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Abstract. Location privacy research has received wide attention in the
past few years owing to the growing popularity of location-based applica-
tions, and the skepticism thereof on the collection of location information.
A large section of this research is directed towards mechanisms based on
location obfuscation. The primary motivation for this engagement comes
from the relatively well researched area of database privacy. Researchers
in this sibling domain have indicated multiple times that any notion of
privacy is incomplete without explicit statements on the capabilities of
an attacker. The question we ask in the context of location privacy is
whether the attacker we are fighting against exists or not. In this paper,
we provide a classification of attacker knowledge, and explore what im-
plication does a certain form of knowledge has on location privacy. We
argue that the use of cloaking regions can adversely impact the preserva-
tion of privacy in the presence of approximate location knowledge, and
demonstrate how perturbation based mechanisms can instead be useful.

Keywords: location privacy, differential privacy, query approximations.

1 Introduction

Location based applications are geared towards providing services tailored to the
current location of a user. These applications utilize the positioning capabilities
of a mobile device to determine the current location of the user, and customize
query results to include neighboring points of interests. Wide acceptance of per-
sonal digital assistants and the advancements in wireless cellular technology have
opened up countless possibilities in this business paradigm. Potential applica-
tions can range from proximity based notifications to tracking business resources.
A wireless carrier typically serves as a channel between the user and the location
content provider.

The potential advantages of location based applications is not difficult to re-
alize. However, location knowledge is often perceived as personal information.
It remains an open question whether the benefits of these applications can out-
weigh the underlying privacy risks. A similar question has been around for more
than a decade in the field of database privacy. Databases hosting our personal
information can serve as data mining grounds to facilitate research studies in
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a variety of fields. At the same time, the same information in the hands of an
adversary can have alarming ramifications. Database privacy preservation is an
ongoing effort to design data sharing methods in order to prevent such an ad-
versary from making personal inferences using the shared data [1,2,3]. Drawing
inspiration from these efforts, location based applications have been argued to
be usable without communicating precise location data to the content provider.

Location obfuscation is a widely researched technique to achieve location pri-
vacy. The fundamental idea here is to process location based queries relative to
a sufficiently larger region, also known as a cloaking region, compared to one
where a user can be uniquely located. For instance, a cloaking region can be
generated to include k users, including the one making the query [4]. Multiple
algorithms have been proposed to generate such a k-anonymous cloaking region
[5,6]. However, as demonstrated in the case of database privacy, obfuscating
private data without understanding the capabilities of the attacker can be un-
productive [7,8,9]. A privacy preserving mechanism is not better or worse than
another. It is the adversary who is weaker or stronger. The background knowl-
edge of the attacker must be known (or at least assumed) in order to demonstrate
the privacy guarantees of a mechanism.

We begin this work by identifying the primary form of attacker knowledge
targeted by most location obfuscation techniques. This knowledge relates to an
attacker being able to determine the true locations of a certain subset of users.
Using a case by case analysis of what this attacker can achieve from queries
made using true locations and queries made using cloaking regions, we argue
that “location privacy” is a misused term in this context. The use of cloaking
regions is motivated by the need to introduce ambiguity in correlating a user
to a query. However, if an attacker does not have any location knowledge of
the users, then location information in a query cannot be used to map it to a
user. The attacker must posses at least approximate location knowledge about
the user, to be able to exploit the location information in a query. On the other
hand, if true location knowledge is present, then there is no location privacy. In
fact, what is being offered is query privacy. We treat the two forms of privacy
differently – location privacy meaning hiding the location and query privacy
meaning preventing the mapping of a query to a user.

We also justify that cloaking regions are insufficient in preserving privacy when
an attacker has approximate location knowledge. Although cloaking regions do
not directly disclose the true locations, we believe that no privacy mechanism
should enable an attacker to improve upon the existing background knowledge.
The knowledge gain should be formally bounded in the worst case. Towards this
end, we explore the possibility of using perturbed locations to issue queries and
propose a perturbation method based on differential privacy [10]. Differential
privacy works under the principle that the chances of being a victim of a privacy
breach should not increase substantially due to the inclusion of ones private
information in a shared data set. The perturbed location is differentially k-
anonymous, in the sense that the probability ratio of any two of the k users is
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bounded. Empirical results are provided to demonstrate that such queries can
retrieve a significantly large subset of the actual query results.

