
Secure Configuration of Intrusion Detection

Sensors for Changing Enterprise Systems

Gaspar Modelo-Howard, Jevin Sweval, and Saurabh Bagchi

Dependable Computing Systems Laboratory, Purdue University
465 Northwestern Avenue, West Lafayette, IN 47907, USA

{gmodeloh,jsweval,sbagchi}@purdue.edu

Abstract. Current attacks to distributed systems involve multiple steps,
due to attackers usually taking multiple actions to achieve their goals.
Such attacks are called multi-stage attacks and have the ultimate goal
to compromise a critical asset for the victim. An example would be com-
promising a web server, then achieve a series of intermediary steps (such
as compromising a developer’s box thanks to a vulnerable PHP module
and connecting to a FTP server with gained credentials) to ultimately
connect to a database where user credentials are stored. Current detec-
tion systems are not capable of analyzing the multi-step attack scenario.
In this document we present a distributed detection framework based
on a probabilistic reasoning engine that communicates to detection sen-
sors and can achieve two goals: (1) protect the critical asset by detecting
multi-stage attacks and (2) tune sensors according to the changing envi-
ronment of the distributed system monitored by the distributed frame-
work. As shown in the experiments, the framework reduces the number
of false positives that it would otherwise report if it were only considering
alerts from a single detector and the reconfiguration of sensors allows the
framework to detect attacks that take advantage of the changing system
environment.

Keywords: Distributed intrusion detection, multi-stage attacks,
Bayesian reasoning, sensor reconfiguration.

1 Introduction

Current computer attacks against distributed systems involve multiple steps,
thanks to attackers usually taking multiple actions to achieve their ultimate
goal to compromise a critical asset. Such attacks are called multi-stage attacks
(MSA). As today’s enterprise systems are structured to protect their critical as-
sets, such as, a mission-critical service or private databases, by placing them in-
side the periphery, MSAs have gained prominence. Examples include the breach
of a large payment processing firm [1] and the breaches published by the U.S.
Department of Health & Human Services [24]. MSAs are characterized by pro-
gressively achieving intermediate attack steps and progressing using these as
stepping stones to achieve the ultimate goal(s). Thus, prior to the critical asset
being compromised, multiple components are compromised. Logically, therefore,

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 39–58, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

40 G. Modelo-Howard, J. Sweval, and S. Bagchi

to detect MSAs, it would be desirable to detect the security state of various
components in an enterprise distributed system—the outward facing services as
well as those placed inside the periphery. Further, the security state needs to
be inferred from the alerts provided by intrusion detection sensors (henceforth,
shortened as “sensors”) deployed in various parts of the system.

In the context of MSAs against distributed systems, this is challenging be-
cause sensors are designed and deployed without consideration for assimilating
inputs from multiple detectors to determine how an MSA is spreading through
the protected system. Prior work has shown that it is possible to determine the
choice and placement of sensors in a systematic manner and at runtime, perform
inferencing based on alerts from the sensors to determine the security state of
the protected system components [7]1. In achieving this, the solutions have per-
formed characterization of individual sensors prior to deployment, in terms of
their capability to detect specific attack step goals. At runtime, inferencing has
been performed on the basis of the evidence—the alerts from the sensors—to
determine the unobservable variables—the security state of the different compo-
nents of the protected system. The sensors may be either network-based sensors,
which observe incoming or outgoing network traffic, or host-based sensors, which
observe activities within a host.

However, no existing solution has handled the various sources of dynamism
that are to be expected in large-scale protected systems deployed in enterprise
settings. The underlying protected system itself changes with time, with the
addition or deletion of hosts, ports, software applications, or changes in connec-
tivity between hosts. A static solution is likely to miss new attacks possible in the
changed configuration of the protected system as well as throw off false alarms
for attack steps that are just not possible under the changed configuration. The
nature of attacks may also change with time or the anticipated frequencies of
attack paths may turn out to be not completely accurate based on attack traces
observed at runtime. Existing solutions cannot update their ”beliefs” in an ef-
ficient manner and are therefore likely to be less accurate. Finally, when the
compromise of a critical asset appears imminent, fast reconfiguration of existing
sensors (such as, turning on some rules) may be needed to increase the certainty
about the security state of the critical asset. Our contribution in this paper
is to show how the choice and placement of sensors can be updated through
incremental processing when the above kinds of dynamism occur.

The solution we propose in this paper calledDistributed Intrusion and Attack
Detection System (DIADS) is to have a central inferencing engine, which has a
model of MSAs as attack graphs. DIADS creates a Bayesian Network (BN) out
of an attack graph and observable (or evidence) nodes in the attack graph are
mapped from sensor alerts. It receives inputs from the sensors and performs in-
ferencing to determine whether a rechoosing or replacement of sensors is needed.
Further, it can reconfigure existing sensors, by turning on or off rules or event

1 In this paper, we will refer to the distributed enterprise system that is being protected
as the protected system and the set of sensors embedded in various components of
the protected system as the sensor system.

Secure Configuration of Intrusion Detection Sensors 41

(a) Time to match a packet (b) Diagram for DIADS

Fig. 1. (a) Results from curve fitting the data points from the Snort experiment. (b)
General block diagram of the proposed DIADS. A wrapper (software) is used to allow
communication from the sensors (circles labeled D1 to D4) and firewall to the reasoning
engine and viceversa (only for sensors).

definitions based on the changed circumstances. Thus, the inferencing engine has
a two-way communication path with the sensors. DIADS determines changes to
the protected system by parsing changes to firewall rules at network points as
well as at individual hosts and updates the BN accordingly. If on the basis of
current evidence, it determines that a critical asset (also synonymously referred
to as a crown jewel) will imminently be compromised, it determines what further
sensors close to the asset should be chosen, or equivalently, what further rules
in an already active sensor should be turned on.

