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Abstract. Botnets such as Conficker and Torpig utilize high entropy domains
for fluxing and evasion. Bots may query a large number of domains, some of
which may fail. In this paper, we present techniques where the failed domain
queries (NXDOMAIN) may be utilized for: (i) Speeding up the present detection
strategies which rely only on successful DNS domains. (ii) Detecting Command
and Control (C&C) server addresses through features such as temporal correla-
tion and information entropy of both successful and failed domains. We apply
our technique to a Tier-1 ISP dataset obtained from South Asia, and a campus
DNS trace, and thus validate our methods by detecting Conficker botnet IPs and
other anomalies with a false positive rate as low as 0.02%. Our technique can be
applied at the edge of an autonomous system for real-time detection.
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1 Introduction

Botnets have been used for spamming, phishing, DDoS (Distributed Denial of Service)
attacks. Some botnets such as Kraken/Bobax, Torpig [8], and Conficker [6] utilize flux-
ing techniques, where the domain name of a C&C server changes rapidly (domain flux-
ing) or the IP address for a domain name is altered (IP fluxing). To automate the domain
name generation for fluxing, botnet owners rely on generating domain names algorith-
mically. The domain names thus formed, comprise of alphanumeric characters chosen
randomly, and which thus exhibit high information entropy. As the domain names for
the C&C servers are short lived, and as only a fraction of this large set of domains may
be used for actual DNS use, blacklisting techniques prove ineffective in countering such
fluxing botnets.

Reverse engineering of bot executables may yield the domain name generation al-
gorithm and subsequently the domain names that a bot may query in the future. These
domain names may be blacklisted or pre-registered in advance by security researchers.
Domain fluxing botnets overcome this vulnerability by choosing to generate a large
number of names, where only a few of them may host the C&C server. The large
number of domain names is expected to overwhelm the pre-registration by others and
potentially provide a cover for the actual name of the C&C server used by the botnet.
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Botnets that employ domain fluxing can be characterized by the following two im-
portant features: (a) The alphanumeric distribution or entropy of the domain names for
C&C servers is considerably different from human generated names. (b) The bots gen-
erate many failed DNS queries as many of the algorithmically generated domain names
may not be registered or not available as C&C servers. We exploit these two important
properties to detect botnets with very low latency, where we define latency as the num-
ber of domain names required for successful anomaly detection (or the time taken to
collect those domains).

With our approach, we analyze successful DNS queries, and the failed DNS queries
within the vicinity of the successful queries, thus exploiting their features to not only de-
tect the C&C servers of those botnets faster, but also simultaneously detect bots within
the network. While our detection mechanism is designed specifically to detect domain
fluxing botnets by utilizing DNS failures, previous approaches relying only on domain
entropy analysis can still be used in the event that there are no DNS failures. By analyz-
ing the failed queries along with the successful queries, we increase the data available
for analysis and hence speed up the detection process. While our technique can be used
online (or in real-time), we focus on a trace-driven evaluation methodology here to
keep the explanation simpler. Additionally, our analysis is based only on DNS network
traffic, thereby reducing resource requirements, in comparison to techniques relying on
general network traffic analysis.

When individual clients/hosts query a resolver, the failed queries can potentially be
attributed to the presence of bots on that client and the successful queries close to the
failures can be assumed to be related with high confidence. However, when queries
are forwarded to a resolver from another local resolver or a DNS query aggregator,
the queries from many clients can be grouped together and relating failed queries to
other successful queries in the query stream becomes problematic. Our approach is
cognizant of this difficulty and is capable of producing accurate results in the presence
of aggregated query streams.

The main contributions of this work are:

• We utilize the failures around successful DNS queries and the entropy of the do-
mains belonging to such queries, for detecting botnets with lower latency compared
to previous techniques.

• We propose and evaluate a speeding technique which correlates DNS domain query
failures for faster detection of domain fluxing botnets’ C&C server IPs. We utilize
temporal correlation between DNS queries and entropy-based correlation between
domain names, for speedier detection.

• We show through a trace driven analysis that the proposed techniques can consider-
ably speed up the detection of botnets that generate many DNS query failures. This
in turn will constrain the domain name generation algorithms further if they want
to evade detection by techniques such as proposed here.

