
Build and Test Your Own Network

Configuration

Saeed Al-Haj, Padmalochan Bera, and Ehab Al-Shaer

University of North Carolina Charlotte, Charlotte NC 28223, USA
{salhaj,bpadmalo,ealshaer}@uncc.edu

Abstract. Access control policies play a critical role in the security of
enterprise networks deployed with variety of policy-based devices (e.g.,
routers, firewalls, and IPSec). Usually, the security policies are config-
ured in the network devices in a distributed fashion through sets of ac-
cess control lists (ACL). However, the increasing complexity of access
control configurations due to larger networks and longer policies makes
configuration errors inevitable. Incorrect policy configuration makes the
network vulnerable to different attacks and security breaches. In this
paper, we present an imperative framework, namely, ConfigLEGO, that
provides an open programming platform for building the network security
configuration globally and analyzing it systematically. The ConfigLEGO
engine uses Binary Decision Diagram (BDD) to build a Boolean model
that represents the global system behaviors including all possible inter-
action between various components in extensible and scalable manner.
Our tool also provides a C/C++ API as a software wrapper on top of
the BDD engine to allow users in defining topology, configurations, and
reachability, and then analyzing in various abstraction levels, without
requiring knowledge of BDD representation or operations.

Keywords: Imperative analysis, BDDs, Formal methods, Network con-
figuration.

1 Introduction

The extensive use of various network services and applications (e.g., telnet, ssh,
http, etc.) for accessing network resources forces enterprise networks to deploy
policy based security configurations. However, most of the enterprise networks
face security threats due to incorrect policy configurations. Recent studies re-
veal that more than 62% of network failures today are due to security miscon-
figuration. These misconfigurations may cause major network failures such as
reachability problems, security violations, and introducing vulnerabilities. An
enterprise LAN consists of a set of network domains connected through various
interface routers. The security policies of such networks are configured in the
security devices (like, routers, firewalls, IPSec, etc.) through set of access con-
trol lists (ACLs) in a distributed manner. The global network configuration may
contain several types of conflicts (redundancy, shadowing, spuriousness, etc.) in
different levels (intra-policy, inter-policy) [1] which may violate the end-to-end

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 522–532, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Build and Test Your Own Network Configuration 523

security of the network. Moreover, there may exist several reachability problems
depending on flow-, domain-, and network-level constraints. Thus, the major
challenge to the network administrators/developers is to comprehensively build
and analyze the security configurations in a flexible and efficient manner.

In this paper, we present an imperative framework, namely, ConfigLEGO that
allows users to comprehensively specify, implement, and diagnose network con-
figurations based on user requirements. ConfigLEGO internally uses an efficient
binary decision diagram (BDD) structure to compactly represent the network
configuration and further uses the configuration BDDs for analysis. On the other
hand, ConfigLEGO provides a C/C++ programming interface that acts as a soft-
ware wrapper on top of the BDD engine to selectively compose different BDDs
for systematic evaluation. ConfigLEGO is named after the famous Lego toy. In
a Lego toy, one can build a complex design from a set of basic components.
ConfigLEGO provides all basic components to design a network, and allows the
user to build and test his own network by putting all components together and
by writing the queries he needs to check the validity of configuration properties.
ConfigLEGO hides BDDs complexity and allows users to analyze the network
without requiring previous knowledge about BDD representation or operations.

Compared to other declarative modeling languages/systems, ConfigLEGO is
the first BDD-based engine that provides a generic C/C++ programming inter-
face for configuration modeling, abstraction, and analysis in usable and scalable
manner. Compared to other network management tools like COOLAID [2], Con-
figLEGO provides libraries for comprehensively creating and analyzing network
configurations based on user requirements.

In terms of diagnosability, ConfigLEGO can evaluate various configuration
problems such as follows:

– Network reachability, intra- and inter-firewall misconfigurations, flow-level,
path-level and domain-level network traffic reachability.

– Inferring configuration problems using a sequence of evaluation results.
– Analyzing network configuration and testing whether the current configura-

tion meets the provided risk requirements.