One may think that a perfectly acceptable, and a much simpler, solution is
to activate all the available sensors and turn on all the available rules at any
sensor. Thus, there will be no reason to react to dynamic changes of the three
types mentioned above. However, this will impose too high an overhead on the
protected system in terms of the amount of computational resources that will be
required and the frequency of false alerts that will be generated. For example, we
determine empirically that for the popular Snort IDS [19] turning on the default
set of rules will cause it to potentially take 85 seconds to match a single packet
(corresponding to 9700 rules in Figure 1a). Therefore there is the motivation
to dynamically reconfigure the sensors according to the activity observed in the
network.

To sum up, in this paper we make the following contributions:

1. We design a distributed intrusion detection system that can choose and place
sensors in a distributed system to increase the certainty of knowledge about
the security state of the critical assets in the system.

2. We imbue our solution with the ability to evolve with changes to the pro-
tected system as well as the kinds of attacks seen in the system.

3. Through domain-specific optimizations, we make our reasoning engine fast
enough that it can perform reconfiguration of existing sensors while a multi-
stage attack (MSA) is coursing through the protected system.

42 G. Modelo-Howard, J. Sweval, and S. Bagchi

We structure the remainder of this paper as follows. In Section 2 we review
previous work on distributed intrusion detection systems (DIDS), MSA, and
probabilistic approaches to intrusion detection. Section 3 states the problem
studied and the threat model considered. Section 4 presents the proposed DI-
ADS framework to detect MSAs and to reconfigure detection sensors, including
a description of the different components and algorithms used. In Section 5
we provide a description of the experiments performed along with the results.
Finally, Section 6 provides conclusions and future work.

2 Related Work

There has been previous work on developing and proposing DIDSs. Early ex-
amples of these systems are [20], [17], [26], and [21]. A starting point for DIDSs
is the collaboration between Lawrence Livermore National Labs, U.S. Air Force
and other organizations [20]. It represented the first attempt to physically dis-
tribute the detection mechanism, while centralizing the analysis phase in a single
component, running a rule-based system.

Another distributed IDS is EMERALD [17]. It is a signature- and anomaly-
based distributed IDS with statistical analysis capabilities (rule-based and
Bayesian inference). The communication among sensors and monitors is struc-
tured in a hierarchy. NetSTAT [26] is a network-based IDS modeling intrusions
as state transition diagrams and the target network as hypergraphs. By using
both models, the system prioritizes which network events to monitor. AAFID
[21] is a distributed framework based on software agents to collect and analyze
data and used as a platform to develop intrusion detection techniques. An inter-
esting policy-based proposal based on the popular Bro IDS [15] was presented
in [6], using intrusion detection sensors in a distributed, collaborative manner.

Unfortunately there has not been much discussion about DIDS in the last few
years so the impact of more complex distributed systems on the detection capa-
bilities of IDS as well as the evolution of MSAs has been somewhat neglected.
Previous work has primarily concentrated on increasing the accuracy of IDSs by
improving their true positive (TP) rate on single step attacks. Additionally, it
does not consider the dynamic nature of the protected system, one of our focus
areas.

Previous work has considered MSAs [9], [10] but within a limited scope. [9]
proposes an offline-method to correlate alerts using an attack graph, to improve
detection rate, while reducing false positive (FP) and false negative (FN) rates.
It is a rule-based method and does not consider a probabilistic approach. [10]
presents a formal conceptual model based on Interval Temporal Logic (ITL) to
express the temporal properties of MSAs.

A principal component for our framework is an attack graph, from which to
create a corresponding Bayesian network. An example of previous work on using
attack graphs for intrusion detection is found in [4]. Other works have previously
focused on using attack graphs to evaluate (offline) the vulnerability state of the
computer system [27].

Secure Configuration of Intrusion Detection Sensors 43

Bayesian networks have been used for intrusion detection, examples include
[7] and [5]. [7] models the potential attacks to a target network using a Bayesian
network to determine (off-line) a set of detectors to protect the network. [5]
presents a method based on Dynamic Bayesian networks to include the temporal
properties of attacks in a distributed system.

Alert correlation is an area related to intrusion detection, that has received
the attention of the research community. Schemes in this area can be classified
under two basic groups: schemes that require patterns of actual attacks and/or
alert interdependencies, and schemes that do not. Members of the first group
include [11], [12], and [13]. Our proposed framework, can be classified as part
of the first group. The second group of correlation schemes works without any
specific knowledge of attacks. Examples include [25], [18].

In [11], the authors present a formal framework for alert correlation that con-
structs attack graphs by correlating individual alerts on the basis of the prerequi-
sites and consequences manually associated to each alert. [12] presents techniques
to learn attack strategies from correlated attack graphs. The basic idea is to com-
pute how similar different attack graphs are by using error tolerant subgraph iso-
morphism detection. In [13] the authors built on the results from the previous
two papers, integrating two alert correlation methods: correlation based on pre-
requisites and consequences of attacks and those based on similarity between alert
attribute values. They used the results to hypothesize and reason about single at-
tacks possibly missed by the IDSs. There are several similarities between their
approach and ours. We both represent attack scenarios as graphs, assume attack
steps are usually not isolated but rather part of an MSA. Still, there are also sev-
eral differences between their alert correlation approach and ours. In a nutshell,
our approach is adaptive, provides a larger visibility of the target network, follows
a probabilistic model, and works online, while theirs is not.

