T-CUP: A TPM-Based Code Update Protocol
Enabling Attestations for Sensor Networks

Steffen Wagner!, Christoph KrauB!, and Claudia Eckert?

! Fraunhofer Research Institution AISEC, Garching, Germany
{steffen.wagner,christoph.krauss}@aisec.fraunhofer.de
2 TU Miinchen, Dpt. of Computer Science, Chair for IT Security, Garching, Germany
claudia.eckert@in.tum.de

Abstract. In this paper, we propose a secure code update protocol for
TPM-equipped sensor nodes, which enables these nodes to prove their
trustworthiness to other nodes using efficient attestation protocols. As
main contribution, the protocol provides mechanisms to maintain the
ability of performing efficient attestation protocols after a code update,
although these protocols assume a trusted system state which never
changes. We also present a proof of concept implementation on IRIS
sensor nodes, which we have equipped with Atmel TPMs, and discuss
the security of our protocol.

Keywords: Wireless Sensor Network, Security, Node Compromise, TPM,
Attestation, Secure Code Update.

1 Introduction

Wireless sensor networks (WSNs) [I] can be used for various security-critical
applications, such as military surveillance. Sensor nodes with embedded sens-
ing, computation, and wireless communication capabilities monitor the physical
world and send data through multi-hop communication to a central base station.
The resources of a sensor node are severely constrained since they are mainly
designed to be cheap and battery-powered.

Since sensor nodes are often deployed in unattended and even hostile envi-
ronments, node compromise is a serious issue. By compromising a sensor node,
an adversary gets full access to data such as cryptographic keys stored on the
node. Especially sensor nodes which perform special tasks for other sensor nodes
(e.g., key management) are a valuable target. One approach to protect the cryp-
tographic keys on such nodes is the use of a Trusted Platform Module (TPM)
[15]. The TPM is basically a smartcard and can be used to create a secure stor-
age and execution environment. The TPM additionally provides mechanisms to
realize attestation protocols where the sensor nodes can prove that no adversary
has tampered with their components.

However, previously proposed attestation protocols for WSNs, e.g., in [9], rely
on a trusted system state which never changes. The main idea is to use the TPM
to cryptographically bind certain attestation values (e.g., symmetric keys) to a
trusted initial platform configuration. The platform configuration is validated

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 511-p21] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

512 S. Wagner, C. Krauf}; and C. Eckert

during each boot process by calculating hash values for bootloader (acting as
Core Root of Trust for Measurement (CRTM)), operating system (OS), and all
installed applications and comparing them with references values protected by
the TPM. Only if they match, access to the attestation values is possible. Thus,
any code update, which might be necessary to patch security vulnerabilities or
add new functionalities, would result in a different system state which prevents
successful attestations.

In this paper, we present T-CUP, a secure code update protocol which en-
ables TPM-based attestation protocols and provides mechanisms to validate the
authenticity, integrity, and freshness of the wirelessly transmitted code update.
We also present a proof of concept implementation and security discussion.

2 Related Work

Existing over-the-air programming (OTAP) protocols, such as Deluge [7], Infuse
[2], or MNP [10], mainly focus on the (efficiency of the) update procedure, but
do not consider security. In [IBIT2IT38], code update protocols with security
mechanisms have been proposed which are often based on an existing OTAP
protocol, mostly Deluge. Secured hash chains are used to ensure authenticity and
integrity of the individual parts of the code update. Because of the chaining, only
the first hash needs to be protected by some cryptographic mechanism. However,
the key used to protect this hash value must not be accessible by an adversary
since this would enable him to create false code updates. In [ABIT2/T4], digital
signatures are used for this purpose which have much higher computational
costs than symmetric approaches. The protocols proposed in [I3J8] are solely
based on symmetric (hash-based) mechanisms. However, all previously proposed
protocols are not directly applicable to update TPM-equipped sensor nodes while
maintaining the ability to perform attestations.