The remaining sections of the paper are organized as follows: Section 2 describes
the architecture of ConfigLEGO ; Section 3 introduces different examples verified
using ConfigLEGO. This section also describes the formalization of the examples
in Boolean logic using efficient BDD representation; Section 4 discusses the eval-
uation and experimental results; Section 5 is the related work; Finally, conclusion
and future work have been presented in Section 6.

2 Architecture of ConfigLEGO

The presented ConfigLEGO system (refer Figure 1) consists of two major mod-
ules: Internal Module and User Program Module. The Internal Module is the
core of the system which has two components; ConfigLEGO Engine and the
ConfigLEGO API. ConfigLEGO Engine is responsible for modeling the device

524 S. Al-Haj, P. Bera, and E. Al-Shaer

Fig. 1. ConfigLEGO System Architecture

configuration (behavior of each device such as, domains, routers, firewalls etc.),
topology, and the network using efficient BDD representation. The engine builds
a BDD for each device and each path in the network. It can also provide a BDD
for the entire network depending on user requirement. A complete set of func-
tions for managing internal module is defined in ConfigLEGO API. It provides
an interface to the User Program Module to use ConfigLEGO system.

The user only needs a basic knowledge of the available functions in the API
to write his/her program for analyzing/diagnosing a network.

2.1 ConfigLEGO Internal Module

ConfigLEGO parses the device configuration files and builds a BDD structure
for each device. Then, it allows to define the links between the device BDDs and
different access paths depending on the network topology specification. This
network configuration can be formalized as a network access model.

Definition 1 [Network Access Model]: A network access model is defined
as a 3-tuple NG = 〈N, I, F 〉, where,
– N is a finite set of network devices. Network devices (N) can be of three

types: NR- network routers; NF - firewalls and NE- end point devices
(hosts/domains) represented as an IP address block. Each device is asso-
ciated to several connecting interfaces which are identified by an IP address.

– I ⊆ N ×N is a finite set of network links between devices, such that for
every physical link between N1 and N2 there is a pair of lines or channels:
I12 = 〈N1, N2〉 and I21 = 〈N2, N1〉.

– F is a finite set of access control lists (ACL) associated to different devices.

Modeling Network Configuration. Each device configuration in the network
has to be modeled in BDD for modeling the network configuration. More details

Build and Test Your Own Network Configuration 525

about modeling devices configuration can be found in [3]. After modeling devices
configuration, we model the complete network considering the topology and the
combined effect of the routing and firewall rules. ConfigLEGO allows users to
specify the topology using C/C++ programming constructs. It is represented
as a formal network access model, NG〈N, I, F 〉 as described in the last section.
Then, we formalize the combined effect of firewall rules along different access
routes between source and destination. In this process, the notion of Access
Routes and Access Route Policy have been introduced.

Definition 2 [Access Route]: An Access Route AR
(S,D)
i is defined as a se-

quence of devices (N1, N2, ..., Nk) from source S to destination D in the network
where, each 〈Ni, Ni+1〉 ∈ I and D is reachable from S through S,N1, N2,, D.
This corresponds to the physical topology of the network.

Definition 3 [Access Route Policy]: An Access Route Policy (ARP (S,D))
between a source S and destination D is a combined model of the distributed
policy rules along all possible access routes (AR

(S,D)
1 , ..., AR

(S,D)
n) between a

source S and a destination D. It is represented as a Boolean function:

ARP (S,D) = (P
AR

(S,D)
1

∨ P
AR

(S,D)
2

∨ . . . ∨ P
AR

(S,D)
n

)

such that P
AR

(S,D)
i

=
∧

N∈ARi
PN
a . This represents the logical access path.

Here, P
AR

(S,D)
i

(along the route ARi) is represented as the conjunction of poli-

cies for all devices in that route. Then, we represent the complete access route
policy ARP (S,D) between a source S and a destination D as disjunction of all
P
AR

(S,D)
i

for access route ARi. We describe the modeling of logical access paths

between a specified pair of source and destination. However, depending on user
requirement, ConfigLEGO is also capable of generating the combined network
model considering all possible source and destination pairs in the network. For
basic reachability analysis, the presented ConfigLEGO framework checks the
conjunction of the BDDs along the access route as specified. On the other hand,
for imperative analysis, it uses the sequence of reachability results. Section 3
shows the verification of such analysis with different examples.