3 Problem Statement and Threat Model

In this paper, we answer two fundamental questions:

(1) How to update the configuration of sensors in an enterprise distributed sys-
tem (i.e., one with many hosts and software applications and hence attack injec-
tion points) based on updated information that is obtained after the protected
system and the sensor system have been deployed.
(2) When the imminent threat to a critical asset(s) is high, how to reconfigure
existing sensors (such as, by activating new rules) to increase confidence in the
estimate of the security state of the critical asset(s).

In terms of the model for the protected system, all the components fall target
network under a single administrative domain and therefore, there is complete
trust between the owners of the different assets.

The profile of the attackers includes highly motivated individuals that might
have an economical incentive to compromise the distributed system. Attackers
follow a multi-step approach to compromise a resource or acquire data. It could
start with some reconnaissance, followed by exploitation of different hosts or

44 G. Modelo-Howard, J. Sweval, and S. Bagchi

services in the target network. This description also fits the cases where attack
sources are botnets and malware, that does not include human intervention. We
do not address intruders who steal data by physically connecting to a host (for
example, an insider’s attack using a USB memory stick).

In our framework, one or more critical assets are identified in the protected
system by the system owner and become the main protection objective of our
DIADS framework. Each critical asset is represented in the BN as a leaf node.
An example of a critical asset is a database that contains personally identifiable
information (PII). The above statement does not preclude having sensors that
detect attacks at other assets (such as, at a network ingress point), but our
inferencing uses such sensors to provide evidence of attacks leading up to a
potential compromise of the critical assets. Also, our DIADS framework is not
attempting to create better intrusion detection sensors; rather it is seeking to
use existing sensors intelligently to obtain a better estimate of the security state
of critical assets in an enterprise distributed system.

We consider only multi-stage attacks (MSAs) to distributed systems. An im-
portant example is an MSA to a three-tier system (web / application logic /
database) which might allow an attacker to launch HTTP-based attacks to ul-
timately reach the database and the information stored in it.

4 DIADS Framework

In this document we propose a distributed intrusion detection framework that
includes two components: (1) a probabilistic reasoning engine and (2) a network
of detection sensors to detect various stages of MSAs, as shown in Figure 1b. The
second component comprises off-the-shelf sensors, augmented with a standard
wrapper that allows the sensor to send alerts to the reasoning engine and receive
commands back from the reasoning engine. The architecture is able to alert
intrusion events related to potential MSAs and determine if any critical asset has
been compromised, or is under imminent likelihood of being compromised based
on current evidence of the spread of the attack. It also allows for reconfiguration
of sensors according to changes to the protected system that is being monitored
by the DIADS. Through this architecture, the DIADS can reduce the number of
false positives that it would report if it were independently considering each step
of the MSA. A block diagram of the proposed architecture is shown in Figure 2.

The reasoning engine represents different possible MSAs as a single Bayesian
network, which is updated according to events reported by the detection sensors
and the changing network configuration. The probabilistic engine can also re-
quest more information from sensors when necessary. The reasoning engine can
estimate the security state of the critical assets given partial information about
multi-stage attacks and from imperfect or noisy sensors.

The reasoning engine also collects background information about the dis-
tributed system so the model can be updated. As a starting point, we should
consider the network and policy configurations stored in a firewall. The fire-
wall can be at a network ingress-egress point as well as at individual hosts. The

Secure Configuration of Intrusion Detection Sensors 45

Fig. 2. Diagram of the proposed framework, providing details on the components of
the reasoning engine

firewall configuration indicates which components are allowed to communicate
with which components and thus has an important determining effect on the
structure of the attack graph, and consequently, on the structure of the BN.

4.1 Probabilistic Reasoning Engine

To build our reasoning engine, we use Bayesian Network (BN), which is a popular
probabilistic graphical model. It is a macro-language, representing joint distri-
butions compactly by using a set of local relationships between random variables
and specified by a graph. A key point is that the missing edges in the graph im-
ply the conditional independence between the corresponding nodes. BN captures
the characteristic in real-world data of locality of influence, the idea that most
variables are influenced by only a few others. [7] shows the implications of this.

Bayesian networks combine graph theory with statistical techniques to model
MSA scenarios. In our framework, we use an attack graph to create the struc-
ture of the BN, a directed acyclical graph. Each node in the graph represents a
vulnerability, more specifically, a 3-tuple: host × port × vulnerability existing in
the target network. This means that the service running on that host and listen-
ing on that port has that vulnerability. The edges between nodes represent the
direct precondition relationship between the attack steps. The BN also includes
nodes to represent intrusion detection sensors. An edge A → D from an attack
step node to a sensor node represents the possibility of the sensor detecting that
attack step, with the CPT quantifying the accuracy and precision of the detec-
tion. Each node is parametrized by a set of probability values and represented
as a conditional probability tables (CPT). Proposed in previous work [7] and also
suggested by [5], the Bayesian network representation can unify the information
available from multiple sensors, in order to determine if an MSA is occurring.

46 G. Modelo-Howard, J. Sweval, and S. Bagchi

��������	

�	���

���� ���	
�

��������

������

���� ���	
�

�����������

�����������

���������

������

������������

����	��
���� ���	
�

����������

���� ���	
�

��������

������

Fig. 3. The framework uses four algorithms, three to update the reasoning engine and
one to reconfigure the detection sensors

There are several benefits of using Bayesian networks. First, it can be a more
appropriate representation of reality than deterministic approaches, accounting
for several sources of uncertainty—noisy sensors, unknown intentions of the ad-
versary affecting the path of the MSA, and unknown difficulty of transitioning
from one attack step node to the next. A potential drawback of probabilistic
models is the combinatorial explosion faced when computing a joint probability
distribution. In our work, we address this issue by using the Noisy-OR model [16]
to represent the CPTs. Further details are provided in section 4.5. Our DIADS
framework is composed of four algorithms, which are schematically shown in
Figure 3. Pseudo-code for algorithms 1, 2, and 4 are provided in the Appendix.

