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Abstract. IEEE 802.22 is the first standard based on the concept of
cognitive radio. It recommends collaborative spectrum sensing to avoid
the unreliability of individual spectrum sensing while detecting primary
user signals. However, it opens an opportunity for attackers to exploit
the decision making process by sending false reports. In this paper, we
address security issues regarding distributed node sensing in the 802.22
standard and discuss how attackers can modify or manipulate their sens-
ing result independently or collaboratively. This problem is commonly
known as spectrum sensing data falsification (SSDF) attack or Byzantine
attack. To counter the different attacking strategies, we propose a repu-
tation based clustering algorithm that does not require prior knowledge
of attacker distribution or complete identification of malicious users. We
compare the performance of our algorithm against existing approaches
across a wide range of attacking scenarios. Our proposed algorithm dis-
plays a significantly reduced error rate in decision making compared to
current methods. It also identifies a large portion of the attacking nodes
and greatly minimizes the false detection rate of honest nodes.
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1 Introduction

As wireless devices are dominating the methods in which people communicate
with one another, the necessary resources to support these conveniences are
being ever harder to obtain. In contrast, licensed bandwidth spectrums often go
underutilized as demands for those services shift temporally or spatially. Static
spectrum allocation cannot efficiently support the demand of such pervasive
wireless devices. To combat this salient impedance, the concept of Cognitive
Radio Networks (CRN) has been proposed [9].

In order to maximize radio spectrum usage, CRNs utilize an opportunistic
approach to allocate frequencies. Under the scheme, two types of users exist:
primary users (PU) and secondary users (SU). Individuals who have obtained a
license to broadcast in a fixed spectrum range are classified as primary users. On
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the other hand, secondary users attempt to “fill in the gaps” by utilizing unused
spectrums. The users complement each other allowing maximal utilization of a
specified spectrum.

Naturally, complications arise as secondary users must release a spectrum
when the primary user for that channel starts to transmit. Several research
groups are working to develop standards to meet these requirements. 802.22, the
first CR based network standard, defines a centralized, single hop, point to multi-
point communication standard for wireless regional area network (WRAN). This
standard defines the implementation of opportunistic spectrum sharing (OSS) by
outlining how/when wireless devices are able to utilize temporarily idle bands
in a licensed radio spectrum. The proposal also defines the cellular like com-
munication interface between a base station (BS) and secondary users called
Consumer Premise Equipments (CPE). The BS is responsible for controlling the
spectrum usage and channel assignment to CPEs. All CPEs in a cell must peri-
odically monitor primary user signals and leverage the distributed sensing power
of CPEs through continual spectrum reports obtained from secondary users.

To coordinate the process, a centralized BS collects sensing information from
the secondary users residing in the cell. Each user submits a hypothesis regard-
ing whether they suspect the primary user is transmitting. As radio waves are
affected by physical barriers or environmental conditions, the detection accuracy
of any node within sensing range of the PU’s signal varies from time to time. Mal-
functions associated with the sensing equipment may also influence the node’s
observed measurements. From the hypotheses supplied by the secondary users,
the BS must decide on the actual state of the associated spectrum. Once a de-
cision is made, the base station can inform SUs and revoke permission for those
users currently transmitting on that spectrum.

Due to its unique characteristics, CRNs face new security threats in addition
to the common existing security challenges in wireless network. One typical type
of attack is the Spectrum Sensing Data Falsification (SSDF) attack or Byzantine
attack. During such an assault, the malicious user compromises one or more of
the secondary users and may begin sending modified sensing results to the BS.
In this way, an attacker tries to influence the BS into producing a wrong decision
about the channel status. Compromised nodes may work independently or may
collaborate to reduce spectrum utilization and degrade overall performance of
the network.

Constructing a decision-making strategy that mitigates the impact of both
types of attackers will prove invaluable as the reach of CRNs expands into more
places. By strengthening the base station against malicious or malfunctioning
users, the interference produced from CRNs will be minimized, potentially expe-
diting the implementation of such network alternatives. Ultimately, both users
and businesses can reap the benefits of efficient radio spectrum usage through
CRNs.