ConfigLEGO Engine in Figure 1 utilizes the compact canonical format that
BDDs provide to encode the device configuration file into a BDD representation.
This will be used later by the ConfigLEGO API for providing a convenient
interface to the user writing his own program. A partial set of the functions
provided by ConfigLEGO API are shown in Table 1. The functions support
three phases of network’s design: (1) Components Installation, (2) Components
Connection, and (3) Testing and Validation.

2.2 User Program Module

In this module, the user can provide network specifications in C/C++ program-
ming language. The ConfigLEGO API supports user’s program module by pro-
viding a set of functions that will be used by a user to construct a network. For

526 S. Al-Haj, P. Bera, and E. Al-Shaer

Table 1. ConfigLEGO API Functions

Definitions and Func-
tion Names

Description

Network N To create a new network N

Firewall F(“policy.txt”) creates a firewall that has policy defined in policy.txt
text file

Router R(“rtable.txt”) creates a router that has routing table defined in
rtable.txt text file

IPSec G(“policy.txt”) creates an IPSec device that has policy defined in
policy.txt text file

Domain D(“domain.txt”) creates a domain D that has an address and a network
mask defined in domain.txt test file

Host H(“host.txt”) creates a host H that has an address defined in host.txt
test file

Rule r creates a BDD representation for a firewall rule

link(C1, interface1, C2, in-
terface2)

links components C1 and C2 through interface1 and
interface2 respectively

buildDeviceBDD() builds a BDD for each device in the network

buildGlobalBDD() builds a BDD for the network

checkFlow(S, source-port,
D, dest-port)

checks flows between source and destination using
specified ports and returns a BDD that represents the
computed flows

printFlows(B, n) print the first n flows that satisfy the BDD B

getPathObjects(src, dst,
vec, TYPE)

returns a vector vec of objects of type TY PE along the
path between source src and destination dst, TYPE
can be FIREWALL, ROUTER, IPSEC, or IDS

policy() returns the BDD representation for a firewall/router

a firewall, it contains the policy rules and two interfaces while it contains a rout-
ing table and up to 16 interfaces for a router. The configuration file is assigned
logically to the proper device in the initialization statement in the program. To
give a clear explanation how ConfigLEGO system works, we provide several code
segments throughout the paper, where each segment solves a specific problem.

Any user program starts with initializing a network N stated as follows:

Network N;

Given a configuration file for each device, it can be added to the network N. A
firewall F1 with configuration file “f1.txt” can be defined firewall as follows:

Firewall F1("f1.txt");

Other devices (routers, IPSec, etc.) can be added to the network similarly. After
adding all components in the network N, the next step is to connect the compo-
nents by introducing links between them. The connections between components
are installed. Link(. . .) function is used to link two components as follows:

N.link(D1, ANY_IFACE, F1, 1);

Build and Test Your Own Network Configuration 527

Here, domain D1 (any interface) is linked to firewall F1 (interface 1).
After linking all components in network N, a BDD for the network and each

device are generated by invoking the statements:

N.buildDeviceBDD(); N.buildGlobalBDD();

3 Verification Examples

In this section, we provide examples for showing the usability of ConfigLEGO.
The examples are categorized as: Basic Analysis and Imperative Analysis.

3.1 Basic Analysis

ConfigLEGO can perform various security analysis, such as, reachability, intra-
policy conflicts, and inter-policy conflicts. Due to the space limitation, we will
show an example on reachability verification.

A traffic C is reachable to a distention node/domain D from a source
node/domain S along an access route 〈S,Ri, Fk, D〉, iff the traffic is allowed
by the routing table rule T j

i [BDD for router Ri and port j] and the firewall
policy Fk along that route. It can be formalized as follows:

reachable(C, S,D) : (C ⇒
∧

(i,j)∈P

T j
i) ∧ (C ⇒

∧

(i,k)∈P

Fk).