4.2 Algorithm 1: BN Update to Structure Based on Firewall Rule
Changes

The algorithm produces a list of nodes and edges that should be added to (Va, Ea)
or deleted from (Vd, Ed) the Bayesian network to represent changes to the pro-
tected system. We use changes to firewall rules as a proxy for the changes to the
protected system. The firewalls can be at a network ingress-egress point or at
individual hosts in the system.

The message passed from the Firewall to the reasoning engine has the fol-
lowing structure: message = < number, srcIPaddr, destIPaddr, portnumber,
action, ruletype > where number refers to the order of the rule in the firewall
table. srcIPaddr and destIPaddr are the IP addresses for the source and desti-
nation of communication; portnumber is the TCP or UDP port number (16-bits
in IPv4); action is one of three options: allow, deny or drop; and ruletype refers
to the change made to the rule table: adding a new rule, modifying an existing
rule or deleting an existing rule. For the purposes of our experiments, we only
considered firewall rule tables composed of allow rules followed by a denyall
rule. So effectively, the rule table creates a policy where allowed communication
is explicitly defined and everything else not defined, is denied.

The algorithm can be divided into four parts: how to select the nodes and
edges to be added, if the rule has type add (lines 1 to 11); how to select the nodes
and edges to be deleted, if the rule has type delete (lines 13 to 29); checking for

Secure Configuration of Intrusion Detection Sensors 47

�

���� ����	
� �
�������� �	����

�� ���� �
����� ������

�� �
�� �������� ������

�� �
�� ������ ������

�� ��� �
����� ������

 � !"� �������� ������

�� !"� ������ ������

#� ���� $%!���� ������

�� ���� ���� �
���

(a) Firewall rule table (b) Bayesian network

Fig. 4. Impact of changes to a firewall rule. A new rule (No.7) in the firewall table
changes the topology of the Bayesian network. Two of the four new edges, shown
as dashed lines, will be removed by the algorithm since they lead to a cycle. A BN
node is actually host × port × vulnerability, but here for simplicity, we have a single
vulnerability per service (i.e. per host × port).

the resulting changes to the BN to not introduce cycles and to confirm that the
resulting nodes are part of a path to the nodes representing the critical assets
(lines 31 to 37); and finally, the converting the destIPaddr:port nodes into their
corresponding address:port:vulnerability nodes in the BN.

When a rule has type add or delete, the algorithm checks if the source and
destination addresses are new to the BN or already exist. If a node exists, then
the edges shared with its parents (line 4) or its children (line 7) should be
included to the set of edges to add (Ea). Also, the edge explicitly defined by the
rule is included in (Ea). If a node is new, then it should be added to the set of
nodes to add (Va). A similar approach (but with opposite results) is used for
case when a rule has type delete.

The algorithm then checks the nodes and edges in the resulting BN by running
Depth First Search (DFS) to determine if the nodes have a path to the critical
assets. If the nodes do not, then they are pruned. DFS also checks if the addition
creates any cycles and if so, the back edges are deleted. The first is an important
optimization focusing the attention of DIADS to the critical assets and limiting
the growth of the BN.

Finally, the algorithm transforms the nodes in the sets Va and Vd to nodes in
the BN. It does this by doing a lookup in a matrix R that maps the host × port to
the vulnerability. It acquires the raw data for this from the National Vulnerability
Database (NVD) [23], a public repository of vulnerability management data.

As an example, consider a distributed system connected to the Internet, with
three computers: a web server (accessible from the Internet), a database server
and a desktop computer. The database server and the desktop computer are
connected to the same subnet, while the web server is connected to a separate

48 G. Modelo-Howard, J. Sweval, and S. Bagchi

Fig. 5. Example for algorithm 02: initialization of BN CPT. To add a new parent (C)
to an existing node (A), we create the marginal probability Pr(C) from its CVSS (base
metric) value and use it to update the new CPT of A.

subnet (DMZ). All computers are protected by a network-based firewall and the
rule table is shown in Figure 4a. A Bayesian network can be built from the table,
as shown in Figure 4b. The critical asset is the database server and for simplicity
purposes, we have assumed one existing vulnerability per host.

If the rule any −− > FTP:21 allow is now added to the network firewall
because a new FTP server has been deployed and connected to the DMZ network,
the resulting Bayesian network is shown in Figure 4b. A new node, Vuln FTP, is
added and will have five edges. Four are inbound, created from the added rule
and one outbound, from rule No. 1 in the table. The inbound edges from nodes
Vuln Web and Vuln DB are not included in the final Bayesian network as they
make the graph cyclical.

4.3 Algorithm 2: Initialization of BN CPTs Based on Firewall
Changes

Algorithm 2 produces a list of CPTs for the changed nodes, i.e., nodes for which
there is an increase or reduction in the number of parents of the nodes, according
to the output from Algorithm 1. To update the CPT, we use the base metric
value of the CV SS score [3] of the node (corresponding to a vulnerability) to be
added or removed and divide it by 10 to use it as its marginal probability value.
Then if the resulting CPT is for an existing node, we take max(newProb(vi) +
Δ, oldProb(vi)). Figure 5 shows an example of how we use the formula.

In figure 5, first a new parent node C is added to an existing node A in the BN.
We take the base metric score (7) of the vulnerability corresponding to node C
and divide it by 10. Then use the formulamax(Prob(C)+Δ, oldProb(A|previous
evidence)) to create the new CPT. In our experiments, we use Δ = 0.05. Figure
5 also shows the CPT when node C is later removed. The base metric score of
the other parent node (B) is used to update the CPT.

