
Trading Elephants for Ants: Efficient

Post-attack Reconstitution

Meixing Le, Zhaohui Wang, Quan Jia, Angelos Stavrou,
Anup K. Ghosh, and Sushil Jajodia�

Center for Secure Information Systems,
George Mason University, Fairfax, VA

{mlep,zwange,qjia,astavrou,aghosh1,jajodia}@gmu.edu

Abstract. While security has become a first-class consideration in sys-
tems’ design and operation, most of the commercial and research efforts
have been focused on detection, prevention, and forensic analysis of at-
tacks. Relatively little work has gone into efficient recovery of application
and data after a compromise. Administrators and end-users are faced
with the arduous task of cleansing the affected machines. Restoring the
system using snapshot is disruptive and it can lead to data loss.

In this paper, we present a reconstitution framework that records
inter-application communications; by logging only inter-application
events, we trade our capability for data provenance and recovery within
an application, for performance and the capability to recover long after
the intrusion. To achieve this, we employ novel algorithms that com-
pute the data provenance dependencies from the application interactions
while minimizing the required state we maintain for system reconstitu-
tion. Our experiments show that our prototype requires two to three
orders of magnitude less storage for recovery.

Keywords: Data Provenance, Causal Dependency, System Recovery.

1 Introduction

Computing has evolved into a necessary component for business, government,
and military environments. Logistics, transportation, finance, intelligence, mod-
ern combat systems all depend on the correct operation of computer systems.
Despite intense efforts towards improving software and network security, com-
puters continue to be routinely compromised and exploited. Moreover, even when
intrusions are detected, recovery happens long after the actual attack takes place.

� This work is sponsored in part by US National Science Foundation (NSF) grant CNS-
TC 0915291 and AFOSR MURI grant 107151AA “MURI: Autonomic Recovery of
Enterprise-wide Systems After Attack or Failure with Forward Correction.” Sushil
Jajodia and Meixing Le were partially supported by the National Science Foundation
under grants CCF-103987 and CT-20013A, and by the Army Research Office DURIP
award W911NF-09-01-0352. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 460–469, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Trading Elephants for Ants: Efficient Post-attack Reconstitution 461

Administrators and end-users spend considerable time and effort “cleaning
up” after the attacks. The standard practice consists of little more than re-
formatting the disk, re-installing the operating system, and recovering user data
from the most recent backup1. This is a time-consuming, error-prone process
that is disruptive to end-users and enterprise operations.

The most recent work on system recovery is Retro [20]. Similar to Taser [5]
and Solitude [7], Retro maintains an action history graph to capture the depen-
dencies among system actor and objects (files) at multiple levels of abstraction.
Contrary to all of these process-level recording approaches, our goal is to recover
but also minimize the maintained system state by abstracting the low-level ac-
tivities in the system trading-off recovery granularity. Instead of maintaining
a voluminous log of low-level system activity including the input and return
values of system calls, we attempt to simplify the causal dependencies which
determines the log size. Our provenance graph maintains relations between ob-
jects only when those relations are necessary for potential future recovery. Last
but not least, containers2 abstract the execution of applications on physical ma-
chines.

Our approach attempts to lay a strong foundation to prevent cross-application
contamination and provide efficient system reconstitution. To accomplish this,
we designed a two-pronged architecture: on one hand, we record the data ex-
changed between contained applications; on the other hand, we leverage these
logs to compute the application and user data provenance and use that informa-
tion to recover. A challenging trade-off is the choice of the monitoring granularity.
Using the finest possible granularity, the execution of every function call can be
inspected and logged to obtain the most detailed knowledge of information flow.
However, the computation and storage cost of recording and analyzing these
events is prohibitively high for many applications and especially so over long
periods of time. In contrast, many administrators rely solely on system and ap-
plication logs for recovery. These logs usually offer a coarse-grain view that lacks
sufficient information for analysis. Moreover, they are susceptible to tampering
by attackers. To avoid these pitfalls, we only record application activities as con-
tainer data exchanges. Therefore, we trade our capability for taint-tracking and
recovery within a container for far lower processing and storage overhead.