ConfigLEGO checks the reachability by analyzing the BDDs for routers and
firewalls along an access route between specified source and destination domain.
This can be checked by the following statement:

T = N.checkFlow(src, src-port, dst, dst-port);

CheckFlow(. . .) returns a BDD, T , that represents the computed flows between
a source src and a destination dst considering source and destination ports as
provided in the function call. If the resultant BDD T is bddfalse, then there is no
flow between source and destination. Flow computations are performed based on
the AccessRoute and AccessRoutePolicy defined in section 2.1. ConfigLEGO
can analyze the reachability between all source hosts and a single destinations
or between all sources and all destinations by calling checkFlow(. . .) function
inside a loop. The following example checks the reachability between all source
hosts and a single destination D1:

// hSize is the number of hosts

int hSize = allHosts.size();BDD T, TC=TRUE;

for(i = 0; i < hSize; i++){

T = N.checkFlow(*allHosts[i], ANY, D1, ANY);

TC = TC | T;

if(T != bddfalse)

cout<<"Reachable from Host "<<i; }

528 S. Al-Haj, P. Bera, and E. Al-Shaer

Here, two BDDs, T and TC, are computed. T represents all flows from a host to
a destination D1, and TC is the BDD for the complete representation from all
hosts to the destination D1. An example of further analysis is to compare two
hosts in term of the incoming traffic. Here, the BDD TC is the disjunction of all
BDDs T , the operator | is overloaded to perform BDD ”OR” operation.

3.2 Imperative Configurations Analysis

The ConfigLEGO system is capable of analyzing different imperative cases using
sequence of evaluation steps which is one of the unique features of the system.
The use of loops and conditional statements allows the users to comprehensively
analyze these imperative queries.

Path Conflict Analysis for Firewalls. First, we introduce the formalization
of shadow-free and spurious-free relations based on inter-policy firewall conflicts.

Lemma 1: Shadow-free and spurious-free are transitive relations. Assume Si
a, S

j
a

and Sk
a are upstream to downstream firewall policies in a path P , the following

is always true:

[(¬Si
a ∧ Sj

a) = false]
∧

[(¬Sj
a ∧ Sk

a) = false] ⇒ [(¬Si
a ∧ Sk

a) = false]

We formalize Path Conflicts using path-shadowing and path-spuriousness.

Definition 4 [Path Conflict]: Assuming Si
a to Sn

a are the firewall policies from
upstream to downstream in the path from x to y, a path conflict(x,y) between
any two firewalls is represented as follows:

Path Shadowing(x,y):

∨

i=1..(n−1) and i∈path(x,y)

(¬Si
a ∧ Si+1

a) 	= false

Path Spuriousness:
∨

i=1..(n−1) and i∈path(x,y)

(Si
a ∧ ¬Si+1

a) 	= false

ConfigLEGO checks this type of path conflicts as a sequence of steps (under a
loop), where each step checks the conflicts between a pair of BDDs. The following
code finds path shadowing between a source and a destination.

N.getPathObjects(src, dst, fwVec, FIREWALL);

for(i = 0 ; i < fwVec.size()-1 ; i++)

if(!fwVec[i].policy() & fwVec[i+1].policy()){

cout<<"Path Shadowing"; break; }

Here, getPathObjects(. . .) function returns a vector, fwV ec, of all firewall ob-
jects between a source src and a destination dst. A pair of consecutive firewalls is
checked for shadowing. The conflict is reported once found, the loop is stopped.

Build and Test Your Own Network Configuration 529

Reachability Requirement Verification. In large networks, some subnets
are restricted to communicate with others, which is known as least privilege
principle. For example, in a university network, student subnet is not allowed to
use resources allocated for staff subnet. Network administrator can enforce least
privilege by defining a reachability requirement matrix. Requirement matrix tells
for each subnet which subnets are allowed to reach which signifies the soundness
of the system. The soundness of a configuration can be defined as:

Definition 5 [Soundness]: a network configuration C is sound if, for all do-
mains x and y, all possible paths from x to y are subset of the requirement
matrix REQ. Formally, soundness can be defined as follows:

∀x∀y(reachable(x, y) ∧ src(x) ∧ dest(y)) → REQ[x][y] = true

The following example verifies connection requirements between domains:

int domSize = allDomains.size();

int Req[domSize][domSize]; BDD T;

for(int i = 0; i < domSize; i++)

for(int j = 0; j < domSize; j++)

if(i != j){

T=N.checkFlow(*allDomains[i], ANY, *allDomains[j], ANY);

if((T != bddfalse && Req[i][j] == 0) ||

(T == bddfalse && Req[i][j] == 1))

cout<<"Reachability Violation"; }

Here, Req is the requirement matrix. If Req[i][j] is ZERO, then subnets i and j
are not allowed to communicate.