The use of a TPM for attestation protocols in hybrid WSNs where only a
minority of special sensor nodes are equipped with a TPM has initially been
introduced by Kraufl et al. [9]. They propose two attestation protocols which
either enable a single node (including the base station) or multiple sensor nodes
to simultaneously verify the trustworthiness of a TPM-equipped sensor node.
The main idea is to use the Sealing function of the TPM to bind certain attes-
tation values (symmetric keys or values of a hash chain) to an initial trustworthy
platform configuration. However, code updates are not considered.

Using the TPM in WSNs has been also proposed in [5] and [6] where all sensor
nodes of a WSN are equipped with a TPM to perform public key cryptography.

3 Setting and Notation

In this section, we explain the setting and define the notation for our protocol.

3.1 Setting

We consider a hybrid WSN consisting of a large number of common cluster sensor
nodes (CNs) and very few TPM-equipped cluster head (CH) nodes. CHsperform

T-CUP: TPM-Based Code Updates and Attestations 513

special tasks and services for a certain number of CNs. Data is sent via multi-
hop communication to one central base station (BS) which is assumed to be
trustworthy, i.e., cannot be compromised.

Before node deployment, BS and all CHs are initialized in a trusted environ-
ment. The TPM of each CH is initialized by generating asymmetric key pairs
which are only used within the TPM and marked as “non-migratable”, i.e., the
private key cannot be extracted from the TPM. These asymmetric keys are used
by the sealing function of the TPM to cryptographically bind shared symmet-
ric keys between BS and the CHs to an initial trusted system state. Likewise,
a timestamp which indicates the current version of the system software is also
bound to the trusted system state.

Furthermore, we assume an adversary which tries to compromise a CH by
attacking the code update protocol. The adversary can either try to physically
compromise a CH or by performing attacks via the wireless channel. In the first
case, the adversary directly tries to read out stored data such as cryptographic
keys or tries to re-program the node with his own malicious code. In the latter
case, the adversary can perform attacks such as eavesdropping on the wireless
communication, manipulate transmitted packets, inject new or replay old pack-
ets. However, we assume that an adversary is not able to break cryptographic
algorithms, e.g., decrypting encrypted messages without knowing the key or in-
verting hash functions. The adversary is also not able to access cryptographic
keys which are protected by the TPM or reset the TPM.

3.2 Notation

Cluster heads are denoted as CH; with ¢ = 1,...,a and the cluster nodes as
CNj with j =1,...,b, where b>> a (cf. [9]).

A symmetric key K between the BS and the CH; is referred to as Kpgs cH,-
Since the current version of the TPM does not support symmetric cryptographic
operations internally, we allow this key to be stored in RAM for a short time.

Applying a cryptographic hash function H on data m is denoted with H(m).
A one-way hash chain [L1] stored on a CH is denoted with CH = c§#, ... cFH.
A hash chain is a sequence of n hash values, each of fixed length [, generated by a
hash function H : {0,1}* — {0, 1}! by applying the hash function H successively
on a seed value ¢g, such that ¢,41 = H(e,), with v =0,1,...,n—2,n— 1.

A specific system state of a TPM-equipped cluster head CH; is referred to
as platform configuration Pcp, := (PCR|0],..., PCR[p])cn, and stored as in-
tegrity measurement values p in the platform configuration registers (PCRs) of
the TPM. To store the value of a measured (software) component in a PCR,
the existing value is not replaced, but combined with the new value using
PCREztend(PCRJi], 1), which is specified as PCR[i] + SHA1(PCRJ[i]|| 1) [15].

For our protocol, we define two platform configurations referred to as full
and reduced platform configuration. The full platform configuration Pc%i“’p) uses
at least two PCRs and must consider all software layers up to the OS and
application layer (cf. Fig. [[} left). Similarly, we denote the reduced platform

514 S. Wagner, C. Krauf}; and C. Eckert

configuration as Pg}l"i”’r), which uses r < p registers and only considers the static
trusted components up to the bootloader (cf. Fig. [l right).

Cluster Head | ..o oo .
/ Program Image .