There are very limited research works that address SSDF attack and related
security problems. Existing approaches like [1], [8], [10] mainly consider indepen-
dent malicious attack. However, these approaches either require prior informa-
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tion of attackers (e.g. number of attackers [10], attackers’ distribution, attack-
ing strategy [8] etc.) or depend on careful threshold selection [1]. For instance,
algorithm in [10] does not work in presence of multiple attackers. Similarly,
performance of the algorithm proposed in [1] degrades significantly if incorrect
threshold is chosen. To our best knowledge, we find only one paper [2] that
handles both independent and collaborative attacks. This approach uses a rep-
utation based method to limit the error rate in deciding channel status and in
identifying attackers. Although its identification rate of attackers is high, it also
misdetects a large number of honest users as attackers. Additionally, this ap-
proach fails to defend against collaborative attack and error rate (i.e. number of
incorrect decision) increases almost linearly with number of attackers.

On the contrary, we propose an adaptive reputation based clustering algorithm
to defend against both independent and collaborative SSDF attack that does not
require any prior information about number of attackers or attacking strategies.
The whole process goes through a sequence of steps in each time step. To start
with, the algorithm clusters the nodes based on the sensing history and initial
reputation of nodes. Each cluster takes its decision about the channel status ac-
cording to the relative closeness of nodes from the median of that cluster. Finally,
channel status is decided on majority of clusters’ decision. At the end of the time
step, the final decision is propagated back to the clusters and then to the individual
nodes. Each node is assigned a share (positive or negative) of the final decision and
the reputation of each node is adjusted based on its participation in the decision
making process. The adjusted reputation of nodes is used to adjust the number of
clusters for the next step. In this way, the algorithm works through several steps
in forward and backward direction in each time step and recursively updates the
clusters and the reputation of nodes. We compare performance of our algorithm
with that of the algorithm proposed in [2] under different attacking scenarios. Our
algorithm handles SSDF attack significantly better than the one in [2] and mini-
mizes error in deciding channel status. Our algorithm also identifies a significant
number of attackers while keeping the misdetection rate to a minimum level.

The next section explores various approaches currently proposed and specifi-
cally identifies their limitations in the problem domain. Section 3 formally defines
the problem area including the setup used to measure each method. Section 4
describes a high-level overview of our proposed method mainly focusing on de-
sign choices. Section 5 covers a detailed description of the algorithm. Section 6
compares the results with current methods and Section 7 concludes with contri-
butions and future work.

2 Related Work

Until recently, security issues in CRN have not been addressed well in research
works. However, in this section, we present existing solutions to combat against
SSDF attack into three categories - reputation-based, neighborhood distance
based, and artificial intelligence approaches.
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2.1 Reputation Based Approaches

Wang et al. [8] propose an onion peeling approach based on bayesian statistics
to assign suspicion levels for all nodes in the network. If the suspicion level of
any node exceeds a certain threshold, it is marked as malicious and removed
from decision making. They tested their heuristic based approach for false alarm
attacks, miss detection attacks, and combinations thereof. However, they assume
that base station has prior knowledge about the activities of attackers which is
not very common. Without such information, the thresholds are approximated,
resulting in significant false detections of attackers.

Chen et al. [3] propose a hybrid method named weighted sequential probability
ratio test (WSPRT) that combines reputation and a sequential probability ratio
test to identify malicious or faulty units. This method outperforms standard
fusion center decision making strategies, including OR, AND, and SPRT during
simulations in both minimizing missed detections and maximizing the correct
sensing ratio. However, WSPRT was only tested against attackers utilizing an
always-false or always-free response. Such methods represent an unsophisticated
attack strategy that is not likely to reflect encountered attackers. The method
also requires an additional number of secondary user sensing reports to generate
the final fusion center hypothesis, which can impede the overall performance of
the system and potentially cause primary user interference.