4 Performance Evaluation

The various modules of ConfigLEGO framework have been implemented in
C/C++ programming language using BuDDy2.2 package [4] and tested on a
machine with a 1.8 GHz core 2 CPU and 2GB memory. Parsers have been de-
veloped for device configuration files. For evaluating imperative examples, Con-
figLEGO analyzes a combination of device’s BDDs (using loop and conditional
statements) and infer about the configuration issues under consideration.

ConfigLEGO is evaluated with respect to time and space requirements. The
framework has been tested under 100 different network configurations in more
than 20 different test networks with up to 5000 nodes and 50 thousands of
policy rules under each configuration. Table 2 shows the experimental results
with different test cases. We have thoroughly analyzed the impact of network
size and policy rules on network building time and configuration diagnosis time.

Impact of Network Size and Policy Rules on Space Requirement and
Network Building Time: The space requirement basically covers the total
BDD size for the network. ConfigLEGO framework creates a BDD for each

530 S. Al-Haj, P. Bera, and E. Al-Shaer

Table 2. Evaluation Results

Network
Size

Total
No. of
Rules

BDD
Size
(Mb)

Network
Building
Time (sec)

Configuration Analysis and Di-
agnosis Time (sec)
Reachab-
ility

Flow anal-
ysis

Distributed
Path Conflict

500 5000 1.6 0.665 0.235 0.65 0.37

1000 8500 3.2 1.325 0.43 1.32 1.33

1500 15000 4.6 1.95 0.65 1.89 3.2

2000 22500 6.3 2.67 0.885 2.5 5.32

3000 32500 9.65 3.92 1.38 3.78 11.27

4000 40125 12.7 5.12 1.82 5.25 21.5

5000 48755 15.8 6.34 2.33 6.52 32.12

network device by parsing the associated policy rule file. Thus, BDD size is
linearly dependent on both network and policy size. Table 2 shows that space
requirement lies within 15 MB for 5000 nodes and total of 50000 policy rules
which is reasonably good for large networks.

Network model building time is almost linearly dependent on both network
and policy rule size. It can be observed that this time lies within 7 seconds for
5000 nodes with 50000 policy rules.

Impact of Network Size and Policy Rules on Configuration Diagnosis
Time: ConfigLEGO framework evaluates different configuration problems using
Boolean satisfiability analysis of the network and device BDDs. The impact of
network size on the evaluation time varies based on the problem complexity.

Reachability Analysis: ConfigLEGO checks the conjunction of all BDDs along
a specified access. Thus, the reachability analysis time is linearly dependent on
the number of nodes along that access path.

Flow Level Reachability: ConfigLEGO checks flow level reachability under a
specific traffic flow Ck by evaluating BDDs for all routers (in a loop) and the
destination firewall along the specified path P . For path level unreachability,
ConfigLEGO analyzes all possible flows in a path P from node i to node j.
Thus, the complexity of flow level reachability problem can be represented as
O(Tpathreachability∗k), where, Tpathreachability indicates the flow level reachability
analysis time (for a specific flow) and k indicates the total flows. Table 2 shows
the average flow level analysis time which lies within 6.5 seconds for 5000 nodes
and 50000 policy rules.

The space and time requirement shows that the framework is scalable for
large scale networks. The uniqueness of ConfigLEGO framework lies in compre-
hensive use of C/C++ programming language features and use of efficient BDD
representation for systematically diagnosing different configuration problems.