Application

Operating System

| Bootloader

(0.....p) U T (0,...7)
PGH, P T-CUP Security Layer PC‘Hﬂ "

| Hardware Components

Fig.1. T-CUP Security Layer on Cluster Head

Data m can be cryptographically bound to a specific platform configuration
P by using the TPM Seal command, which we call Seal for the sake of simplicity.
Using the TPM Unseal command (or simply Unseal), the TPM decrypts m only
if the platform configuration has not been modified. Given a non-migratable
asymmetric key pair (e“#:, d“#¢) we denote the sealing of data m to the plat-
form configuration Pcy, with {m}fpc;i; = Seal(Pcp,, e“™i,m). For unsealing the
sealed data {m}%cci, it is necessary that the current platform configuration Pg,.

is equal to Poy,: m = Unseal(Pgy, = Peon,, 9%, {m}fgccz).
4 Protocol Description

In this section, we describe the concept of our proposed code update protocol.

4.1 The T-CUP Header

The code update is divided into pages pg0 to pgT, i.e., upd=(pg0|| ... || pgT),
as depicted in Fig.[2l To ensure the authenticity of such a code update, we define
a T-CUP Header, which is shown in detail on the right of Fig. Pl This header
includes the number of pages T, a timestamp ts, a chain of hashes and an HMAC
(hmac upd) for the complete code update.

The cryptographic values of the T-CUP Header are calculated as follows: First,
the HMAC hmac upd, which allows to verify the authenticity and integrity of
the complete code update, is calculated using the shared symmetric key Kgg, cH,
between BS and CH; (here simply K):

hmac upd = HMAC(K,upd) = HMAC(K, (pg0]|| ... ||pgT)) . (1)
After that, the chain of hashes is then generated in reversed order as shown in

Fig. 2 (right): For page T—1, the hash is created as hy = H(pgT || hmac upd),
i.e., by concatenating the data of page T' with the HMAC of the complete code

T-CUP: TPM-Based Code Updates and Attestations 515

code update T-CUP header (thd)

Header
hmac_pg0 = T, timestamp (£s)
HMAC(K, (thd || pg0))

thd

page 0: pg0 h, = H(pg1|| h.)

page 1: pgl h, = H(pg2|| hy)

uoryesyLID — |

Q
&
page i—1: pg(i—1) hi = H(pg(i) || hi1) 2
\ r_:__/' | Y
' L | ‘g
page i: pg(i) his = H(pg(i+1)|| his2)
| | : |
| H | ! |
1 | ! |
1 | ! |
1 | ! |
page T'—1: pg(T—1) hr = H(pgT ||hmac_upd)
hmac_upd = HMAC(K, upd)
page T pgT
= HMAC(K, (pg0|| ... |[pgT))

Fig. 2. Code update and T-CUP Header with chained hashes

update and hashing the result using a one way-hash function H. Starting from
page T—2, the hash value h; is created by concatenating the data of page ¢ with
the previously cacluated hash h;y; and hashing the resulting value:

hi = H(pg(i) || hit1) - (2)

Finally, a second HMAC, which is referred to as hmac pg0 and includes the
T-CUP Header (particularly, hash h; and the timestamp) as well as the first
page (with index 0), is generated (and stored in the code update header):

hmac pg0 = HMAC(K, (thd || pg0)) . (3)

For the verification of the code update (cf. Fig. 2l left), we start with checking
the HMAC hmac pg0, which authenticates the T-CUP Header. The timestamp
is compared with the sealed reference value to check the freshness. With the hash
chain, we are able to validate the authenticity and integrity of the following parts
of the code update page by page (cf. Section E.3]).