As shown in experimental results, our system does not impose prohibitive
logging or storage requirements: by selectively storing information based on data
provenance, we provide better recovery for less storage when compared to pure
versioning file systems, interval based backup or system snapshots. Finally, our
recovery algorithm is able to reconstitute a typical desktop system even after the
launch of hundreds of application instances long after the initial corruption. We
demonstrate through different user studies, that the hourly temporary recovery
log for a typical Desktop remains below 250MB and the persistent state is only

1 For example, CERT’s instruction on recovering compromised Unix and Windows
NT systems: http://www.cert.org/tech_tips/root_compromise.html

2 We use VEEs, VEs, and containers as abbreviations for Virtualized Execution
Environments.

http://www.cert.org/tech_tips/root_compromise.html


462 M. Le et al.

12MB for over 65 hours of collected data. This is between two to three orders or
magnitude less information collected and stored compared to all prior research.

2 Related Work

The use of virtualization technologies for system monitoring and recovery has
received a lot of attention [2,15]. In Revirt [2], a virtual machine snapshot en-
capsulates the entire system. By recording VM-to-host interactions the system
stored a full OS-level replay of the entire duration of the attack. To enhance
forensic analysis of intrusions, Goel et al. introduced Forensix [4], a system for
forensic discovery and history reconstruction by monitoring a selected set of
system calls. The Taser [5] recovery system was more geared towards tracking
the propagation of an intrusion in a system, and it did not use virtualization to
isolate processes. This allows intrusions quickly spreading in the entire system.
Moreover, having to track all OS events, they generate enormous amounts of
event data that have to be stored and analyzed. Solitude [7] used chroot jails
that are limited mostly on the file system level. It cannot provide any strict kernel
enforced isolation guarantees so that taint propagation through other channels
such as memory, IPC is still possible. Contrary to Solitude, our approach en-
forces kernel-level separation so that isolate application instances bottom up in
terms of memory, network, file system isolations.

Retro [20] re-executes the suspect actions to restore legitimate actions. It
uses an action history graph to capture the dependencies among system actor
and objects (files) at multiple levels of abstraction. Compared to Retro, we uses
lightweight virtualization to encapsulate each application instance, and our aim
is to minimize the maintained system state by abstracting the low-level activities
in the system trading-off recovery granularity. We trade the recovery granularity
for better performance compared to the 4-150GB per day for log storage. Api-
ary [12] used isolation on the file system and display layer to seamlessly isolate
processes.

Taint analysis and system recovery using dependencies were also studied in
[8,6,10,17]. There are other works [3,19] provide more accurate and efficient taint
analysis, but all of them either incur high analysis overhead. Finally, researchers
have used file versioning systems [13,11,18] to create file snapshots at block level
to support recovery.

3 Threat Model and Isolation

3.1 Threat Model

Software vulnerabilities and the increasing installation of new applications and
browser plug-ins are at the root of security risks. Malicious programs stealthily
download and execute foreign code corrupting other files, sending out confiden-
tial information, etc. Most of these attacks are detected long after the initial
intrusion take place. In our system, we use containers to isolate applications and



Trading Elephants for Ants: Efficient Post-attack Reconstitution 463

track their data communications over the entire duration of their life-cycle. We
assume the attacks cannot break out of the container and corrupt the underlying
system kernel as loading an kernel module in a container is prohibited. Further-
more, we assume that the point of intrusion (a tainted input) is provided to us by
an external entity which can be an anti-virus or an intrusion detection system.
We are also very conservative in marking tainted entities: containers become
tainted after reading malicious files or receiving malicious network messages. All
the output files and messages of a tainted container are considered tainted.

3.2 Container-Based Isolation

A container is a group of processes running on top of the same kernel as host
within the same isolation zone. Starting up with a container template, an empty
container will have all the necessary system processes of a working OS. These are
all virtualized processes which is different from those on the host OS. This isola-
tion is enforced by OpenVZ at kernel level. In our system, we put each application
instance in a dedicated container. Process in one container can not communicate
with or even be aware of the processes running in another container. The only
allowed ways of data communication between containers is through networking
or file sharing, and we record these events in our logs.