5 Related Work

Researchers proposed different high level security policy languages and frame-
works for automated management and modeling network configurations. FLIP [5],

Build and Test Your Own Network Configuration 531

is a high level conflict-free firewall policy language for enforcing access control
based security and ensuring seamless configuration management. In FLIP, secu-
rity policies are defined as high level service oriented goals, which can be trans-
lated automatically into access control rules. However, it limits in comprehen-
sively specifying and analyzing the global network configuration with imperative
queries. Chen et al. present a framework called COOLAID [2] for comprehen-
sive management of network configurations by embedding knowledge bases from
different network users. COOLAID uses a declarative framework for integrat-
ing explicit knowledge bases derived from low level network configurations and
then reason about misconfigurations based on high level intents. However, this
work does not provide the libraries for performing fine-grained security analysis
and applications on top of the network configurations. This is an important re-
quirement for providing diagnosability and provability of network configurations.
Secondly, the scalability of network configuration management and automation
have not been analyzed in these tools. Al-shaer et al. proposed a BDD based
framework, ConfigChecker [3], for end-to-end verification of network reachabil-
ity. Narain et al. [6] proposed a SAT-based approach for security configuration
analysis. However, none of the earlier approaches provide an open interface for
security configuration analysis.

The literature survey reveals the need of a framework that allows users to
build the network configuration comprehensively as well as systematically ana-
lyze various configuration problems with imperative queries. Towards this goal,
we develop the ConfigLEGO system exploiting the advantages of C/C++ pro-
gramming language features and efficient BDD structure. The expressiveness,
composability, and reusability features of ConfigLEGO allows user to compre-
hensively specify the network configuration and diagnosis requirements.

6 Conclusion and Future Work

In large scale networks, it is hard to find and debug misconfigurations and ana-
lyze security requirements manually. Thus, there is a need of an automated tool
for finding and reasoning such misconfigurations in an abstract and comprehen-
sive way. In this paper, we presented an imperative framework for comprehen-
sively analyzing and diagnosing the network configurations. The framework is
implemented in a tool called ConfigLEGO. It allows users to write C/C++ pro-
gram that captures network specifications and implement the required analysis.
This makes ConfigLEGO a convenient tool to use. For the purpose of analy-
sis and diagnosis, ConfigLEGO uses an efficient BDD engine, this engine hides
BDDs complexity and does not require previous knowledge about BDDs repre-
sentation and operations. The efficiency of the framework has been evaluated rig-
orously with different network and policy rule sizes. In future, the ConfigLEGO
framework can be extended for finer-grained security analysis like, role based
access control and risk based policy configuration in enterprise networks.

532 S. Al-Haj, P. Bera, and E. Al-Shaer

References

1. Al-Shaer, E.S., Hamed, H.H.: Discovery of Policy Anomalies in Distributed Fire-
walls. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China, pp. 2605–2626
(March 2004)

2. Chen, X., Mao, Y., Mao, Z.M., Van der Merwe, J.: Declarative Configuration Man-
agement for Complex and Dynamic Networks. In: Proceedings of ACM CoNEXT
(2010)

3. Al-Shaer, E., Marrero, W., El-Atway, A., AlBadani, K.: Network Configuration in
a Box: Towards End-to-End Verification of Network Reachability and Security. In:
Proceedings of ICNP 2009, Princeton, NY, USA, pp. 123–132 (2009)

4. Lind-Nielsen, J.: The BuDDy OBDD package,
http://sourceforge.net/projects/buddy/

5. Zhang, B., Al-Shaer, E.S., Jagadeesan, R., Riely, J., Pitcher, C.: Specifications of A
High-level Conflict-Free Firewall Policy Language for Multi-domain Networks. In:
Proceedings of ACM SACMAT 2007, France, pp. 185–194 (June 2007)

6. Narain, S., Levin, G., Malik, S., Kaul, V.: Declarative Infrastructure Configuration
Synthesis and Debugging. Journal of Network and Systems Management 16, 235–258
(2008)

http://sourceforge.net/projects/buddy/

	Build and Test Your Own NetworkConfiguration
	Introduction
	Architecture of ConfigLEGO
	ConfigLEGO Internal Module
	User Program Module

	Verification Examples
	Basic Analysis
	Imperative Configurations Analysis

	Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