4.2 The T-CUP Security Layer

In addition to the T-CUP Header that protects the wirelessly transmitted code
update, we also specify a T-CUP Security Layer beneath the OS (cf. Fig.[Il). This
layer protects the sensitive information stored on the CHs during a code update
and maintains the ability to access sealed data even after the code update.
The general idea behind the T-CUP Security Layer results from the need to
protect the sensitive information during a code update and preserve the trusted
system state in order to access these information after the code update. The

516 S. Wagner, C. Krauf}; and C. Eckert

reason for preserving the trusted state is that the data is sealed to the initial
trusted system state, which is changed by the code update. As a consequence,
if the information was still sealed to the old platform configuration, it could
not be unsealed after the update, which would make attestations impossible.
But obviously, if the sensitive information was unsealed before the code update
is performed, the sensor node and the attestation could be easily compromised.
That is why all sensitive information need to be sealed even during a code update.

Thus, we define the T-CUP Security Layer as a reduced platform configura-
tion for sealing data during a code update, which only considers those compo-
nents that are not affected and modified by the code update, i.e., the CRTM, the
bootloader, and the hardware components. Note that for our proof of concept
implementation we assume that (one of the components of) TOSBoot is trust-
worthy since it acts as CRTM. For real implementations, we suggest a hardware
CRTM to increase security

4.3 The T-CUP Protocol Steps

In this section, we describe the protocol steps of T-CUP in detail. The T-CUP
protocol can be divided into three phases: (P1) Initialization and Dissemination,
(P2) Validation and Preparation, and (P3) Verification and Processing. In the
first phase, the code update is generated on the base station and distributed to
CHs. In the second and third phase, CHs checks the authenticity, integrity, and
freshness, prepares for the necessary reboot, and processes the code update after
an additional verification. During the code update, all sensitive information is
sealed to the security layer. It is resealed to the new full platform configuration
after the code update is installed.

In Phase 1 (cf. Table[dl), the base station first generates the program binary
(P1.1) and then creates the T-CUP Header as described in Section 1] by set-
ting the number of pages and timestamp in the T-CUP Header (P1.2) and by
calculating the HMAC for the complete code update hmac upd, the hash chain
for the code update pages, and the HMAC for the first page hmac pg0 (P1.3 —
P1.5). After that, the code update is disseminated in the network (P1.6).

In Phase 2 (cf. Table 2l), the cluster head validates the code update (P2(a))
and prepares for the reboot (P2(b)). Thus, when the dissemination is initiated
by the base station, CH eventually receives hmac pg0 and page 0 (P2.1). To
verify the HMAC for the first page, CH first unseals the shared key Kps cn,
(P2.2), which is only possible if the node is still in a trustworthy system state:

Kps.cn, = Unseal(’ ’p) ,d¢H A KBs.cn, }P(o‘...,p)) . (4)

With the unsealed key, the cluster head can recalculate the HMAC and compare
it with the reference value hmac pg0 from the global header (P2.3):

hmac pg0 L HMAC(K s, ch;,thd || pg0) . (5)

If the values are identical, the authenticity and integrity of page 0, the head of the
hash chain, and the timestamp in the T-CUP Header is successfully validated.

T-CUP: TPM-Based Code Updates and Attestations 517

Table 1. Phase 1: Initialization on Base Station

Step Node Data Action/Description

P1l(a): Initialization

P1.1 BS binary code creates program binary

P1.2 BS #pages, sets number of pages and time-
timestamp stamp

P1.3 BS hmac upd creates a HMAC for the complete

code update with the symmetric

= MACZLZS‘CHi key Kgs,cun;

P14 BS hi creates hash values for each page

P1.5 BS hmac pg0 creates a HMAC for page 0

P1(b): Dissemination

P1.6 BS — CH; upd disseminates code update

Otherwise, the code update protocol stops. To verify the freshness of the code
update, the CH extracts the authenticated timestamp in step P2.4 and compares
it with the sealed reference value. If the extracted timestamp indicates a more
recent program binary, the current reference value is replaced with the timestamp
from the code update (after sealing it). Otherwise, the protocol aborts since the
code update is outdated.

After the validation of the T-CUP Header, CH requests the complete code
update page by page and verifies the elements of the hash chain (P2.5), which
ensure the integrity and authenticity of the included pages, by recalculating each
value and comparing it with the expected result (cf. Section FI]).