Inter Process Communication (IPC): For IPCs in our system, most of them
such as dbus can be done within the isolated container. For X11 service IPCs, we
choose to convert them to socket communications while all other inter-container
IPCs are disabled. Therefore, for all IPCs in our system, either we do not trace
them since they occur within one container, or we record them if they are the
network events across containers. Without such isolation, it is easier for a process
to taint another through IPCs, and it will be even worse if there is no mechanism
to monitor these events on such a system.

Networking: Lightweight virtualization shares the same network processing
code among containers but tags network related data (i.e. packets, socket objects
in kernel) to achieve namespace isolation. Therefore, each VEE has its own
independent network namespace. Namespace checks are enforced by kernel before
any packet processing. Thus, network attacks that target applications or services
running in one VEE won’t affect the services running in the rest of the VEEs.
With network isolation, each application instance has its own IP address.

Stackable File System: Unionfs [21] is a stackable file system service so that
allow us to create one base template and share it among all containers, and this
lowers the disk requirement. The base template is mounted to each container
as read-only root “/” while a dedicated write-enabled layer is mounted on top
of the root allowing each container to store its state in a separate directory.
All the containers share one “shared directory”, therefore our system has the
same functionality as the normal desktop systems. Whereas, all the interactions
with this directory are monitored, and it is expected that containers only store
persistent user data in this directory and all system related and temp files are
stored within the containers’ isolated file systems.



464 M. Le et al.

4 System Architecture

The overall system architecture is illustrated in Figure 1. Each application in-
stance is running inside a VEE. We adopted the kernel probe [9] on the host
OS to log system calls, and we monitor all the system call that can convey data
between containers, which includes most file system related operations and net-
work operations. The logs cannot be tampered by any process running in the
containers.

4.1 Computing Provenance from Logs

The recorded system call logs offer a low-level view of all the container com-
munications and data exchange including those with the host OS. Such view,
however, does not immediately reveal the high-level and semantic dependencies
among the containers. To produce the high-level view, we summarize and dis-
till the raw system call entries into semantic objects (VEEs, files) and actions
(read, write, overwrite, send via network). The summarized logs expose the logi-
cal events happening across the containers. We do the log summarization on the
fly, and only keep the provenance information which will be discussed next as a
high-level view of system events for recovery purpose. By doing this, we largely
reduce the storage requirement for logs.

A Single Machine

In-kernel Logging at System Call Interface

Kernel

VEE 1 VEE 2 VEE 3

Firefox
Process

OpenOffice
Writer Process

UnionFS Kernel
Module

Raw Log
Entries

Summarized
Semantic
EventsHardware

Recovery

Gedit
Process

Online
Taint Analysis

Provenance
Graph

Fig. 1. Overall system architecture: application in-
stances are confined inside containers. Logging, anal-
ysis, and recovery are performed on the same host.

Here, we use the term
provenance [16,1,14] to
refer to the process of trac-
ing and recording the origin
of data and its propagation
in the system. To be more
precise, here we clarify what
provenance means for file
versions and the container
states. The provenance of a
file (at a certain version) is
defined to be all the actions
that modified any present
portion of this file from its
initial version.Modifications
of sections that are not cur-
rently present (i.e. discarded
or overwritten) are not part of the file provenance. On the other hand, the prove-
nance of a container is the union of the provenance of all the input (files, network,
and user input) of this container.

Intuitively, the inputs of containers can be categorized into three types: read-
ing shared files, receiving network messages, and user input. We assume that
user input can be implicitly trusted since our protection is geared towards desk-
top users that have no incentive in harming themselves. We monitor the other
two types of inputs.