Recently, Rawat et. al. in [2] explores independent and collaborative SSDF
attacks. They determined optimal attacking strategies for collaborating attack-
ers where the fusion center cannot possibly discriminate between honest and
attacking CRs. A mathematically rigorous analysis of detection performance is
carried out using the Kullback-Leibler divergence (KLD). According to their
result, in presence of 50% independent attackers, fusion center cannot differen-
tiate the difference between the honest users and the attackers. However, for
collaborative attack, this ratio reduces to 35%. Furthermore, they proposed a
simple reputation-based method to identify attackers. A major weakness of the
method stems from its massive misdetection of attackers during the identification
stage. The proposed method uses a relatively small sensing window for analyzing
reporting patterns to identify attackers. Under such limited time spans, tempo-
rary sensing errors of honest users cause their sensing signatures to deviate from
the consensus. As more honest users are removed from the voting process, the
method leaves the responsibility of final decision making up to only a few users.
In such scenarios, the system is left in an extremely fragile state. Any attack on
the remaining users causes the entire cell to be compromised. In addition, the
method’s probability of error increases dramatically when as little as 35% of the
nodes are collaborating in attacks.

2.2 Data Mining Approaches

In [1], a new approach based on K-neighborhood distance algorithm is presented
to detect independent malicious users. The approach does not need any prior
knowledge of attacker distribution and exposes attackers across multiple sensing
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rounds. However, when attackers collaborate and have secondary user data, they
can successfully evade detection.

Further work has been done by [6] in establishing a more robust fusion cen-
ter decision algorithm. Specifically, particular pieces of sensing information are
used to validate the primary user hypothesis presented by each secondary user.
Information regarding PU positioning and path loss to the secondary user can
corroborate the hypothesis. The compiled set of sensory reports are analyzed us-
ing a biweight estimate and median absolute deviation to calculate magnitudes,
which are then compared against thresholds to identify the attackers.

The proposed method dramatically increases misdetections when using incor-
rect static thresholds. Inaccurately identified secondary users could be excluded
from the decision making process, resulting in a PU signal being ignored. Ulti-
mately, the correct setting of the detection thresholds can only be achieved with
prior knowledge of attacker distribution. Again, the information is unlikely to
be available.

2.3 Artificial Intelligence Approaches

Clancy et al. [4] take a practical look into devising security for the physical
transport layer of CRNs, focusing on CRs with artificial intelligence. When im-
plementing such schemes, the CRs are highly susceptible to short-term and long-
term manipulations caused by corrupted sensory data, altered node statistics,
and inaccurate beliefs regarding the current environment. The paper addresses a
series of steps to combat these sensitive areas by assuming a noisy environment,
implementing levels of common sense, and programmatically resetting learned
values to avoid extended corruption from attackers. They offer up the use of
swarm behavior in determining a global decision on whether a sensed signal was
actually generated by a primary user, along with a trust-based scheme. The
proposals on how these CRs should operate in the field are presented without
details for verification. They also did not address how to incorporate this new
information into the current 802.22 system.

The current state of research holds very few proposals that work on realistic
knowledge of the operating environment. Approximating these values fundamen-
tally skews the proposed approaches’ effectiveness. Furthermore, misidentifica-
tion of attackers could also severely impact the effectiveness of strategies. Such
considerations must be respected to develop a truly robust scheme. Ultimately,
the approaches will need to face real attacks while producing acceptable error
rates. In this paper, we explore strategies that exhibit these characteristics with-
out being hindered by any assumptions of the operating environment or attacker
strategy.

3 System Model

In this section, we briefly describe the topology of the CR network. We explain
how the BS operates and takes decision regarding channel status from collective
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sensing reports. We also formulate different attacking models and analyze how
they exploit the decision mechanism of BS.