4.4 Algorithm 3: BN Update of CPT Based on Incremental Trace
Data

The alerts received by the reasoning engine from the individual sensors are used
to update the CPTs in the Bayesian network in an incremental manner. To

Secure Configuration of Intrusion Detection Sensors 49

achieve this, this algorithm uses the set of alerts received during a window of
time and the matrix R, that maps the existing vulnerabilities in the system to
their corresponding hosts and ports. The output of the algorithm is the set of
CPTs with the updated values.

The algorithm uses a popular and powerful model known as Noisy-OR [16]
to represent each CPT. Noisy-OR allows us to specify the CPT of a node with
n parents, using with n+ 1 parameters as opposed to 2n for binary nodes. This
prevents the exponential growth experienced by the CPT of a node when the
number of parents (n) is large. The Noisy-OR model assumes that effect of
each parent on the CPT of the edge to the child node (vi) is independent from
that of the other parents and is sufficient to produce the effect (represented by
the child node) in the absence of all other parents. An additional parent node is
added to capture all other causes that were not modeled explicitly. The marginal
probability of this node is 1− p0. Then the CPT can be built with the following
formula, where C represents a combination of the values for the parents of the
child node:

Prob(vi|C) = 1−(1−p0)
∏

A=parent(vi)∈C

(1− Prob(vi|A = T,Others = F)

1− p0

)
(1)

4.5 Algorithm 4: Update Choice of Sensors Based on Runtime
Inference

The final algorithm of our framework is used to reconfigure the detection sensors.
This includes adding and removing sensors, as well as reconfiguring existing ones.
The high level objective is to reduce the uncertainty of knowing if the critical
asset has been achieved or not. The algorithm works by looking at the alerts
received and uses them as evidence to compute the posterior probability of each
Bayesian network node that corresponds to the critical asset.

The first step of the algorithm (line 1) is to compute the posterior probability
for the critical asset, given the evidence received from the currently enabled
sensors in the system. If the value is larger than a threshold (determined by
the system administrator), this is taken as indication that the critical asset
is likely to be compromised and therefore greater certainty is needed in the
determination of the security state. Therefore, the algorithm measures (lines 3
and 4) the impact of candidate sensors, which are close to the detected alerts
and the critical asset. A radius can be set a priori in terms of the number of
edges away from a particular node to determine the candidate set of sensors.
Previous work [7] has shown that the effect of a sensor on a Bayesian network
node fades beyond 2-3 hops and thus this restriction appears reasonable.

The algorithm determines a new set of detectors by using the Fully Polyno-
mial Time Approximation Scheme (FPTAS) presented in [8] for the problem of
determining the placement of intrusion detection sensors. The same cost bound
is maintained which will prevent the algorithm from blissfully adding new sen-
sors. This problem has been mapped to the 0-1 Knapsack problem for which a

50 G. Modelo-Howard, J. Sweval, and S. Bagchi

Fig. 6. Connectivity graph for testing scenario, showing the TCP ports enabled for
communication between different hosts. The shaded nodes represent the critical asset
(databases) in the protected system.

dynamic programming solution (FPTAS) exists that runs in pseudo-polynomial
time (running time scales up as the solution approaches the optimal). The algo-
rithm finishes by comparing the set of current detectors with the new set. The
delta between the sets indicates the set of detectors to be disabled or enabled,
which is output by the algorithm.

5 Experiments and Results

5.1 Experimental Setup

For our experiments, we used attacks against a real-world distributed system
which is part of an NSF Center at our university and serves content and simula-
tion tools for an engineering domain for thousands of users. The system includes
fifteen hosts that include two environments, one for production and another for
development of applications and staging prior to moving them to the production
environment. Each environment includes a web server, an application server and
a database server. A team of developers’ and consultants’ computers have access
to subsets of both environments. Communication between all hosts is controlled
by firewall rules at each host. The corresponding connectivity graph is shown in
Figure 6.

In our experiments, the database servers are the critical assets to protect. A
strong motivation to pick the databases is their role to store critical information
for the organization. We created a Bayesian Network (BN) from the distributed
system by first generating a list of the vulnerabilities found by the OpenVAS [14]
vulnerability scanner on servers and client machines. Each vulnerability was then
mapped to a node in the BN by associating it to the host and service(port) where
the vulnerability was found. Finally, the nodes were connected according to the
connectivity information for the distributed system. The BN had 345 nodes and

Secure Configuration of Intrusion Detection Sensors 51

1948 edges. We then pruned the BN to only include high risk vulnerabilities,
according to OpenVAS, as these ones are the primary vectors used by attackers
to compromise systems. The final BN had 90 nodes and 582 edges.

We provide comparative results between DIADS (our algorithms presented
in this paper) and a static and heuristic-driven choice of sensors. All results are
presented as Receiver Operating Characteristics or ROC curves [22]. The curve is
a graphical plot of the tradeoff between true positive rate (TPR, detection rate)
and the false positive rate (FPR, false alerts) for a detector. The different points
in the ROC curves are generated by varying the threshold for the probability
value for the BN nodes corresponding to the critical assets.

We had a total of 18 possible sensors; 3 sensors for each of the web server,
application server, and database server, in both the development and the pro-
duction environments. They are all generic sensors with signatures customized to
detect the class of attack into which the corresponding (vulnerability) node can
be categorized. For all experiments, for both baseline and DIADS, we constrain
the algorithms to pick a set of 6 from 18 possible detectors.

It is important to note that DIADS’ goal is to improve the performance of
a set of detectors, by considering temporal information (i.e. when detectors are
sending alerts about a progressing attack or when changes occur to the dis-
tributed system). For our experiments, we defined detectors with adequate but
not perfect performance (in terms of TP and FP). It is not our goal to improve
the performance of individual detectors.