Trading Elephants for Ants: Efficient Post-attack Reconstitution 465

4.2 Modeling States Using Provenance

By examining the provenance of files and containers, we can quantify a con-
tainer’s life-cycle into states. We use these states to track the containers’ prove-
nance set and create new file versions. To avoid unnecessary versioning, we fur-
ther divide each container state into Input Sub-state and Output Sub-state.
Each container state can only begin with new input, and output does not cause
state transition. If the container receives continuous input events, it remains the
Input Sub-state. The state of a container is changed only when the container is
in the Output Sub-state and receives new input. An input is considered “old” if
it has been already read in the past (for example, reading the same unmodified
file twice). In case of old input, the provenance set does not need updating.

All containers are initiated from the same clean template. The container can
become tainted only after it is potentially contaminated by some malicious or
tainted input(s). Any tainted input causes a container to transit from the clean
state to a tainted state. Since we do not know which input is malicious in advance,
we treat all new inputs as the start point of a potential malicious input. For
an input event, we check the provenance of this event given the state of the
container. If all the previous information contributed to the event is already
included in the container’s provenance set, the container will not change its
state since the provenance set will not change. If the input is a new event to the
container, its state may be changed depending on whether the container is in
Output Sub-state.

Traditionally, a new file version is generated whenever a container updates a
file. Contrary, in our system, even if the container writes to the same file several
times under the same state, we will only keep one version of this file. This is
because, while we remain in the same container state, all file versions generated
under this container state are either clean or tainted.

4.3 Recovery Using Provenance Graphs

Using the above model, the provenance of each file version is associated with a
set of container states that have contributed to the content of that file. Therefore,
files inherit the provenance of the container at that state. For the provenance of
a container, subsequent states inherit the provenance set of previous states (in
terms of time). Using these states, as well as the inherited relationships among
them, we can construct the provenance graph of the system. In the provenance
graph G=<V,E>, each node v ∈ V represents a state of a container or a version
of a file or a network message. Each edge e ∈ E represents an input/output or
state transition relation between the two nodes, which indicates a taint prop-
agation path. Different states of the container are represented by the nodes
in the graph, and they are connected by edges indicating the state transition.
Each version of a file is a separate node also, and so are different messages. By
traversing the graph in the opposite direction of the arrows, we can easily get
the provenance of a file or message.



466 M. Le et al.

Because of the strong isolation provided by our system, the only possible ways
of cross-container communication is through shared files and network communi-
cations. The provenance graph provides a concise representation of the container
interactions enabling recovery even long time after the intrusion. The main idea
is that, when given an initial intrusion point, we traverse the provenance graph
to identify files and containers that have been tainted and require reconstitution
from the latest recorded clean version.

5 Performance Evaluation

We implemented a fully working prototype of our system with OpenVZ. We
performed several experiments in order to quantify the storage requirements of
our system and the gains of using provenance for both storage and the capability
to recover files when compared our system to both interval-based backup and
pure file versioning. Our evaluation platform consisted of a 2.0GHz Pentium 4
CPU and 1GB of memory. The host OS was running CentOS 5 with a customized
2.6.24 kernel. OpenVZ containers are created from an Ubuntu 8.04 template.

5.1 User Study Using Real Deployment

We tested our prototype system under the load generated from typical desktop
users. Five students were selected for the user study over a period of 7 days. The
tested applications in VEEs include two web browsers (Firefox and Opera), two
text editors (gedit and emacs), PDF reader (evince), and the Open Office suite
(including writer, calc, impress, draw, math). In total, 218 VEEs were created
in the experiments: 104 web browser VEEs, 47 Open Office VEEs, 40 text editor
VEEs, and 27 PDF reader VEEs.

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

St
or
ag
e
Si
ze

(M
B
)

Accumulative Hourly

accumulative provenance graph size raw log size

Fig. 2. Hourly Provenance Graph Generation

Our system transparently
monitors the shared files
without having to keep ver-
sions of files that are inter-
mediate or non-persistent.
For all the 87 shared files in
our experiment (73 of which
were downloaded from In-
ternet), the total file size
is about 52MB. Our system
created 152 backup files for
the 10 days operations, with
a total size of 43MB. The
size of raw system logs with
all the system calls which is comparable to other systems is 13.1 GB. After pre-
serving only the log entries about the shared directory and Internet activities,
the log size is only 604MB. Finally, we only need 12MB of storage to maintain
provenance information for recovery after 10 days operation. This is less than



Trading Elephants for Ants: Efficient Post-attack Reconstitution 467

1/1000 of the original size. In this experiment, we generated the provenance
graph from the non-summarized 604MB logs offline, it took 36 seconds to finish,
which is mostly used to read the logs.