The remainder of the paper is organized as follows. Section 2 initiates our
discussion on attacker capabilities, and the affect on location and query privacy.
Section 3 presents our approach to address a form of attacker knowledge based
on approximate locations of the users. Section 4 presents some empirical results
on the effectiveness of the approach in generating useful query results. Section
5 lists some related work in this area, followed by references to future work in
Section 6.

2 Attacker Class

Classification of attacker knowledge is crucial in order to provide a comprehen-
sive statement on the privacy preserving properties of an obfuscation technique.
To consider the extremes, location obfuscation in the presence of an “oracle” at-
tacker, or an attacker with effectively no background knowledge, is only going to
degrade the quality of service. Other intermediate scenarios also exist where lo-
cation obfuscation cannot achieve one or both of location and query privacy. We
begin with two forms of background knowledge that an attacker is likely to have.

The first form of background knowledge is related to the location of users. An
adversary that has information on the locations of any individual(s) is referred
to here as a locator. Further, a perfect locator knows exact coordinates of the
users, while an approximate locator has approximate knowledge (an area instead
of exact coordinates) on the locations. The second form of knowledge is related
to the identity of users issuing the queries. We refer to any adversary that has
access to the query database as a holder. A perfect holder in this case would be
an adversary who knows the identity of the person who issued a query.

There are multiple permutations in which these two forms of knowledge may
be present in an adversary. While each form in itself states how much an attacker
knows about the locations or queries of the users, respectively, the objective is
to avoid the inference or improvement of one form of knowledge using existing
knowledge of the other form. Hence, given a certain level of background knowl-
edge, we consider a privacy breach to have occurred if and only if the adversary
gains additional knowledge. Gaining additional knowledge in this case refers to
instances such as a perfect locator becoming a perfect holder (and vice versa),
or an approximate locator improving its location approximations.

Location based service users communicate location information as part their
queries. The location information can be in the form of precise GPS coordi-
nates, the resulting query being processed thereafter with respect to a point in
space. Such queries are also referred to as point queries. However, due to the
implications on privacy, precise locations are obfuscated using a cloaking region.
Queries in this case are processed on a geographic range, therefore referred to
as range queries. We begin with point queries and put the two forms of attacker
knowledge in perspective with respect to such queries. Some of the observations
in the following section are well-known in the community. We present them here
for the sake of completeness.
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2.1 Point Queries

A point query is where exact geographic coordinates are communicated along
with the query. A query database in this case contains the precise location of
users, among other parameters of the queries. It is a straightforward observation
that no location privacy can be achieved in the presence of a perfect locator, and
no query privacy can be achieved in the presence of a perfect holder. Nonetheless,
query privacy is preserved in the case of a perfect locator. However, as an im-
mediate consequence of point queries, location privacy is violated even when the
adversary is only a perfect holder. A perfect holder in this case performs a iden-
tity to location mapping using the location information in the query database.
A perfect locator must also be at least a holder to effectuate a breach of query
privacy. In this case, the adversary uses the location knowledge to determine
the corresponding query of the user in the database. The perfect locator here
covers situations such as restricted space identification and observation based
identification [4]. A simple holder with access to the query database alone is no
threat to either location or query privacy of the users.

The effectiveness of point queries in the presence of approximate locators has
not been evaluated yet. Point queries can be potentially harmless depending
on the extent of the adversary’s approximation. For instance, an approximate
locator with an approximation of a few hundred meters is stronger than one
with an approximation of a city block. The exact extent of knowledge is difficult
to estimate. We shall discuss later how point queries can still be effectively
generated in the presence of approximate locators.

2.2 Range Queries

A range query is where a query region is associated with the query. Query results
are generated assuming that the user may be located anywhere inside the region.
The query region serves as a cloak for the user, and is generated following some
established privacy principle. For instance, a k-anonymous cloaking region would
encompass at least k users inside it. Large cloaking regions would potentially
result in the communication of a larger result set and degrade the QoS levels
of the system. Hence, the obfuscation algorithm tries to achieve the privacy
principle within the smallest possible area. In the following, we present a case
by case overview of which privacy aspect does a range query help preserve, and
under what form of adversarial knowledge.