5.2 Experiment 1: Dynamic Reconfiguration of Detection Sensor

The first experiment compared the performance between a dynamic reconfigu-
ration of sensors and an static set of sensors, all close to the database servers.
The static setup follows the intuitive decision of turning on all the sensors at
the critical assets, in this case the database servers. To test both setups, we use
an attack scenario that had the following progress: the attack started from the
Internet, compromised the production web server, from where to compromise
the applications server and then elevate permissions, and finally compromise the
database server. Further details for all attack scenarios and the Bayesian network
used in all experiments, are provided in [2].

In this experiment, a set of alerts are generated for the first three steps of
the attack scenario. This set serves as evidence and is provided to the reasoning
engine for DIADS to recompute the set of sensors. As shown in Figure 7, the
dynamic reconfiguration setup outperforms the static configuration of sensors.
The area under the continuous line (dynamic) is greater than the area under the
dotted line (static) by 16% (AreaDIADS = 0.7810 and Areabaseline = 0.6728).
This also means, the dynamic setup provides a higher detection rate at points
when both setups have the same false alarm rate.

A notable point is that the difference between both setups is not large. This
should be expected as the static setup is concentrated around the database
servers (the critical asset and final setup in the attack scenario) while the dy-
namic setup is scattered around the protected system.

52 G. Modelo-Howard, J. Sweval, and S. Bagchi

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

Fig. 7. Performance comparison between dynamic configuration of DIDS and a set of
detectors monitoring only DB servers

5.3 Experiment 2: Dynamism from Firewall Rules Changes

Experiment 2 tested the performance of the dynamic and static setups as changes
were made to the firewall rule table of the protected system. We considered two
real scenarios: (1) removing from the system a host belonging to a developer and
(2) adding a direct communication path is created from a consulant’s host to the
database server, in the development environment (in this case, the consultant
determined some changes to the database schema had to be tried out in the
development environment prior to unveiling it on production). For the static
configuration, one sensor was deployed on each host in both development and
production environments.

For the first firewall change where a developer’s host was removed, we tested
both setups using an attack scenario starting from another developer’s host.
This represents the increasingly common client-side attacks. The attack starts
as the developer visits a malicious website that installs some malware on the
host. Then permissions are elevated thanks to another existing vulnerability in
the developer’s host. Then a vulnerability in the database server (production)
is exploited and finally another vulnerability is used to access the data in the
database. For the second firewall change where a direct communication path
is created, we used a different attack scenario. The attack starts from another
developer’s host that also visits a malicious website and malware is installed
in the host. Then a vulnerability in the web server (development) is exploited,
after which the application server and finally the database server, all part of the
development environment, are compromised.

For DIADS, the BN was modified based on the firewall rule changes and the
dynamic programming algorithm picked the set of detectors after receiving the
alerts at the start of the attack - the starting point being the same as in the
static case.

Results from this experiment are shown in Figures 8a and 8b. The dynamic
reconfiguration setup performs better under both attack scenarios than the static
configuration. The area under the curve is greater by 32.7% (AreaDIADS =

Secure Configuration of Intrusion Detection Sensors 53

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(a) Removing a host

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(b) Opening ports to DB server

Fig. 8. Impact on topology changes. (a) Removing a host (developer) from network.
(b) Allowing direct access between the consultant box and the DB development server.

0.6809 and Areabaseline = 0.5132) in the scenario when a host is removed and
20% (AreaDIADS = 0.7659 and Areabaseline = 0.6383) in the scenario when a
direct access is set up between a consultant box and the DB development server.
We consider the most interesting result to be in Figure 8b, where both setups
show similar performance at the start. Both lines in the ROC curve have similar
slopes, which is expected as the dynamic and static setups share 4 out of the 6
initial sensors. But as the alerts from the first three attack steps are provided to
the reasoning engine in the dynamic setup, three sensors are reconfigured. This
is the cause of the difference in performance, as shown in the ROC cuve.

5.4 Experiment 3: Dynamism with Attack Spreading

The goal of this experiment was to see if DIADS can reconfigure sensors on the fly
as an attack spreads through the protected system. We used two different attack
scenarios: (1) one starting from the Internet and (2) another starting from the
internal network, a developer’s host. An attack starting from the internal network
usually requires less steps to reach the critical asset than attacks starting from
the Internet. The static configuration picks sensors as in the earlier experiment
2 (one for each host).

The results are presented in Figures 9a and 9b for the two attack scenarios.
In the attack starting from the Internet, the static setup shows a lower false
alerts rate than the dynamic setup. But as evidence is provided, the ROC curve
shows that the dynamic setup improves its performance. The curve shows the
importance of taking into account the alerts from the initial stages of the attack
to improve the performance of detection system. The improvement over the static
setup, in terms of the area under the curve, is 23% (AreaDIADS = 0.7845 and
Areabaseline = 0.6366). During the experiments, 4 of the 6 original sensors are
replaced by the reasoning engine.

For the attack starting from internal network, the ROC curve in Figure 9b
shows a similar performance between both setups. Three of the six

54 G. Modelo-Howard, J. Sweval, and S. Bagchi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(a) Attack from the Internet

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(b) Attack from the internal net-
work

Fig. 9. Comparison between our dynamic technique and a static setup for two attacks
scenarios. The dynamic reconfiguration technique allows to reconfigure the detection
sensors as alerts from the initial steps of the attacks are received.

sensors selected for the static setup are on the attack path and are quite ac-
curate. Therefore, though DIADS outperforms the static setup, the advantage
is not very large (11% where AreaDIADS = 0.7964 and Areabaseline = 0.7128).
This experiment shows promise that inferencing in BN can be done fast enough
relative to the speed of attacks. Of course, further experimentation is needed
with a variety of attacks (and attack speeds).