5.2 Hourly Provenance Graph Generation

In this experiment, we picked 65 hours of raw system logs in our user study. At
the end of each hour, we ran our provenance generation algorithm, and updated
the existing provenance graph with the new hourly information. Figure 2 depicts
the storage space needed for hourly provenance graph generation. The maximum
size of raw logs for one hour was less than 250MB. After each hour the analyzed
raw logs were discarded, therefore, the total storage space for logs needed by our
approach for 65 hours was still below 250MB. In addition, the bottom columns
show the accumulative size of the provenance graph. As time pass, the size of the
graph increased, however, even after 65 hours, the total size of the provenance
graph was just around 10MB. From this figure, we can see the benefits of our
approach in terms of state we have to maintain for recovery. For a typical system,
it possible for us to recover data from an attack many days after the initial
incident.

5.3 Versioning FS and Timed Backups

Here, we measured the storage overhead and the ability to recover informa-
tion among interval-based backup systems, pure versioning file systems and our
provenance-based approach. Interval-based backup approach takes periodic sys-
tem snapshots, but the application and file information is lost from the last
known good snapshot point. Pure versioning file systems keep every versions of
files, so they require an enormous storage space. Our approach can always re-
store a corrupted file to the most recent clean version, if such exists. In contrast,
interval-based backup can only partially recover files because it cannot differen-
tiate between tainted and clean files after infection. Of course, the comparison
of versioning and interval-based backup systems depends a lot on the system

0

40

80

120

160

200

2days 4days 6days 8days 10days

N
um

be
r
of

Fi
le
Ve

rs
io
ns

File versions needed based on shared folder
Timed backup (1 hour interval) JCS backup file versions Regular versioning file system

Fig. 3. Comparison of storage over-
head for different backup approaches

0

10

20

30

40

50

60

70

2days 4days 6days 8days 10days

N
um

be
r
of

Fi
le
s

Loss of file recovery capability

30min 1hour 2hours 8hours 1day

Fig. 4. Loss of file recovery capability
for interval-based backup



468 M. Le et al.

usage but it is always the case that the versioning file system requires at least as
much storage as the time-interval system. Both systems do not keep provenance
information and thus cannot identify the proper versions of files to restore.

We compare the versioning storage overhead of shared files in terms of number
of file versions. Figure 3 depicts the corresponding storage overhead comparison
among interval-based backup, our approach, and regular versioning file systems.
Using the provenance information, after 10 days, we can eliminate 53 versions
of files compared to regular versioning file systems without losing any recovery
information. The time interval based approach (1 hour interval) stored 22 ver-
sions less. Unfortunately, this difference in storage has an impact on the ability
to recover files: Figure 4 shows the recovery ability lost in interval-based ap-
proach. We varied the backup time intervals to cover different backup scenarios.
Although we were fairly aggressive in keeping data, for a 30 minutes interval,
after 10 days, this approach lost 16 versions files, which means there are 16
possible cases that a tainted file can not be restored to the most recent clean
version. Our results show that as we increase the time interval, less storage is
required for backup. However, this diminishes the ability to recover data.

6 Conclusions

We presented a reconstitution framework that aims to provide fast and consis-
tent recovery long after a corruption has taken place. We chose to log application
events at the container level rather than the process-level offering a trade-off
between finer-grain data recovery within an application for lower state require-
ments. We show through user studies, that the hourly temporary recovery log for
a typical Desktop remains below 250MB and the persistent provenance graph is
only 12MB for over 65 hours of collected data. To achieve this state reduction,
we proposed a new method for generating data provenance graphs based on the
state of the containers and interactions using files and network events. Recovery
is feasible even after the launch of hundreds of desktop applications instances
following the initial corruption.