Perfect Locator. Since a perfect locator knows the location of a user, use of
a cloaking region does not help hide the location of the user. Query privacy is
preserved in the absence of access to the query database. This implies that no
privacy breach (in the sense of gaining additional knowledge) can occur in the
presence of this type of adversary. Point queries can in fact be used instead of a
range query, in order to improve the quality of service.
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Approximate Locator. Cloaking regions also do not help achieve better loca-
tion privacy from an approximate locator. The approximation of the adversary on
the user’s location is what determines the location privacy level. Point queries
can again be used here, given that the adversary has no access to the query
database. In other words, no location privacy violation can occur as a side-effect
of the user using the service.

Perfect Holder. No query privacy is possible in the presence of a perfect
holder. Location privacy violation is certain since the cloaking regions present
in the queries provide approximate location knowledge to the adversary. The
cloaking regions can potentially reveal more precise information as well. Note
that a privacy principle such as k-anonymity is meant to prevent the association
of a user to the issued query – any of the k users could have issued the query.
However, such a principle is irrelevant in the case of a perfect holder. A better
principle to enforce would be location diversity [11,12]. This would guarantee
that zones with multiple levels of sensitivity are present within the cloaking
region, thereby preventing further location based inferences. Request locality is
another issue to address. This situation occurs when different likelihoods can be
estimated for issuing the query from different areas within the cloaking region.

Holder. A simple holder with no location based knowledge is unable to cor-
relate a cloaking region to a specific user. Both location and query privacy are
preserved. This is the weakest form of an adversary. Note that an adversary who
is not a perfect or approximate locator cannot determine if a user is inside a
cloaking region. Hence, a range query might as well be replaced with a point
query.

Perfect Locator and Perfect Holder. As in the case of point queries, no
level of obfuscation can hide the location and query of a user from this form of
an adversary.

Perfect Locator and Holder. The location of a user is already known to
this kind of an adversary. It is easy to determine the set of queries that could
have potentially originated from a certain user. However, query privacy violation
can be prevented if the cloaking region can generate an ambiguous mapping
between a query and the user. This is achieved by anonymity principles such as
k-anonymity. In fact, obfuscation methods that generate minimal k-anonymous
cloaking regions assume the existence of a perfect locator with precise location
knowledge of at least k users. This assumption implies that location obfuscation
is used here to preserve query privacy, and not necessarily any form of location
privacy. Query privacy, however, can also be preserved by issuing a point query
using the true location of one of the k users. This can produce a relatively
accurate result set if the bounding rectangle of the k users is not excessively
large. The result sets would differ much for larger bounding rectangles, in which
case the communication costs may itself be too high for acceptable range query
processing.
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Fig. 1. Location privacy breach as a result of using cloaking regions

Approximate Locator and Perfect Holder. Approximate locators have the
ability to correlate a user with a geographic region. The size of this region is
not constant, and is an attribute related to the adversary’s background knowl-
edge. Under such a scenario, it becomes difficult to create a cloaking region that
encompasses the entire area within the locator’s approximation. Hence, it is pos-
sible that a perfect holder uses the cloaking region in a query to narrow down the
geographic region where the user is located. Cloaking regions can therefore pro-
vide additional location knowledge to an adversary, thereby leading to a location
privacy breach.

Approximate Locator and Holder. While cloaking regions are sufficient (al-
though perhaps not always required) to handle a perfect locator and holder, their
use starts to have a detrimental affect in the presence of approximate locators.
As depicted in Fig. 1, a k-anonymous cloaking region may allow an approximate
locator to improve upon the location knowledge of more than just the query
issuer. The problem is eliminated only if the cloaking region is guaranteed to
encompass the approximated regions corresponding to each of the k users. Un-
fortunately, it is difficult to judge the extent of knowledge that an adversary
possesses. This case presents us with a situation where the obfuscation method
helps preserve query privacy but can potentially lead to a breach in location
privacy.

Note that most privacy preservation attempts address perfect locators and
holders. Therefore, the term “location privacy” seems to have been misused, in
the sense that true location knowledge is already assumed to be known to the
adversary. Query privacy is a more appropriate term to use in this context.