The BS is the central authority to coordinate and control the operation of
all secondary nodes in its cell. BS instructs SUs to sense a channel according
to the standard. Each node uses the same spectrum sensing technique for PU
detection. Spectrum sensing itself is an ongoing research topic and is out of
the scope of this paper. For simplicity, we assume that secondary users use the
threshold based energy detection technique for spectrum sensing and all nodes
use the same threshold provided by the BS. All nodes prepare their reports based
on sensing and send their sensing results. However, different sensing techniques
offer different levels of detection accuracy and may affect the sensing decision.
Later in the results section, we perform simulation with varying sensing accuracy.
BS then decides the channel status considering the sensing results from all the
nodes. We also assume that users have no knowledge about the actual channel
status.

We consider two types of users in the network - honest users and dishonest
users. In each time slot, honest SUs sense the channel, compare the sensed energy
with the threshold, and decide independently about the channel status. Finally,
they report their sensed status to the BS without any alteration.

On the other hand, the dishonest users alter their sensed results and send it
to BS. They can be selfish or malicious based on their intention. We commonly
term them as ‘attackers’. A selfish attacker has a different perspective from a
malicious one. From a selfish attacker’s point of view, the goal is to make the
base station take a wrong decision about the idle channel so that it may utilize
the spectrum opportunity. As a result, spectrum utilization will be significantly
reduced. On the contrary, a malicious attacker’s goal is not only to minimize the
spectrum utilization, but also degrade the network performance. The latter one
is more harmful than the former since it will also increase the interference with
primary users.

Base stations usually take decisions based on an OR rule (if any of the nodes
sense channel busy, BS decides a busy channel). This approach is very conser-
vative in the sense that one single attacker or even a malfunctioning node can
reduce the spectrum utilization. Another common approach is to decide accord-
ing to majority voting. This resolves the spectrum underutilization problem but
significantly increases the misdetection rate. Also, it becomes vulnerable when
attackers collaboratively decide their attacking strategy.

3.1 Honest User Model

We assume that even an honest user cannot detect PU presence 100% accurately.
We define false alarm as the probability of sensing presence of PU when it is
actually not transmitting and we define misdetection as the probability of not
sensing PU when it is operating. Let us assume that the probability of false
alarm and misdetection rate of a user are Pfa and Pmd respectively.

Pfa = P (ui = 1|H0), Pmd = P (ui = 0|H1)
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where H0 and H1 denote the channel idle and busy status and ui represents the
sensed result by user i.

As explained, honest users do not change their sensing results. Let us assume
that vi represents the report sent to BS by user i.

P (vi = 1|ui = 1) = 1, P (vi = 0|ui = 1) = 0

P (vi = 0|ui = 0) = 1, P (vi = 1|ui = 0) = 0

Accordingly, we can calculate the detection probability of an honest user using
Equation 1.

Pd = P (vi = 0|H0)P (H0) + P (vi = 1|H1)P (H1)

= (1− Pfa)PI + (1− Pmd)PB (1)

Here, Pd denotes the probability of accurate detection of channel status by any
honest user and PI and PB denote the idle and busy rate of the channel respec-
tively.

3.2 Attack Model

We assume that there exist at most M (α = M/N ≤ 50%) attackers and the
remaining users are honest, completely unaware of the presence of attackers.
We do not consider the number of attackers more than 50% because it is not
productive to study a network where a majority of nodes are attackers. We
consider attackers devise their plan independently or collaboratively.

Independent Attack. Each attacker node changes its sensing result with prob-
ability Pmal. As a result, the detection probability of an attacker changes.

Pm
d = [(1− Pmal)(1 − Pfa) + PmalPfa]PI

+ [(1− Pmal)(1 − Pmd) + PmalPmd]PB (2)

Here, Pm
d denotes the detection probability of an attacker while working in-

dependently. Similarly, we can find the false alarm probability of an attacker
(Pm

fa).