We apply our techniques to two datasets. The first is a Tier-1 ISP dataset obtained
from South Asia, captured for a period of approximately one day. Additionally, we
analyze a university campus DNS trace captured over a month. The datasets consist
of botnets validated through previous techniques applied to the trace [11]. Based on
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our analysis, we detect the presence of the recently discovered Conficker botnet. Our
experiments indicate a false positive rate as low as 0.02% with a high detection rate.
Our evaluation also yields how different features characterizing botnets can be varied,
to assist a network administrator in tuning these parameters for their network(s).

The rest of this paper is organized as follows. Section 2 discusses the related work
on botnet detection. In section 3, we discuss our methodology for detection of domain-
fluxing botnets, as well as propose an alternate correlation criteria for speeding the state-
of-the-art detection techniques. The results have been outlined in section 4 followed by
the discussion on the limitations and security loopholes that attackers may exploit, in
section 5. Finally, we draw the conclusions and highlight the future work in section 6.

2 Related Work

Alphabet entropy measures to detect algorithmically generated botnets by using suc-
cessful domain name queries mapping to IP addresses, are proposed in [11]. Jiang et.
al. [4] use DNS failures to determine suspicious activity within the local autonomous
system. Their technique analyzes bipartite graphs between failed DNS domain names
and querying clients, to determine connected components with anomalous activity. Our
approach, additionally, analyzes related successful queries and detects the botnet C&C
servers along with the bots. The authors in [13] analyze unproductive network traffic of
multiple protocols to classify malicious hosts based on features such as rate of failed
traffic generation, entropy of ports used etc. In our work, we do not require training of
data, and only rely on DNS based features for botnet detection.

Botnet identification using DNS has been explored in [9] where the authors uti-
lize query rates based features of successful and failed DNS queries, to identify botnet
anomalies. [10] detects new bots based on the similarity in querying behavior for known
malicious hosts. Our technique does not rely on query rates and can detect botnets even
if each bot queries for an independent botnet C&C server’s domain names. Previous
work on botnet detection has also examined the correlation of network activity between
time and space as exhibited by users within a network [3]. We, however, use only the
DNS traffic for detecting botnet activity, drastically reducing the resource requirements.
Also, DNS security has been investigated in a number of recent studies [12] which have
focused on DNS indirection and cache poisoning prevention.
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3 Methodology

In this section, we describe our technique for detecting botnets through DNS traffic
analysis using successful and failed DNS queries. We also highlight correlating failed
domains, for speedier detection of malicious IP addresses. Our primary goal is to detect
the IP address of a domain fluxing botnet’s C&C server. As a consequence of our anal-
ysis, we obtain the bots within the local network, and the domain names belonging to
the botnet, thus exposing the botnet altogether. To discover anomalous IP address(es),
we exploit multiple features such as the botnet structure and the temporal correlation
between DNS query patterns of participating bots. Prior to analyzing the DNS traffic,
we use a white-list for filtering out known benign DNS queries (details in section 4),
leveraging a more accurate analysis.

3.1 Filtering Steps

Figure 1 demonstrates the steps involved in narrowing down the set of IP addresses that
are returned in DNS response packets (post white-listing), to a relatively smaller list
of anomalous IP addresses. With each filter, we select a fraction of the input supplied
by the previous filter, reducing the subsequent work. In the following subsections, we
describe each filter applied for a candidate C&C IP address (denoted by cncip) resulting
in cncip being discarded as legitimate or subject to additional filters. The measures
employed by each filter, are either computed using select or all the time windows in
which the candidate IP address occurs. The typical time bin/window length used in our
trace is subjective to the dataset in consideration. For evaluation presented in section
4, we typically use a 128 sec window (64 sec symmetric about cncip). The following
subsections detail how each measure is computed.