We summarize below the conclusions that can be drawn from the discussion
in the preceding sections.
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1. Neither location privacy nor query privacy can be preserved in the presence
of a perfect locator and a perfect holder.

2. Point queries pose privacy threats in the presence of a perfect locator and
holder.

3. Cloaking regions help preserve query privacy in the presence of a perfect
locator and holder.

4. Range queries may be replaceable by point queries in the above case.
5. Cloaking regions can provide query privacy in the presence of an approxi-

mate locator and holder, but do not guarantee protection against a location
privacy breach.

3 Approximate Locators

Current location obfuscation techniques based on cloaking regions are insuffi-
cient, and undesirable, in location privacy preservation. This arises from the
fact that perfect locators represent a very strong class of attackers. For instance,
acquiring the exact geographic coordinates of a user would require satellite based
monitoring capabilities. Further, not much can be done with location obfusca-
tion once an adversary gains access to such information. A more plausible form
of adversary is represented by an approximate locator. Approximate location
knowledge can be obtained by a variety of means – device communication logs
such as cell towers used, public records such as parking violations, or social
engineering methods such as a “water-cooler conversation.” Preserving location
privacy in this context dwells upon the problem of preventing an attacker from
reducing the margin of location error using external references of a user’s activ-
ities (such as in a location based service log).

Recall that cloaking regions are insufficient in providing location privacy
against an approximate attacker. Hence, we revert back to point queries and
analyze if they can be used in a manner that preserves location privacy. Per-
turbation of user locations is the basis of this analysis. An attacker can identify
common areas between a cloaking region and an approximate location in order
to improve the approximation. This is possible because cloaking regions always
cover the true location of the querying user (amongst others). However, a per-
turbed location is a single point in space that could have been generated by any
user in a given set.

Queries based on perturbed locations can result in an inaccurate result set.
However, if the perturbations are reasonably close to the actual location, then
the query results can also be assumed to be close enough to the true set. There
is definitely an inherent trade-off involved between the accuracy of the result set
and the location perturbations. We postpone the analysis of this trade-off for a
later stage and focus on the generation of the perturbations themselves.

A trivial method to perturb a user’s location would be to use the centroid of
a k-anonymous cloaking region while issuing the query. An adversary with exact
location information can employ an inversion attack to determine the set of k
locations used to arrive at the perturbed coordinates. An inversion attack would
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(minimum bounding

rectangle)
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Fig. 2. Improving location approximations using the centroid of the cloaking region

involve re-computing the centroid of the bounding rectangle derived from differ-
ent sets of k location coordinates, with the objective of matching the coordinate
in the query. Note that we do not consider any privacy parameter (including k)
to be hidden from the attacker. Executing an inversion attack is not straight-
forward for an approximate locator. Depending on the size of the k-anonymous
cloaking region, the centroid can also serve as a good estimate of a user’s lo-
cation and possibly generate a significantly accurate set of results. However, as
depicted in Fig. 2, owing to the equi-distance property of the centroid, its ability
to prevent a location privacy breach is still questionable. In the figure, the grey
area bounded by the solid line represents the largest possible region that can be
a bounding rectangle (users can be anywhere in the approximate regions) and
has a centroid same as the true minimum bounding rectangle. This improves the
location approximation corresponding to two of the users. The applicability of
other notions of a centroid remains to be explored.

Our approach is motivated by the requirement to provide probabilistic bounds
on what an adversary can learn from the perturbed location. We adopt the
differential privacy approach in statistical databases in this context [10].

3.1 Location Perturbation

Let lp be the perturbed location corresponding to a true location lt, denoted as
lt → lp. A location is assumed to have two components, denoted by the non-
negative x and y coordinates. Let l1, ..., lk be a set of k points, one of which is
lt. The method of choosing these k points is discussed in the next section. We
would generate the perturbed location lp = (xp, yp) such that

Pr(xi → xp) ≤ eεPr(xj → xp) and
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Pr(yi → yp) ≤ eεPr(yj → yp)

where ε ≥ 0 and i, j ∈ {1, ..., k}. We achieve this property by using a Laplace
distribution with scale λ > 0 to perturb a location li = (xi, yi) such that

Pr(xi → xp) =
1
2λ

e−
|xi−xp|

λ and

Pr(yi → yp) =
1
2λ

e−
|yi−yp|

λ .

