity between S1 and Si

if proximity ≤ max then
add information point to list
calculate the ranking rSi

attach Si to S1 with a degree of rSi

calculate and update group ranking
end if

end for

{at the remote nodes}

for all range queries received do
if there are local information points matching query then

return information points to originator, S1

create a standing query, notifying the originator of this
else if there are known peers with points matching this query then

forward the query to each peer
else

ignore query
end if

end for
end loop

6 Conclusion

In this paper, we presented an approach to measuring context proximity among
presenties in a future internet of connected things. With our approach, we are
capable of building dynamic user-based context-centric clusters of information
points and presentities that are capable of enabling applications and services to
provide user experiences based on current context.

We proposed a simple algorithm for determining cluster members and clas-
sifying members relative to their distance from ideal value in the cluster. This
provided us with a directed weighted graph between a presentity and each sen-
sor obtaining a current context value within the range desired by a requesting
application. By exploring this the paths in this graph, we derive other entities
that possess a context value within our range indicating a context with some
similarity to ours. Further to this, select all presentities sharing some context

150 J. Walters and T. Kanter

similarity and calculate the current schema similarity based on the groups of
sensors that they possess.

This value for similarity was then adjusted using the value of the weighted
edges connecting both presentities. With such connections, we can further derive
new sensors to add to schemas as well as determining significant presentities
within a given group of connected artefacts. This gives us a metric, we refer to as
the Presentity Ranking between two presentities with attached context schemas.
Within our architecture, applications are now provided with presentities with
which to connect and derive new representations of context or discover new
information sources such as sensors or actuators.

Our proposed solution is ad hoc permitting the addition and removal of sen-
sors to both the infrastructure and to presentities while maintaining the ability to
group and rank with respect to changes in context. We would eliminate the need
to largely depend on spatial proximity and physical context tags as indicators of
context, by permitting proximity derivation over all context dimensions or con-
fined to any subset of context dimensions required for the optimum performance
of an application or service. Unlike current means of finding and ranking context
on the internet, all searches will be presentity-centric and in sole response to the
current context.

Having considered the limitations our solution would encounter in a central-
ized implementation, we further discussed how it would be implemented on a
distributed architecture enabling the inherent scalability required to support a
future Internet of Things.

Future work on this includes deriving a large sample set capable of generating
values for testing and bench marking. This would include creating applications
on mobile phones or computers. Other work include the ability to dynamically
index and rank sensors in terms of relativity to other sensors, entities and search
queries across the system. By being able to usefully connect sensors and entities
such as is with web content, we see the possibility of enabling a dynamic ranking
and searching solution much alike modern search engines.

Aknowledgement. This research is a part of the MediaSense project, which
is partially financed by the EU Regional Fund and the County Administrative
Board of Västernorrland. The authors would like to thank Enrico Saviolli for his
contribution to this research topic.

References

1. Google (2010), http://www.google.com

2. Bardram, J.E., Kjær, R.E., Pedersen, M.Ø.: Context-Aware User Au-
thentication – Supporting Proximity-Based Login in Pervasive Com-
puting. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp
2003. LNCS, vol. 2864, pp. 107–123. Springer, Heidelberg (2003),
http://www.springerlink.com/index/Q1MCV12D4N0B5X4L.pdf

http://www.google.com
http://www.springerlink.com/index/Q1MCV12D4N0B5X4L.pdf

Distributed Context Models 151

3. Bravo, J., Hervas, R., Chavira, G.: Modeling Contexts by RFID-Sensor Fusion.
In: Fourth Annual IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOMW 2006), pp. 30–34 (2006)

4. Chen, A.: Context-Aware Collaborative Filtering System: Predicting the User’s
Preference in the Ubiquitous Computing Environment. In: Strang, T., Linnhoff-
Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 244–253. Springer, Heidelberg
(2005)

5. Christein, H., Schulthess, P.: A General Purpose Model for Presence Awareness.
In: Plaice, J., Kropf, P.G., Schulthess, P., Slonim, J. (eds.) DCW 2002. LNCS,
vol. 2468, pp. 24–34. Springer, Heidelberg (2002)

6. Dobslaw, F., Larsson, A., Kanter, T., Walters, J.: An Object-Oriented
Model in Support of Context-Aware Mobile Applications. In: Cai,
Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware
2010. LNCIST, vol. 48, pp. 205–220. Springer, Heidelberg (2010),
http://www.springerlink.com/index/UH0745GR616N7387.pdf