After CH has received the complete code update, it starts preparing for the
reboot in order to program the new image by sealing the shared key Kpg cn, to
the security layer in step P2.6:

{KBS,CHi};z;mw) = Seal(Pé?}L..,r)’ GCHiaKBS,CHi)) (6)
CH also seals the HMAC for the complete code update to the reduced platform
configuration (P2.7) to be able to verify the image after the reboot:
ﬁi "y = Seal(Pg)ﬁi"’r),eCH",hmac upd) . (7)

{hmac upd}jj
C.

H,

The second HMAC hmac upd allows for an efficient verification of the complete
code update again after the reboot, because it 1) is already implicitly authenti-
cated, 2) requires only one calculation instead of calculating again all values of
the hash chain, and 3) occupies less space. Thus, hmac upd effectively preserves
the effort already invested in authenticating and verifying the complete hash
chain page by page.

As the final step of the preparation, CH reseals all sensitive information m,
e.g., the attestation values such as a symmetric key, to the security layer (P2.8):

518 S. Wagner, C. Krauf}; and C. Eckert

Table 2. Phase 2: Validation and Preparation

Step Node Data Action/Description

P2(a): Validation

P2.1 CH; hmac pg0, page 0 receives page 0 and hmac pg0
P2.2 CH; Kpgs,cn, unseals the symmetric key

P23 CH; hmac pg0 checks the HMAC

P24 CH; timestamp checks timestamp

P25 CH; upd receives complete upd page by page

and validates each hash value

P2(b): Preparation

P2.6 CH; {KBs,cH, } reseals the symmetric key to the se-

curity layer

P2.7 CH; {hmac upd}® (0 ~ seals the HMAC for the complete
code update to the security layer

P2.8 CH; {m};/(oi) reseals the sensitive information to
O o, the security layer
= {m}%, 0....n

= Seal(PéOI}lf") eCH: Unseal(Pg}}‘i”’p),dCHi,{m}eCHi »)) -

After resealing, CH reboots and executes the bootloader.

In Phase 3 (cf. Table B]), CH verifies the code update again to check if it
is still unmodified (P3(a)) and processes the verified update (P3(b)). For the
verification, the CRTM starts with measuring the security layer to create a
reduced platform configuration P/Cg?fi‘”’r) (P3.1). This platform configuration has
to match the platform configuration, which has been specified to seal the shared
key before the reboot, in order to unseal it (P3.2):

Kps,cm, = Unseal(Ppgy ", d“ {Kps, om ,(0 ") - (9)

.....

That is only the case if the security layer is still unmodified, i.e., if the equation
P'CEEI; oT) = Pé’ “") holds. CH also unseals the HMAC for the complete update
(P3.3), where the same condition applies:

hmac upd = Unseal(P/(O or) | gOH: , {hmac upd}”l,(0 _____) - (10)
For the verification of the code update stored in memory, a fresh HMAC is
calculated and compared with the unsealed HMAC reference value:

hmac upd = MA udeS‘CHi i HMAC(K gs,cn,,upd) . (11)

Once the trustworthiness of the security layer and the code update is verified,
the bootloader copys the binary to the program memory (P3.5). After that,

T-CUP: TPM-Based Code Updates and Attestations 519

Table 3. Phase 3: Verification and Processing

Step Node Data Action/Description

P3(a): Verification

P3.1 CH; Pg,o{f,“"r) measures the security layer

P3.2 CH; K le, CH; unseals the symmetric key

P33 CH MACL 2% unseals the HMAC

P3.4 CH; upd, MA Cfpis’wi uses the symmetric key to compare

the unsealed MAC with a freshly
calculated HMAC of the upd

P3(b): Processing
P3.5 CH; upd copies update to program memory
P3.6 CH; Pé(g;“"p) measures remaining components for

a full platform configuration
CH;

P3.7 CH; {KBs,CHi};(O ,,,,, ») CH; seals Kps,cu, to the new
CH; trusted full platform configuration
P3.8 CH; {m};c,(}g’ ,,,,, " reseals the sensitive information to
CHi o the new trusted full platform con-
CH;
- {m}P’C(,‘; ») figuration P’

it measures the remaining software components and creates the full platform
configuration, which includes the OS and application components. Using this
new trusted full platform configuration, CH finally reseals the shared symmetric
key (P3.7) as well as all other sensitive information (P3.8).