Based on the following observation, λ is set at (maxnxn−minnxn)/ε to generate
xp, and set at (maxnyn − minnyn)/ε to generate yp. lp is obtained as (xp, yp).

Observation: Without loss of generality, let c denote a generic component of a
location. Using the triangle inequality, we can write |cj −cp| ≤ |cj −ci|+ |ci−cp|.
After rearrangement, dividing by λ, raising as a power of e and multiplying by
1/2λ, we get

1
2λ

e−
|ci−cp|

λ ≤ 1
2λ

e−
|cj−cp|

λ e
|cj−ci|

λ , or

Pr(ci → cp) ≤ Pr(cj → cp)e
|cj−ci|

λ .

We therefore have

Pr(xi → xp) ≤ Pr(xj → xp)e
|xj−xi|

λ and

Pr(yi → yp) ≤ Pr(yj → yp)e
|yj−yi|

λ ,

and the power of the exponent is bounded as

Pr(xi → xp) ≤ Pr(xj → xp)e
maxnxn−minnxn

λ and

Pr(yi → yp) ≤ Pr(yj → yp)e
maxnyn−minnyn

λ .

Using the Laplace distributed noise also ensures that

Pr(ci → cp) ≥ e−εPr(cj → cp).

The following inequalities verify that the desired property can be achieved for
any component c in li and lj .

e−ε ≤ Pr(ci→cp)
Pr(cj→cp) ≤ eε

⇐⇒ eε ≥ Pr(cj→cp)
Pr(ci→cp) ≥ e−ε with ε ≥ 0.

Hence, the probability of a location coordinate generating a certain perturbed
value is always within a factor eε of the probability of some other location (in the
set of k points) generating the same perturbed value. In the k-anonymity sense,
any of the k points could have been used to generate the perturbed location.
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3.2 Selecting a Perturbation

A perturbed location for a query point can be chosen using the above method.
However, the distribution of the k points can affect the proximity of the per-
turbed location to the true coordinates. Further, the k points should be chosen
to preserve reciprocity [6,13]. In other words, the same set should be chosen
irrespective of which of the k locations is the query point. This is achieved by
dividing the users into buckets of size k, the set being chosen as the bucket to
which the query point belongs. Each of the k points is subjected to perturbation,
and the one having the minimum average distance to all points in the set is cho-
sen as the location to issue the query. Given a perturbed location, the k points
are probabilistically identical (within a factor of eε) irrespective of which one
was used to perform the perturbation. Hence, choosing the one with minimum
average distance to all points does not risk an inversion attack. Note that the
context of the application still plays a crucial role. If the user base is relatively
sparse, i.e. the k users are distributed over a significantly large area, then the
generated perturbation will be far away from the true location. A cloaking region
could also be unacceptably large in this case.

Algorithm 1 lists the pseudo code of the approach. The function returns a
perturbed location of a user U . Lines 1 to 11 determine the k size bucket to
which the user belongs. The buckets are formed based on the Hilbert indices of
the users. The locality preserving properties of Hilbert curves ensure (although
not necessarily optimal) the formation of buckets with users that are at close
proximity to each other. Error checks and boundary conditions are not shown

Algorithm 1. Location Perturbation
Require: User U with associated k.
Ensure: A perturbed location for U .
1: H = set of all users sorted by their Hilbert index
2: repeat
3: D = φ
4: for all (u ∈ H in order) do
5: D = D ∪ {u}
6: if (|D| = k) then
7: break
8: end if
9: end for

10: H = H−D
11: until (U ∈ D)
12: L = {location of u ∈ D}
13: Lp = φ
14: for all (l ∈ L) do
15: lp =perturbed l
16: Lp = Lp ∪ {lp}
17: end for
18: return lp ∈ Lp such that lp has minimum average distance from L
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in the code. For instance, if a user belongs to the last bucket and its size is less
than k, then the last bucket should be merged with the previous one. Lines 14
to 17 compute a perturbed value corresponding to the location of every user in
the bucket. Each component c of a location is perturbed to c−λsign(rnd) ln(1−
2|rnd|), where rnd is a random value between −0.5 and 0.5 drawn from a uniform
distribution, and λ is set as described in the previous section. This makes the
perturbation Laplace distributed around c.