Collaborative Attack. In case of a collaborative SSDF attack, attackers ex-
change their sensing information and decide their response collaboratively. We
study different collaboration strategies to see their impacts on decision making
of BS. Let us assume that Qm

d and Qm
fa denote the detection probability and

false alarm probability of attackers. To start with, we follow the same collabora-
tion strategy used in [2]. Attackers follow ‘L out of M’ rule to decide their final
decision where ‘L’ is determined according to [2]. In this case, Qm

d and Qm
fa will

be
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Qm
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Here, L is defined in [2]

L = min(M,
⌈ M

1 + β

⌉
) where β =

ln
Pfa

Pd

ln 1−Pd

1−Pfa

The second attacking strategy we consider here is termed as ‘Going Against MA-
jority (GAMA)’. Each attacker shares its true sensing result and in collaboration
with other attackers decides against the majority sensing result with a certain
probability. For example, if 2 attackers sense the channel idle and 1 user senses
the channel busy, all 3 attackers report the busy status of the channel to the
BS. The idea behind this attacking strategy is that sensing results of majority
nodes may reflect the actual channel status. So, when the attackers collaborate,
they change the sensing result of the majority and go against that. It may help
them manipulate BS taking a wrong decision. In this case, L = M/2+1 and the
collaborative detection probability will be

Qm
d =

M∑

i=L

(
M

i

)
(1− Pd)

i(Pd)
M−i

Qm
fa =

M∑

i=L

(
M

i

)
(1− Pfa)

i(Pfa)
M−i (4)

Third, we also investigate the impact of collaboration among subgroups. In
this approach, we assume that attackers exist in small groups, and each group
changes their sensing result according to the first approach. Finally, one group
is chosen randomly and all the attackers in that group report the same sens-
ing result. This approach tries to attack in small groups without exposing all
collaborators at a time.

4 Algorithm Design - Attackers vs BS

In this section, we discuss the viewpoints of attackers and BS and explain the
defense mechanism taken by BS to defend against different attacking strategies.
As stated in Section 3, attackers’ detection rate varies with their strategy and is
different from that of honest users. So, if the attackers can successfully manip-
ulate the decision making process, detection rate will be significantly low, error
rate in decision making will be high and spectrum utilization will be degraded.

From the attackers’ point of view, the more error they make in decision mak-
ing, the more successful they are. So, the most common attacking strategy is to
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falsify about channel status in every time step and send it to BS. In collaborative
attack, since attackers share their information, they may have better idea about
the actual channel status and devise their attacking plan in a more effective way.
The collaboration makes it easier to manipulate the BS decision mechanism than
independent attack and increases their success rate. However, if the malicious
users try to strengthen their attacks and continuously send false channel status,
the pattern of their sensing report will be almost the same. In this way, their
sensing history will be significantly different from honest users and will be easily
identifiable. So, the best attacking strategy is to attack occasionally or try to
behave like an honest user otherwise. In summary, attackers’ success depends on
attacking frequency (i.e. when to attack) and how long they can attack without
being identified. Together, all attackers can follow the same plan and can make
the decision making process more complicated.

Fig. 1. Reputation Distribution

Now, from BS’s point of view, its decision mechanism should be robust and
capable of defending against any attacking strategy adopted by any number of
malicious users. However, BS does not have any exact information about the
attacking strategies or number of attackers. The only information available to
BS is the sensing reports sent by users. So, the defense mechanism should be able
to nullify (or at least reduce) the impact of collaboration of attackers, identify
them and quarantine them from the decision process.

Accordingly, we design an adaptive reputation based clustering (ARC) algo-
rithm to defend against both types of SSDF attack. The algorithm works against
the intention and motivation of malicious users and tries to nullify their influ-
ence on the final decision. To reduce the impact of attackers, we create clusters
so that nodes with similar sensing history will be in the same cluster. Then,
each cluster has only one vote to cast and channel status is decided based on
majority voting of clusters. The idea behind this defense mechanism is that if
the attackers attack frequently, attackers and honest nodes will be in separate
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clusters due to their different sensing reports. Also, collaboration of attackers
will not help to increase the error rate since each cluster has only one vote.