6 Conclusions and Future Work

Current attacks to distributed systems involve multiple steps, with the ultimate
goal of compromising a critical asset such as a database where important data
is stored for an organization. In this paper, we presented a distributed intrusion
detection system called DIADS that picks and places sensors in a protected
system, decreasing the uncertainty inherent in estimating the security state of
the critical assets in the system. DIADS has the ability to evolve when changes
are made to the topology of the protected system and with further evidence
coming in the form of alers while the deployed system is operational.

Future work will include experimenting further with the size of the Bayesian
network. We consider we made reasonable assumptions when pruning the
Bayesian network, such as only including high risk vulnerabilities as nodes. Still,
as the size of the CPTs for the nodes in the Bayesian network grows expo-
nentially in terms of the number of nodes’ parents, we would like to answer the
question of whether inferencing can be done fast enough. Another area to explore
is the impact of evasion techniques or attacks directly targeted against DIADS.
If an attacker has complete knowledge of our model, she might launch attacks
to falsely cause reconfiguration of our sensors away from the attack paths.

Secure Configuration of Intrusion Detection Sensors 55

Acknowledgment. The work described in this paper was conducted under
partial funding by Northrop Grumman Information Systems under the Northrop
Grumman Cybersecurity Research Consortium. We acknowledge the help of Dr.
Kenneth Brancik and Dr. Donald Steiner of Northrop Grumman in formulating
the problem and identifying how the solution integrates in an enterprise security
architecture.

References

1. Acohido, B.: Hackers breach Heartland Payment credit card system. USA Today
(January 2009)

2. Addendum: Secure Configuration of Intrusion Detection Sensors,
http://sites.google.com/site/securecomm11msa/

3. Forum of Incident Response and Security Teams: Common Vulnerability Scoring
System (CVSS), http://www.first.org/cvss/

4. Foo, B., Wu, Y., Mao, Y., Bagchi, S., Spafford, E.: ADEPTS: Adaptive Intrusion
Response Using Attack Graphs in an E-Commerce Environment. In: International
Conference on Dependable Systems and Networks, pp. 508–517. IEEE Computer
Society (2005)

5. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic bayesian network. In: 4th ACM Workshop on Quality of Protection, pp.
23–30. ACM, New York (2008)

6. Kreibich, C., Sommer, R.: Policy-controlled Event Management for Distributed
Intrusion Detection. In: 4th Int. Workshop on Distributed Event Based Systems
(2005)

7. Modelo-Howard, G., Bagchi, S., Lebanon, G.: Determining Placement of Intrusion
Detectors for a Distributed Application through Bayesian Network Modeling. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 271–290. Springer, Heidelberg (2008)

8. Modelo-Howard, G., Bagchi, S., Lebanon, G.: Approximation Algorithms for De-
termining Placement of Intrusion Detectors. CERIAS Tech. Report 2011-01 (2011)

9. Noel, S., Robertson, E., Jajodia, S.: Correlating Intrusion Events and Building
Attack Scenarios Through Attack Graph Distances. In: 20th Annual Computer
Security Applications Conference, pp. 350–359. IEEE Computer Society, New York
(2004)

10. Nowicka, E., Zawada, M.: Modeling Temporal Properties of Multi-event Attack
Signatures in Interval Temporal Logic. In: IEEE/IST Workshop on Monitoring,
Attack Detection and Mitigation (2006)

11. Ning, P., Cui, Y., Reeves, D.: Constructing attack scenarios through correlation of
intrusion alerts. In: 9th ACM Conf. Computer and Communications Security, pp.
245–254. ACM Press, New York (2002)

12. Ning, P., Xu, D.: Learning attack strategies from intrusion alerts. In: 10th ACM
Conf. Computer and Communications Security, pp. 200–209. ACM Press, New
York (2003)

13. Ning, P., Xu, D., Healey, C., St. Amant, R.: Building Attack Scenarios through
Integration of Complementary Alert Correlation Method. In: Network and Dis-
tributed System Security Symposium (2004)

14. OpenVAS. The Open Vulnerability Assessment System, http://www.openvas.org

http://sites.google.com/site/securecomm11msa/
http://www.first.org/cvss/
http://www.openvas.org

56 G. Modelo-Howard, J. Sweval, and S. Bagchi

15. Paxson, V.: Bro: a system for detecting network intruders in real-time. J. Comp.
Net. 31, 2435–2463 (1999)

16. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

17. Porras, P., Neumann, P.: EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In: 20th National Information Systems Security Con-
ference, pp. 353–365 (1997)

18. Qin, X., Lee, W.: Statistical Causality Analysis of INFOSEC Alert Data. In: Vigna,
G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 73–93. Springer,
Heidelberg (2003)

19. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: 13th Confer-
ence on Systems Administration, pp. 229–238. USENIX (1999)

20. Snapp, S., et al.: DIDS (Distributed Intrusion Detection System) - Motivation,
Architecture, and An Early Prototype. In: 14th National Computer Security Con-
ferenc, pp. 167–176 (1991)

21. Spafford, E., Zamboni, D.: Intrusion detection using autonomous agents. J. Comp.
Net. 34, 547–570 (2000)

22. Swets, J.: The Relative Operating Characteristic in Psychology. Science 182, 990–
1000 (1973)

23. U.S. Department of Commerce. National Vulnerability Database,
http://nvd.nist.gov/

24. U.S. Department of Health & Human Services: Health Information Privacy:
Breaches Affecting 500 or More Individuals,
http://www.hhs.gov/ocr/privacy/hipaa/administrative/

breachnotificationrule/postedbreaches.html

25. Valdes, A., Skinner, K.: Probabilistic Alert Correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

26. Vigna, G., Kemmerer, R.: NetSTAT: A Network-based Intrusion Detection System.
J. Comp. Sec. 7, 37–71 (1999)

27. Wing, J.: Scenario graphs applied to network security. In: Qian, Y., Tipper, D.,
Krishnamurthy, P., Joshi, J. (eds.) Information Assurance: Dependability and Se-
curity in Networked Systems. Morgan Kaufmann, San Francisco (2007)

http://nvd.nist.gov/
http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/postedbreaches.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/postedbreaches.html