3.3 Evaluating the Perturbation

Cloaking regions guarantee that the results generated for a location based query
will contain the results corresponding to the location of the user. Such a claim
cannot be made for queries issued with a perturbed location. However, it remains
to be evaluated how different is the result set when generated with respect to the
true location, compared to that generated with respect to a perturbed location.
Differences in the result may or may not exist depending on the density of the
queried objects, and the distance of the perturbed location from the true one. A
Knn-query, for instance, on sparsely distributed objects (e.g. hospitals) is likely
to generate a larger subset of common results. On the other hand, for densely
distributed objects, this likelihood reduces. K here is the number of nearest
neighbor objects to retrieve corresponding to a location. Note that we use a
lower case k for the computation of a perturbed location.

Result set similarity can also be measured with respect to the distances to
the retrieved objects. Under this measure, two result sets are considered similar
if, corresponding to every object in one set, there exists an object in the other
set that is equi-distant from the queried location. This perspective of result
similarity applies well to proximity based queries – nearest gas stations, nearest
restaurants, nearest friends – where the distance to the object carries more weight
than attributes of the objects. Result set similarity using common subsets is
relevant in queries where the retrieved objects must be ordered using user-stated
preferences – nearest K cheapest gas stations.

A third measure is also possible using the distance of the perturbed location
from the true location. Assuming that the service provider guarantees that the
result set is accurate relative to the query point, a user wanting complete ac-
curacy will have to travel from the current location to the perturbed point. It
is therefore worth investigating how far is the generated perturbation from the
current location of the user.

Although we are not stating any theoretical bounds on these metrics at this
stage, intuition says that query processing relative to well-formed perturbed
locations will not be futile. As the first step, the following three metrics are used
to evaluate the effectiveness of our approach [14].

1. Nearness: Fraction of perturbations at close proximity to the true location.
2. Displacement: Let O = {o1, ..., oK} be the objects retrieved by a Knn-query

relative to the true location of user U , and O′ = {o′1, ..., o′K} be the objects
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retrieved relative to the perturbed location. The displacement is then given
as

K∑

i=1

dist(o′i,U) −
K∑

i=1

dist(oi,U),

dist(·) being a distance function. The minimum possible displacement is zero.
3. Resemblance: Fraction of common objects between O and O′, given as

|O ∩ O′|
|O| .

4 Empirical Results

We have generated a trace data set using a simulator that operates multiple
mobile objects based on real-world road network information available from the
National Mapping Division of the US Geological Survey. We use an area of ap-
proximately 168 km2 in the Chamblee region of Georgia, USA for this study
(Fig. 3). Three road types are identified based on the available data – express-
way, arterial and collector. Real traffic volume data is used to determine the
number of users on the different road types [4]. The total number of users on
a road type vary proportionately to the total length and traffic volume of the
road type, and reciprocally to the average speed. The mean speed, standard de-
viation and traffic volumes on the road types are shown in the figure. Using the
number of users on each road type, the simulator randomly places them on the
network and moves them around. The users move with a speed drawn from a
normal distribution, randomly making turns and changing speed at junctions.
The simulator maintains the traffic volume statistics while moving the users.

The used traffic volume information results in 8,558 users with 34% on ex-
pressways, 8% on arterial roads and 58% on collector roads. The trace data
consists of multiple records spanning one hour of simulated time. A record is
made up of a time stamp, user identifier, and x and y coordinates of the user’s
location. The granularity of the data is maintained such that the Euclidean dis-
tance between successive locations of the same user is approximately 100 meters.
Each user has an associated k value drawn from the range [2, 50] by using a Zipf
distribution favoring higher values and with the exponent 0.6. The trace data
is sorted by the time stamp of records. The first minute of records is used for
initialization. Location coordinates in each record thereafter are subjected to
perturbation. Over 4,000,000 records are processed during a pass of the trace
data.