The key to attackers’ success is to avoid being in the same cluster and take
control of the majority of the clusters. To handle these issues, we introduce dis-
tance weighted voting in a cluster and a feedback component in each node’s
reputation. Voting power of each node in the cluster is inversely proportional to
its distance from the median of that cluster. Similarly, each node gets reputa-
tion inversely proportional to its distance from the median of that cluster. By
distributing the reputation based on distance from the median, nodes are only
impacted relative to their ‘confidence’ of that group (see Figure 1). Furthermore,
from the next round, nodes’ modified reputation is also used to cluster nodes in
addition to sensing history. In this way, even if an attacker and an honest user
incorrectly fall in the same cluster, attackers cannot establish their decision. Fur-
thermore, as time goes, the distance between an honest user and an attacker will
be amplified due to the joint consideration of reputation and sensing history.

5 Adaptive Reputation Based Clustering (ARC)
Algorithm

In this section, we explain our adaptive reputation based clustering (ARC) al-
gorithm in detail. The algorithm goes through a sequence of phases to reach
the final decision. The phase sequences are illustrated in Figure 2. In the first
phase, the BS collects the sensing result from all the nodes. BS maintains sens-
ing history of all nodes for last d time steps. In the next phase, partitioning
around medoids (PAM) algorithm is applied on the sensing reports to create k
equal sized virtual clusters. In the third phase, each cluster makes its decision
based on the response of each individual node and their relative distance from
the median of that cluster. Then the final decision is made based on majority
voting of clusters. The final result is then used to adjust the number of clusters
and to update the reputation of all nodes.

One of the key features in our algorithm is how we reach the final decision and
use that decision recursively to update the clustering. The information flow of
our algorithm from one step to another in each time step is depicted in Figure 3.
The BS considers the most recent d sensing reports of each node in addition to
their reputation during cluster formation. To enable this recursive approach, we

Fig. 2. Different Phases of the Algorithm
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add an extra dimension to the sensing report of all nodes. This extra dimension
represents the current reputation of that node (see Figure 3). So, each node
provides a d+1 dimensional vector (X1 = [r1,1, x1,1, ... xd,1]) for cluster formation
where the first dimension represents reputation and the remaining ones represent
sensing report of last d time steps. Initially, all nodes are assigned the same
reputation value.

Each cluster then finalizes its decision about channel status in a unique way.
Only last round sensing report of each node in the cluster is considered. However,
each response is weighted with an impact factor that is inversely proportional
to the distance between the node and the median of that cluster. The impact
factor of a node j at time t denoted by Ij(t) is defined as

Ij(t) =
1

dt(j,mi)

wheremi is the median of the cluster i and dt(j,mi) denotes the distance between
node j and median mi of the same cluster at time t. Nodes closer to median have
higher influence in decision making than the far ones. Accordingly, the cluster
voting vi(t) at time t is determined by Equation 5.

vi(t) =

∑N/k
j=1 Ij(t) ∗ yj(t)
∑N/k

j=1 Ij(t)
(5)

Here, yj(t) is the sensing report of node j at time t which takes value from {0,1}.
After each cluster finalizes its decision, the BS makes the final decision v(t) on

the basis of majority voting among the valid clusters. If the reputation score of
a cluster goes below a threshold, they cannot vote and all the nodes are marked
as attackers. Therefore, v(t) = �2 ∗∑k

i=1 vi(t)/k�.

Fig. 3. Cluster Voting and Reputation Propagation
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At the end of every time step, the base station updates number of clusters
and reputation of all nodes according to the algorithm. The final result is propa-
gated back to the clusters, and then to the individual nodes. If the final decision
matches with the cluster decision, the cluster gets a positive feedback, and it
gets negative feedback otherwise. Similarly, if a node’s decision matches with its
cluster decision, it gets positive feedback while it receives negative feedback for
a mismatch. Each node’s reputation is then adjusted according to Equation 6.

rj = rj +Π(vi(t), v(t)) ∗
∑N/k

j=1 Π(vi(t), yj(t)) ∗ Ij(t)
∑N/k

j=1 Ij(t)
(6)

where rj denotes the reputation of node jandΠ(a, b) is an indicator function
that returns 1 if a equals b, it returns -1 otherwise.