Secure Configuration of Intrusion Detection Sensors 57

Appendix: Algorithms

Algorithm 1 message,A)

Input: message m = (number, srcIPaddr, destIPaddr, portnumber, action,
ruletype) . This input represents an addition, change, or deletion of a firewall
rule; Adjacency matrix representation of Bayesian network BNet = (V,E) consists
of a |V |x|V | matrix A = (aij) such that aij = 1 if (i, j) ∈ E otherwise aij = 0

Output: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to
add, Ed = set of edges to delete

1: //case when a rule is added
2: if ruletype = add then
3: if srcIPaddr : ∗ in A then
4: add all (parents(srcIPaddr : ∗), srcIPaddr : ∗) to Ea

5: end if
6: if destIPaddr : port in A then
7: add all (destIPaddr : port, children(destIPaddr : port)) to Ea

8: else
9: add Ea ← (srcIPaddr : ∗, destIPaddr : port)
10: end if
11: end if
12: // case when a rule is deleted
13: if ruletype = delete then
14: add Ed ← (srcIPaddr : ∗, destIPaddr : port)
15: if srcIPaddr : ∗ in A then
16: if notparents(srcIPaddr : ∗) then
17: add Vd ← srcIPaddr : ∗
18: else
19: add all (parents(srcIPaddr : ∗), srcIPaddr : ∗) to Ed

20: end if
21: end if
22: if destIPaddr : port in A then
23: if notchildren(destIPaddr : port) then
24: add Vd ← destIPaddr : port
25: else
26: add all (destIPaddr : port, children(destIPaddr : port)) to Ed

27: end if
28: end if
29: end if
30: // check if new edge creates a path to the end goal and if node creates a cycle
31: for all address : port ∈ V ∪ Va do
32: run DFS from address : port
33: if not(address : port� VCA) then
34: remove address : port from Va

35: end if
36: add backedges to Ed

37: end for
38: // convert address:port node to address:port:vulnerability node
39: for all address : port ∈ Va do
40: if vulnerability(address : port) ∈ NVD then
41: update address : port to address : port : vulnerability(vi) in Va and Ea

42: else
43: remove address : port from Va

44: end if
45: end for
46: for all address : port ∈ Vd do
47: search BNET and replace for corresponding address : port : vulnerablity(vi)
48: end for
49: return Va, Vd, Ea, Ed

. BN-Structure-Update (

58 G. Modelo-Howard, J. Sweval, and S. Bagchi

Algorithm 2. BNet-CPT-Update (Va, Vd, Ea, Ed)

Input: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to
add, Ed = set of edges to delete

Output: SCPT = set of CPTs to update
1: for all vi ∈ Va do
2: new Prob(vi) = CV SS(vi)/10
3: add each outedge(vi) ∈ Ea

4: for all children(vi) do
5: update CPT using max(newProb(vi) +Δ, oldProb(vi))
6: end for
7: end for
8: for all (vi, vj) ∈ Ea do
9: new Prob(vi) = CV SS(vi)/10
10: add each (vi, vj) ∈ Ea

11: for all children(vi) do
12: update CPT using max(newProb(vi) +Δ, oldProb(vi))
13: end for
14: end for
15: for all vi ∈ Vd do
16: new Prob(vi) = CV SS(vi)/10
17: remove all inedge(vi) and outedge(vi)
18: for all children(vi) do
19: update CPT using max(newProb(vi) +Δ, oldProb(vi))
20: end for
21: end for
22: for all (vi, vj) ∈ Ed do
23: new Prob(vi) = CV SS(vi)/10
24: remove all (vi, vj) ∈ Ed

25: for all vj do
26: update CPT using max(newProb(vi) +Δ, oldProb(vi))
27: end for
28: end for

Algorithm 3. Sensor-Reconfiguration (E,Detectorsexisting)

Input: E = evidence, represented by set of alerts received; Detectorsexisting = set of
detectors currently enabled

Output: set of nodes to enable/disable. Nodes correspond to <
address, port, vulnerability > tuple so can be mapped to a detection sen-
sor

1: compute a = Prob(critical asset |E)
2: if a > threshold then
3: Create set of candidate sensors close to E and critical asset
4: Run FPTAS(BN)
5: end if
6: Detectorsdisable = |Detectorsexisting −DetectorsFPTAS|
7: return DetectorsFPTAS, Detectorsdisable

	Secure Configuration of Intrusion DetectionSensors for Changing Enterprise Systems
	Introduction
	Related Work
	Problem Statement and Threat Model
	DIADS Framework
	Probabilistic Reasoning Engine
	Algorithm 1: BN Update to Structure Based on Firewall Rule Changes
	Algorithm 2: Initialization of BN CPTs Based on Firewall Changes
	Algorithm 3: BN Update of CPT Based on Incremental Trace Data
	Algorithm 4: Update Choice of Sensors Based on Runtime Inference

	Experiments and Results
	Experimental Setup
	Experiment 1: Dynamic Reconfiguration of Detection Sensor
	Experiment 2: Dynamism from Firewall Rules Changes
	Experiment 3: Dynamism with Attack Spreading

	Conclusions and Future Work
	References