Degree of an IP Address (Dcncip). Domain fluxing is characterized by multiple do-
main names mapping to an IP address. We define the degree of an IP address as the
number of domain names that map to a cncip. As a first filter, we use the degree (F1

in Figure 1) to separate a set of IP addresses more likely to exhibit botnet like domain
fluxing. For a given IP address, this number may vary based on the length of the trace
analyzed. For instance, an IP address analyzed for an hour may have five domain names
mapping to it. However, if analyzed for two hours, eight domain names may map to
it, which includes previously expired domain names. While we consider the IPs which
have a degree of at least two, we vary Dcncip to evaluate how quickly we detect anoma-
lies. For a typical analysis, we use a degree threshold of eight, independent of the time
for which a candidate IP address is analyzed. Thus, the filter F1 can be bypassed if an
IP has less than eight domain names mapping to it. However, this puts a constraint on
the fluxing that a botnet server can exhibit. It should be noted that, Content Distribu-
tion Networks (CDNs) also have a high degree. However, CDNs get separated through
additional filters as described ahead.

Correlation Metric (Corrcncip). As introduced earlier, bots generate burst of DNS
queries, a fraction of which may fail. Thus, we exploit the temporal correlation between
DNS successes and failures to identify malicious behavior. On observing a time window
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of DNS queries for a bot, we may observe the presence of failures, more frequently, than
for legitimate clients. It is represented by filter F2 in Figure 1.

The correlation metric (Corrcncip) for a candidate IP address is computed as the
probability of observing at least one failed DNS query in a time bin, given that cncip
was returned as an answer to a successful DNS query in the same bin. For detection, we
heuristically choose the threshold as 0.5 implying that majority of windows in which a
cncip appears, should also have failures for it to be considered a meaningful anomaly.
In section 4, we study how the false positives decrease on increasing this threshold or
when the correlation metric changes upon restricting our analysis to windows with more
failures.

We use the following equation to compute this metric:

Corrcncip =

∑
Time bins with (Scncip ∩ Fclient)

Time bins with Scncip
(1)

where Scncip denotes the boolean condition of whether cncip occurs in a time bin.
Fclient refers to the boolean variable indicating the presence of at least one failure in the
corresponding time bin for the client. The correlation metric is computed with the time
series of all clients which receive cncip as the DNS response address. This metric may
not be sufficient in topologies comprising of DNS aggregators where the temporal co-
occurrence of DNS failures and successes is more frequent. Further developed measures
limit the errors produced due to DNS aggregators.

Succeeding Domain Set Entropy (SENcncip). We use edit distance as a metric for
determining the similarity between a pair of domain names. Algorithmically generated
domains exhibit a high value for this metric, owing to limited similarity between a given
pair of domains. However, domain names observed for a legitimate entity, frequently
have repeated occurrence of certain characters, which lower the computed normalized
edit distance (or the entropy associated with the entity), as substantiated by [11]. For
instance, a pair of domain names such as www.google.com, ns.google.com have a lower
normalized edit distance than a pair like jswrts.ws, yvqcbtvztpm.cc, as observed for
Conficker.

Edit distance is defined as an integral value indicating the number of transforma-
tions required to convert a given string to the other. The type of eligible transformations
include addition, deletion, and modification of a character. We use the normalized edit
distance measure computed as the Levenshtein edit distance [5] between a pair of strings
normalized by the length of the longer string. The entropy of domains mapping to an IP
address (and hence successful DNS queries), SENcncip, is determined by computing
the normalized edit distance between every pair of domains that map to cncip (taken
from set with cardinality |Dcncip|), and averaged over all such pairs. Therefore, the
complexity of entropy calculation is O(n2) where n is the number of domain names
successfully mapping to an IP address over the duration of analysis. This duration is
defined either in terms of a pre-determined time, or the first few successful domains
encountered for a given cncip. Once SENcncip is computed, if it exceeds a threshold
(reserved for highly domain fluxing entities), we consider it for further analysis. Our
evaluation shows that while high SENcncip IPs may be detected easily, even enitities
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with relatively low entropy are detected with small false positive rates, making it diffi-
cult for botnet owners to improve their domain generation algorithm (DGA).

Failing Domain Set Entropy (FENcncip). For a botnet, the domain name generation
algorithm for failed domain names is no different than the domain names successfully
resolved. The features expressed through alphanumeric characters composing the failed
and successful DNS queries generated by a botnet, are therefore very similar. Thus, the
failed domain names can help reduce the latency of analysis and improve detection
since many more names can be analyzed in a shorter period of time, when associated
with the succeeding queries.