The final result is also used to adjust the number of clusters. Initially, we start
with 5 clusters with 5 random medoids. After each step, if all clusters pass the
validation (i.e. reputation score exceeds threshold ε), we increment the number
of clusters and continue the same process. Otherwise, we remove all the nodes
in the cluster that fails the test.

6 Results

In this section we discuss results from the implementation of our proposed
method, specifically comparing its effectiveness against a previously proposed
method in [2]. We compare the two across both independent and collaborative
attacks, as well as various probabilities of attack under a range of sensing con-
ditions.

For each test, the methods are run over the same number of time steps, in
this case 80 frames. For each time frame, the methods must produce a final

Fig. 4. QE , QD, QF with varying number of attackers (Collaborative SSDF Attack)
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hypothesis, which is compared against actual transmission state of the primary
user to determine the method’s probability of error (QE). Rates for the correct
detection of attacking nodes (QD) and the incorrect detection of honest users
as attackers (QF ) are also reported at the end of the test. Each test is then
repeated 10 times with an average of the values displayed in the graphs. A
test consists of randomly generated reports for each secondary user, adhering to
labeled probability distributions. For validation test, we consider ε = 0.5.

6.1 Collaborative Attack

First, we tested each method against a collaborative byzantine attack (see Figure
4), where the number of malicious users range from 10 to 50 out of 100 total
secondary users. The byzantine attackers utilize the decision-making algorithm
defined in [2]. Malicious users attack with Pmal = 1. Sensing probabilities for
correctly detecting a signal and falsely detecting a signal were set to Pd = 0.9
and Pfa = 0.1 respectively.

Fig. 5. QE, QD, QF with varying attacking probability (Collaborative SSDF Attack)

Our proposed method outperforms consistently with respect to (QE) showing
a markedly decreased error rate until roughly 50% of the population becomes
attackers. Once the population contains a majority of malicious users, it is im-
possible for any sensing strategy to sustain an error rate under 50%. The base
stations are incapable of distinguishing between honest users and attackers. They
can only resort to a blind guess for each sensing round. The Rawat method shows
a high QD initially but quickly diminishes after 20% of nodes are attackers. At
approximately the same attacker concentration, our method exceeds and main-
tains a marked increase in identifying attackers. Conversely, the Rawat method
begins with a significant false detection rate (QF ) while our method minimizes
this rate across the entire range of attackers. Maintaining a low misdetection rate
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Fig. 6. QE, QD, QF with varying detection probability (Collaborative SSDF Attack)

Fig. 7. QE, QD, QF with varying detection probability (Subgroup SSDF Attack)

allows our method to maximize honest user reports and mitigate the impact of
attackers even under heavy attacks. A second set of measurements observed the
impact of collaborating malicious users when varying their probability of attack.
Malicious users can utilize this technique to escape detection from high dimen-
sional clustering methods. In Figure 5, attackers produce on average less than
20% error rates while the Rawat method sustains significant errors. Regard-
less of attacking rate, our method consistently identifies 50% of the attackers.
The Rawat method exhibits an unusually high attacker misdetection rate, which
likely leads to the high error rate.

Depending on environmental conditions, the achievable sensing rates of pri-
mary user signals can vary dramatically. The next test looks at consequences of
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Fig. 8. QE, QD, QF with varying detection probability (GAMA SSDF Attack)

variable sensor accuracy (see Figure 6). Here, 35 collaborating malicious users
attack during each sensing frame, and we can see the impact these sensing condi-
tions have on the overall effectiveness of a byzantine attack. Both methods begin
with relatively high error rates, as the sensing reports of honest users resemble
that of attackers due to the inaccurate sensor readings. Once sensing errors fall
below 65%, our proposed method shows a linear decrease in the Hypothesis error
rate. The Rawat method takes significantly longer, approximately 80% detection
rates, before error rates begin to decline.