7. Farringdon, J., Moore, A.J., Tilbury, N., Church, J., Biemond, P.D.: Wearable
sensor badge and sensor jacket for context awareness. In: The Third International
Symposium on Wearable Computers 1999. Digest of Papers, pp. 107–113. IEEE
(2002)

8. Forsström, S., Kardeby, V., Walters, J., Kanter, T.: Location-Based Ubiquitous
Context Exchange in Mobile Environments. Mobile Networks and Management
(2010)

9. Göker, A., Watt, S., Myrhaug, H.I., Whitehead, N., Yakici, M., Bierig, R., Nuti,
S.K., Cumming, H.: An ambient, personalised, and context-sensitive information
system for mobile users. In: Proceedings of the 2nd European Union Symposium
on Ambient Intelligence, pp. 19–24. ACM (2004)

10. Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.W.:
Smart-Its Friends: A Technique for Users to Easily Establish Connections between
Smart Artefacts. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001.
LNCS, vol. 2201, pp. 116–122. Springer, Heidelberg (2001)

11. Hong, J.I., Landay, J.: An infrastructure approach to context-aware computing. In:
Human-Computer Interaction, vol. 16(2), pp. 287–303 (2001)

12. Joly, A., Maret, P., Daigremont, J.: Context-awareness, the missing block of social
networking. International Journal of Computer Science and Applications 4(2), 50–
65 (2009)

13. Kansal, A., Nath, S., Liu, J., Zhao, F.: Senseweb: An infrastructure for shared
sensing. IEEE MultiMedia 14(4), 8–13 (2007)

14. Kanter, T., Pettersson, S., Forsstrom, S., Kardeby, V., Norling, R., Walters, J., Os-
terberg, P.: Distributed context support for ubiquitous mobile awareness services.
In: Fourth International Conference on Communications and Networking in China,
ChinaCOM 2009, pp. 1–5. IEEE (2009)

15. Lee, J., Song, J., Kim, H., Choi, J., Yun, M.: A User-Centered Approach
for Ubiquitous Service Evaluation: An Evaluation Metrics Focused on Human-
System Interaction Capability. In: Lee, S., Choo, H., Ha, S., Shin, I.C.
(eds.) APCHI 2008. LNCS, vol. 5068, pp. 21–29. Springer, Heidelberg (2008),
http://www.springerlink.com/index/F234480028647884.pdf, doi:10.1007/978-
3-540-70585-7

16. Li, J., Loo, B.T., Hellerstein, J.M., Frans Kaashoek, M., Karger, D.R., Morris, R.:
On the Feasibility of Peer-to-Peer Web Indexing and Search. In: Kaashoek, F.,
Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg
(2003)

http://www.springerlink.com/index/UH0745GR616N7387.pdf
http://www.springerlink.com/index/F234480028647884.pdf

152 J. Walters and T. Kanter

17. Presser, M., Barnaghi, P.M., Eurich, M., Villalonga, C.: The SENSEI project: in-
tegrating the physical world with the digital world of the network of the future.
IEEE Communications Magazine 47(4), 1–4 (2009)

18. Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Mid-
dleware 2003. LNCS, vol. 2672, pp. 143–161. Springer, Heidelberg (2003)

19. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development of
context-enabled applications. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: the CHI is the Limit, pp. 434–441. ACM (1999)

20. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location.
Computers & Graphics 23(6), 893–901 (1999)

21. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and Challenges for
Realising the Internet of Things. In: Cluster of European Research Projects on the
Internet of Things, CERP-IoT (March 2010)

22. Zhu, Y., Ye, S., Li, X.: Distributed PageRank computation based on iterative
aggregation-disaggregation methods. In: Proceedings of the 14th ACM Interna-
tional Conference on Information and Knowledge Management, pp. 578–585. ACM,
New York (2005)

	Evolving Presentity-Based Context Schemas by Estimating Context Proximity
	Introduction
	Motivation
	Background
	Distributed Context Exchange Protocol and Overlay - DCXP
	The Gossiping Algorithm
	The Distributed Object Model

	Approach
	Sensor Proximity
	Presentity Proximity

	Presentity Proximity in a Distributed Architecture
	Conclusion
	References