Queried objects are distributed randomly over the entire map based on a
density value (number of objects per km2). A Knn-query is issued relative to
every perturbed location. Displacement is measured using a Euclidean distance
metric. The entire map is assumed to be on a grid of 214 × 214 cells (a cell at
every meter) while calculating the Hilbert indices [15]. Objects in the same cell
have the same Hilbert index. All simulation results are obtained on a 2.8GHz
Quad-Core Intel Xeon machine with 8GB memory and running Mac OSX 10.6.7.
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expressway
mean=90 km/h 

std.dev.=20 km/h 
traffic vol.=2916.6 cars/hr 

arterial
mean=60 km/h 

std.dev.=15 km/h 
traffic vol.=916.6 cars/hr 

collector
mean=50 km/h 

std.dev=10 km/h 
traffic vol.=250 cars/hr 

Fig. 3. Simulation performed over an area of Chamblee, GA, USA

Table 1. Percentage of anonymization attempts where perturbed location is at close
proximity to true location

ε ≤ 1000m ≤ 500m ≤ 100m

0.01 1.05 0.37 0.01
0.1 36.61 13.70 1.00
0.3 84.16 48.33 4.64
0.5 93.79 64.53 7.81
1.0 97.41 76.10 11.89
2.0 98.11 79.91 14.42

Fig. 4 shows the number of perturbations that resulted in the perturbed point
being generated within 5000 meters of the user’s actual location. A value of
ε = 0.01 effectuates to saying that two users should effectively have the same
probability of generating the perturbation (eε = 1.01). This is difficult to achieve
for most values of k. As the ε value approaches 0.5 (e0.5 = 1.65), we see a
useful distribution. At this point, more than 90% of the perturbations are within
1000 meters of the true location (Table 1). 60% of the points are in a much
closer proximity of 500 meters. The numbers increase favorably with increasing
ε. However, higher values of ε reduce the practical significance of the approach.
For instance, with ε = 2.0, we are already willing to accept a factor of 7 difference
in the probability estimates. Nonetheless, it is promising to see that significantly
high nearness values are possible with smaller values of ε as well.

Fig. 5 shows the resemblance and displacement values corresponding to differ-
ent values of K (the number of nearest neighbors to retrieve) and density. The
values are averaged over the the total number of requests processed (4484683). A
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density of 0.1 results in 25 objects across the entire region (sparsely distributed),
while a value such as 5 results in 980 objects (densely distributed). Subset sim-
ilarity (resemblance) is over 80% on the average. However, the metric shows a
slow decreasing trend as objects become more densely situated. The chances of
finding points of interest in the neighborhood increases as they become more
closely packed. The displacement is still minimal in this case. Differences in the
distance are within a mere 5 meters for the simulated objects. Query results on
sparse objects can be comparatively distant, but still acceptable. The number of
objects to retrieve has an influence in this case. While the resemblance values are
more or less similar, displacement is comparatively higher when a smaller num-
ber of objects are retrieved on sparse objects. A nearest neighbor search (K = 1)
still retrieves the same object on more than 80% of the queries processed.

5 Related Work

Location obfuscation has been earlier achieved either through the use of dummy
queries or cloaking regions. In the dummy query method, a user hides its actual
query (with the true location) amongst a set of additional queries with incorrect
locations [16,17]. The user’s actual location is one amongst the locations in the
query set. Using false dummies affect query privacy if user locations are known
to the attacker. Cheng et al. propose a data model to augment uncertainty to
location data using circular regions around all objects [18]. They use imprecise
queries that hide the location of the query issuer and yield probabilistic results,
modeled as the amount of overlap between the query range and circular region
around the queried objects. Yiu et al. propose an incremental nearest neighbor
processing algorithm to retrieve query results [19]. The process starts with an
anchor, a location different from that of the user, and it proceeds until an accu-
rate query result can be reported. Trusted third party based approaches rely on
an anonymizer that creates spatial regions to hide the true location of users. The
anonymizer communicates this region to the content provider and then filters
the result set accordingly. Gedik and Liu develop a location privacy architec-
ture where each user can specify a minimum anonymity level, and maximum
temporal and spatial tolerances while creating the cloaking regions [5]. Ghinita
et al. propose a decentralized architecture to construct an anonymous spatial
region, and eliminate the need for the centralized anonymizer [20]. Kalnis et al.
propose that all obfuscation methods should satisfy the reciprocity property [6].
This prevents inversion attacks where knowledge of the underlying anonymizing
algorithm can be used to identify the actual object. Mokbel et al. explore query
processing of different types on spatial regions – private queries over public data,
public queries over private data, and private queries over private data [21]. Lee et
al. explore privacy concerns in path queries where source and destination inputs
may reveal personal information about users [22]. They propose the notion of
obfuscated path queries where multiple sources and destinations are specified to
hide the true inputs. Xu and Cai argue that the impact of a privacy parameter,
such as k, on the level of privacy is often difficult to perceive. They treat privacy
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as a feeling-based property and propose using the popularity of a public region
as the privacy level [23]. Each user specifies a spatial region as its privacy index,
and the cloaking region for the user must at least have the same popularity as
that of the specified region. An entropy based computation is used to define the
popularity of a spatial region. Soriano et al. show that the privacy assurances
of this model do not hold when the adversary possesses footprint knowledge on
the spatial regions over time [24]. Shokri et al. propose a framework to quantify
location privacy based on the expected estimation error of an adversary [25].