5 Implementation

As proof of concept, we implemented T-CUP on IRIS sensor nodes, which we
connected with Atmel AT97SC3204T TPMs via I?C, by extending the current
de-facto standard code dissemination protocol Deluge [7] and the boot loader
TOSBoot from TinyOS [16]. The T-CUP Image Format extends the specifica-
tion of a Deluge image with the cryptographic information of the T-CUP Header
to enable the verification of the authenticity, integrity, and freshness of the dis-
tributed code update. Based on the T-CUP Image Format specification, we have
implemented the T-CUP protocol as (1) an interface script for the base station
and (2) T-CUP components for CHs. The new T-CUP interface script tos-tcup is
based on the Deluge interface script tos-deluge and can be used to initialize CHs
prior to deployment, i.e., the cryptographic keys are generated and symmetric
keys and initial timestamps are sealed to the initial trusted platform configura-
tion. The T-CUP components for CHs consists of the TPM driver and extended
Deluge and TOSBoot components for the dissemination and reprogramming.

6 Security Discussion

In this section, we evaluate the security of T-CUP. We first discuss an adversary
performing attacks via the wireless channel and then an adversary that physically
tampers with a CH (cf. Section B1]).

520 S. Wagner, C. Krauf}; and C. Eckert

To compromise a CH via wireless channel, an adversary can try to send his own
malicious code update to CH. Lets assume that an adversary is able to do this. A
code update which is accepted by CH must contain a valid hmac upd. Since we
assume an adversary is not able to break cryptographic algorithms (cf. Section
[31), the adversary must be in possession of the symmetric key shared between
BS and CH. To get access to the required key, the adversary must have either
compromised BS or CH. However, this is a contradiction to the assumption that
BS is trustworthy and that all keys on a CH are protected by the TPM. Thus,
an adversary cannot inject his own malicious code update. The same applies to
manipulations of eavesdropped valid code update sent by BS.

An adversary could also try to replay and install a valid old code update which
is known to possess certain weaknesses, e.g., possible buffer overflows. However,
CH verifies the freshness by comparing the timestamp in the header, which is
protected by hmac pg0, with the sealed reference value. Thus, an adversary
would have to manipulate that timestamp and create a valid hmac pg0 which is
a contradiction to our assumptions already mentioned above.

Now we consider the case where an adversary has physical access to CH
and tries to compromise it. The adversary can try to manipulate the software
components of a CH (cf. Fig.[I]) to get access to the cryptographic keys. However,
we assume that runtime attacks such as buffer overflows are not possible. Thus,
an adversary has to install his malicious code and reboot CH. But after the
reboot, the platform configuration has changed and the TPM denies access to
the sealed cryptographic keys preventing a successful compromise.

Instead of manipulating the installed software, the adversary might tamper
with a code update stored in the flash memory before it gets installed. However,
CH verifies hmac upd before the code update is installed. Thus, an adversary
would have to forge the correct HMAC for the manipulated code update. But
this would also require the adversary to break cryptography, compromise BS, or
access TPM-protected keys which is contradictory to our assumptions.

The adversary might also try to exploit the (re)sealing to different platform
configurations and the security layer. First, keys are sealed to the initial platform
configuration which is assumed to be trustworthy. Thus, an adversary cannot
perform successful manipulations during the unsealing and resealing of the keys
to the security layer before a new update is installed. After a reboot, only the
integrity of the security layer, including the CRTM and all necessary security
services such as the HMAC engine, is checked. Thus, an adversary could the-
oretically manipulate the other software components above the security layer,
i.e., OS and application components. However, this would have no effect, be-
cause the new trusted code update (since hmac upd is valid) is installed by the
security layer and overwrites the malicious code. Thus, also the resealing to the
new platform configuration is performed when CH is in a trustworthy state.