References

1. Buneman, P., Khanna, S., Tan, W.-C.: Data Provenance: Some Basic Issues. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 87–93. Springer,
Heidelberg (2000)

2. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: Enabling
intrusion analysis through virtual-machine logging and replay. ACM SIGOPS Op-
erating Systems Review (2002)

3. Goel, A., Farhadi, K., Po, K., Feng, W.-C.: Reconstructing system state for intru-
sion analysis. ACM SIGOPS Operating Systems Review (2008)

4. Goel, A., Feng, W.-C., Maier, D., Walpole, J.: Forensix: A robust, high-performance
reconstruction system. In: 25th IEEE International Conference on Distributed
Computing Systems Workshops (2005)



Trading Elephants for Ants: Efficient Post-attack Reconstitution 469

5. Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recovery
system. In: SOSP 2005: Proceedings of the 20th ACM Symposium on Operating
Systems Principles (2005)

6. Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the future: A framework
for automatic malware removal and system repair. In: ACSAC 2006: Proceedings
of 22nd Annual Computer Security Applications Conference (2006)

7. Jain, S., Shafique, F., Djeric, V., Goel, A.: Application-level isolation and recovery
with solitude. In: Eurosys 2008: Proceedings of the 3rd ACM SIGOPS European
Conference on Computer Systems (2008)

8. King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP 2003: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles (2003)

9. Krishnakumar, R.: Kernel korner: kprobes a kernel debugger. Linux Journal (2005)
10. Liu, P., Ammann, P., Jajodia, S.: Rewriting histories: Recovering from malicious

transactions. Distributed Parallel Databases 8, 7–40 (2000)
11. Peterson, Z., Burns, R.: Ext3cow: a time-shifting file system for regulatory com-

pliance. Transactions on Storage 1, 190–212 (2005)
12. Potter, S., Nieh, J.: Apiary: Easy-to-use desktop application fault containment

on commodity operating systems. In: ATC 2010: USENIX 2010 Annual Technical
Conference (2010)

13. Santry, D.S., Feeley, M.J., Hutchinson, N.C., Veitch, A.C., Carton, R.W., Ofir,
J.: Deciding when to forget in the elephant file system. ACM SIGOPS Operating
Systems Review 33, 110–123 (1999)

14. Seltzer, M., Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Ledlie, J.:
Provenance-aware storage systems. In: USENIX ATC 2006: Proceedings of the
USENIX Annual Technical Conference (2006)

15. Sharif, M., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: CCS 2009: Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (2009)

16. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance techniques.
Technical report, Computer Science Department, Indiana University, Bloomington
IN 47405 (2005)

17. Sriranjani, S., Venkatesan, S.: Forensic analysis of file system intrusions using im-
proved backtracking. In: IWIA 2005: Proceedings of the Third IEEE International
Workshop on Information Assurance (2005)

18. Soules, C.A.N., Goodson, G.R., Strunk, J.D., Ganger, G.R.: Metadata efficiency in
versioning file systems. In: FAST 2003: Proceedings of the 2nd USENIX Conference
on File and Storage Technologies (2003)

19. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. In: ASPLOS 2004: Proceedings of the 11th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (2004)

20. Taesoo Kim, N.Z., Wang, X., Kaashoek, M.F.: Intrusion recovery using selective
re-execution. In: OSDI 2010: Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (2010)

21. Unionfs, http://www.am-utils.org/project-unionfs.html

http://www.am-utils.org/project-unionfs.html

	Trading Elephants for Ants: EfficientPost-attack Reconstitution
	Introduction
	Related Work
	Threat Model and Isolation
	Threat Model
	Container-Based Isolation

	System Architecture
	Computing Provenance from Logs
	Modeling States Using Provenance
	Recovery Using Provenance Graphs

	Performance Evaluation
	User Study Using Real Deployment
	Hourly Provenance Graph Generation
	Versioning FS and Timed Backups

	Conclusions
	References