Data transformation is another method to prevent the inference of locations.
Agrawal et al. propose an encryption technique called OPES (Order Preserving
Encryption Scheme) that allows comparison operations to be directly applied on
encrypted data [26]. Operand decryption is however required for computing SUM
and AVG. Wong et al. overcome this drawback by developing an asymmetric
scalar-product preserving encryption [27]. This allows the preservation of relative
distances between database points. Khoshgozaran et al. employ Hilbert curves
to transform the data points and then answer queries in the transformed space
[14]. The parameters of the transformation, called the Space Decryption Key, is
assumed to be not known to an adversary. A new paradigm in location privacy
is based on private information retrieval (PIR) techniques. Khoshgozaran et
al. propose K nearest neighbor queries that can be reduced to a set of PIR
block retrievals [28]. These retrievals can be performed using a tamper-resistant
processor located at the server so that the content provider is oblivious of the
retrieved blocks. Papadopoulos et al. further warrant the need to retrieve the
same number of blocks across queries [29].

6 Conclusions

Obfuscated locations can provide the means to access a location based service
without risking privacy breaches. The strength of the obfuscation itself is depen-
dent on the background knowledge of the attacker. Cloaking regions can be used
to provide query privacy, but at the same time, can also enable an attacker with
approximate location knowledge to improve its approximations. We propose a
method based on location perturbation to address such attackers. Perturbed lo-
cations are generated using a Laplace distributed noise function in a way such
that any user, from a set of k users, is likely to be the query issuer within a
parameterized bound. Empirical evaluation shows that the perturbed locations
can still serve as promising query points. A high fraction of the actual result set
can be retrieved, or otherwise, similarity in distances to the points of interest
can be achieved.

Resolution of bad perturbations is an issue that remains to be explored. These
are perturbations that are significantly far away from the true locations. While
their occurrence has not been found to be very high in the empirical study, it needs
to be determined if they can be eliminated altogether. Reducing the value of k may
have a positive impact, but at the expense of reduced anonymity. In addition, the k
value is only used to determine a set of close neighbors that can be used to compute
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a noise level for the perturbations. Its may be possible to adaptively choose the
value based on the proximity of the perturbations to the true locations. Further,
the result set similarity could be improved upon by using queries from multiple
perturbed locations. Decentralized computation of the perturbations should not
be difficult, given a framework to determine the k users.

We have not considered another possible form of adversarial knowledge in this
study. These adversaries, called crossholders, posses knowledge on the identity
of individuals who did not issue a certain query. Consequently, a k-anonymous
cloaking region in this case is (k − n)-anonymous, where n is the number of
individuals that the adversary can eliminate. k-anonymity can still be achieved
by ensuring the cloaking region is (k + n)-anonymous. As in the case of approx-
imate locators, the difficulty lies in determining the attacker’s extent of knowl-
edge – the value of n. The perturbation based approach demonstrated here is
also weak against such adversaries, specifically because of the underlying usage
of k-anonymity. The dependence on k can be removed by using the maximum
L1-norm distance between all users in the variance computation. However, such
high levels of variance can make the perturbed locations significantly distant
from the true locations, and effectively useless in generating relevant results.
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