7 Conclusion

In this paper, we presented T-CUP, a TPM-based code update protocol to secure
distributed program images while still enabling attestation protocols based on

T-CUP: TPM-Based Code Updates and Attestations 521

binding keys to a trusted initial platform configuration. T-CUP provides mech-
anisms to validate the authenticity, integrity, and freshness of the wirelessly
transmitted code update. To enable attestations, we introduced a new “virtual”
security layer beneath the OS where attestation values are temporarily bound
to during an update. Our protocol is based on efficient cryptographic primi-
tives such as hash functions and MACs to avoid computational intensive digital
signatures and unnecessary large messages. We also presented the feasibility of
T-CUP in a proof of concept implementation and discussed the security of our
protocol. T-CUP can handle an adversary attacking via the the wireless channel
as well as an adversary which directly tampers with a CH using physical access.

References

1. Akyildiz, I.LF., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 40(8), 102-114 (2002)

2. Arumugam, M.U.: Infuse: a TDMA based reprogramming service for sensor net-
works. In: SenSys (2004)

3. Deng, J., Han, R., Mishra, S.: Secure code distribution in dynamically pro-
grammable wireless sensor networks. In: IPSN (2006)

4. Dutta, P.K., Hui, J.W., Chu, D.C., Culler, D.E.: Securing the Deluge Network
Programming System. In: IPSN (2006)

5. Hu, W., Corke, P., Shih, W.C., Overs, L.: secFleck: A Public Key Technology
Platform for Wireless Sensor Networks. In: Roedig, U., Sreenan, C.J. (eds.) EWSN
2009. LNCS, vol. 5432, pp. 296-311. Springer, Heidelberg (2009)

6. Hu, W., Tan, H., Corke, P., Shih, W.C., Jha, S.: Toward trusted wireless sensor
networks. TOSN 7(1) (2010)

7. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: SenSys (2004)

8. Kim, D.H., Gandhi, R., Narasimhan, P.: Castor: Secure code updates using sym-
metric cryptosystems. In: Real-Time Systems Symposium (2007)

9. KrauB}, C., Stumpf, F., Eckert, C.: Detecting Node Compromise in Hybrid Wire-
less Sensor Networks Using Attestation Techniques. In: Stajano, F., Meadows, C.,
Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 203-217. Springer,
Heidelberg (2007)

10. Kulkarni, S.S., Wang, L.: MNP: Multihop Network Reprogramming Service for
Sensor Networks. In: ICDCS (2005)

11. Lamport, L.: Password authentication with insecure communication. Communica-
tions of the ACM 24(11), 770-772 (1981)

12. Lanigan, P.E., Gandhi, R., Narasimhan, P.: Secure dissemination of code updates
in sensor networks. In: SenSys (2005)

13. Lee, S., Kim, H., Chung, K.: Hash-based secure sensor network programming
method without public key cryptography. In: Worksh. on World-Sensor-Web (2006)

14. Liu, A., Oh, Y.-H., Ning, P.: Secure and dos-resistant code dissemination in wireless
sensor networks using seluge. In: IPSN (2008)

15. Trusted Computing Group. Trusted Platform Module (TPM) Specifications,
https://www.trustedcomputinggroup.org/specs/TPM

16. University of California Berkeley: TinyOS, http://www.tinyos.net/

https://www.trustedcomputinggroup.org/specs/TPM
http://www.tinyos.net/

	T-CUP: A TPM-Based Code Update Protocol
Enabling Attestations for Sensor Networks
	Introduction
	Related Work
	Setting and Notation
	Setting
	Notation

	Protocol Description
	The T-CUP Header
	The T-CUP Security Layer
	The T-CUP Protocol Steps

	Implementation
	Security Discussion
	Conclusion
	References