We also test our algorithm in case of subgroup collaborative attack (see Figure
7). As the number of attacker increases, QE increases slightly in our algorithm
while QE reaches almost 40% in the reputation method. As expected, both their
true detection and false detection rate is high. On the other hand, QD is about
65% and QF is almost negligible in our algorithm.

We find interesting results for attackers with GAMA strategy. In case of our
algorithm, QE is 0 and only increases when the number of attackers exceeds 37.
On the other hand, QE increases almost linearly with the number of attackers
in reputation based method. We get similar results in true and false detection
rate. The results are plotted in Figure 8.

6.2 Independent Attack

In the next step, we compare the performance of our algorithm with reputation
based scheme in [2] for independent SSDF attacks. In this attack, attackers do
not collaborate to exchange their reports. Each attacker works independently to
maximize its goal. Figure 9 shows the error rate of two algorithms with varying
number of attackers. We keep the attacking probability Pmal = 1. Also, proba-
bilities for true and false detection of a signal are set to Pd = 0.9 and Pfa = 0.1.
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Fig. 9. QE, QD, QF with varying number of attackers (Independent SSDF Attack)

Fig. 10. QE, QD, QF with varying attacking probability (Independent SSDF Attack)

Our algorithm performs better up to 45 attackers and then slightly degrades its
performance over their algorithm. On the other hand, our algorithm performs
moderately to detect malicious attackers while their algorithm consistently iden-
tifies attackers with high precision. However, their algorithm eliminates a large
number of honest users incorrectly. Figure 9 shows that about 40% honest users
are miss identified as attacker. On the other hand, false detection rate of our
algorithm is almost negligible. Although the reputation based algorithm per-
forms better in detecting attacker than our algorithm, they misidentified a large
number of honest users as attackers making their algorithm less effective.

Similarly, we run the simulation for independent SSDF attacks with vary-
ing attacking probability. We vary the attacking probability from 0.5 to 1 and
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Fig. 11. QE, QD, QF with varying detection probability (Independent SSDF Attack)

plot QE , QE , and QF in 10 for our algorithm and reputation based algorithm
proposed in [2]. Again, our algorithm performs better in decision making (see
Figure 10). Error rate of our algorithm is almost negligible while their algorithm
makes approximately 20% incorrect decisions about the channel status. The true
attacker detection rate is almost the same for both algorithms. However, their
algorithm constantly eliminates 60% of honest nodes as attackers for any attack-
ing probability ranging between 0.5 and 1.0. On the other hand, our algorithm
performs significantly better and keeps a false detection rate close to zero.

Next, we vary the detection probability of nodes from 0.5 to 1.0 and plot
QE , QD and QF in Figure 11 for our algorithm and reputation based algorithm
proposed in [2]. As usual, the error rate of our algorithm outperforms their
algorithm. Also, our algorithm performs better in terms of misidentification of
attackers. However, their algorithm identifies almost all attackers irrespective of
the detection probability. On the other hand, our algorithm gradually increases
the true detection rate with the increase of detection probability.

7 Conclusion

In this paper, we discussed one of the major security problems afflicting CRNs
and proposed a reputation based clustering algorithm to defend against these
attacks. We use reputation of nodes in addition to their sensing history to form
clusters and then adjust reputation based on the cluster output. This recursive
approach is tested in the presence of independent and collaborative spectrum
sensing data falsification attacks. We compared the performance of our algo-
rithm with existing approaches. With respect to current approaches, our algo-
rithm significantly reduces the error rate in the final decision making process,
thus increasing spectrum utilization. The false detection rate by our algorithm
is almost negligible, while true attacker detection rate performs reasonably well.
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However, the initial number of clusters plays an important role in overall perfor-
mance of the algorithm. Also, it will be interesting to analyze the performance of
the algorithm if attackers can overhear the honest users and decide accordingly.
We will address these issues in future.
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