To compute the entropy of failed domain names (denoted as FENcncip), we analyze
the failing queries that occur in the vicinity of a successful DNS query. Our hypothesis
is as follows. For a bot issuing a burst of DNS queries to determine the C&C server ad-
dress, the entropy of failed DNS queries present in the burst, is of the same order as the
entropy of the successful queries. We again use the normalized edit distance for deter-
mining the entropy of failed domain names present in a time bin containing successful
query resolution. It is symmetric about the time instant where cncip was observed. It
is noteworthy that all failed DNS queries present in the time bin, may not be related
to the successful DNS query. Such queries deviate the output. The noise is especially
amplified at DNS aggregators which query on behalf of several individual local clients.
Thus, choosing an appropriate time window length is critical for accurate analysis. Dur-
ing evaluation, we show how changing window size affects the performance.

To compute the failed domain entropy (FEN) for a candidate C&C IP address, we
use the following equation:

FENcncip =

∑
(FENclient)

Number of clients
(2)

whereFENclient is the FEN value computed by examining client’s time series of query
generation, with respect to cncip. To elaborate, the failed query entropy for a client is
computed between pairs of strings (failed domain names) present within every time
window in which cncip occurs. Subsequently, all such FEN values are averaged thus
giving FENcncip. The computation of this entropy requires at least two failed domain
names within the window of consideration. A higher number of failures increase the
confidence in the computed FEN value for that window implying that botnets are de-
tected more accurately. Alternately, individual failed queries can be directly compared
with the candidate successful domain names to compute the edit distance relevant to
each failed domain name. We have evaluated both approaches and obtained similar re-
sults. Owing to space constraints, we only report on one of the approaches.

To further filter the candidate set of anomalous IP addresses, we consider only those
addresses with FENcncip greater than a threshold. We choose a conservative thresh-
old to avoid ignoring genuine anomalies. To apply our hypothesis of the proximity of
SENcncip and FENcncip, we use the following inequality to further eliminate false
positives:

(SENcncip − δ) ≤ FENcncip ≤ (SENcncip + δ) (3)
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where δ represents a small bound or the proximity within which FENcncip and
SENcncip are expected to lie. To choose an appropriate δ, we compute the standard
deviation σ of entropy for domains belonging to the known botnet IPs present in our
dataset. Thereby, we choose δ as 3σ.

From the above description, the temporal correlation and entropy related parame-
ters are analyzed and IPs satisfying the outlined malicious criteria, help in identifying
bots within the network as well. In an autonomous system, where the DNS queries are
observed from local clients and DNS aggregators, our technique may be applied re-
cursively at the aggregator, yielding the bots which use the aggregator as their DNS
recursive resolver.

3.2 Correlating Failures for Improved Latency

Here, we present an alternate strategy for speeding up the detection technique which
relies only on successful queries. The work in [11] emphasizes upon applying statisti-
cal techniques such as K-L divergence, Jaccard Index, and Edit distance, to the set of
successful domains for a cncip (SQcncip). Through evaluation, it is shown that a large
set improves the accuracy of anomaly detection. However, accumulating a larger set
requires a considerable amount of time. Therefore, we propose supplementing the set
SQcncip with failed queries that occur within the vicinity of successful DNS queries.
The resulting set is accumulated faster, decreasing the latency of analysis by an order
of magnitude.

The detection technique proposed in this work provides the basis for associating the
queries with successes viz. temporally. In addition to temporal characteristics, to im-
prove the quality of failed domain name set, we propose considering only those failing
domains within the time window, whose entropy characteristics are similar to the suc-
cessful domain set. Such similarity parameters for entropy can help identify a DGA.
Here, we explore supplementing SQcncip with these two main features. Additional fea-
tures as described for detection can also be used.

To realize the faster accumulation of relevant domains, we compute the entropy (nor-
malized edit distance) between a failed domain name and each of the successful DNS
domain names discovered under analysis. A domain yielding an entropy value close to
the average SEN (or the entropy of successful domains) is considered relevant. The
measure of closeness is defined using eqn. 3 as described above. For this particular
experiment, we choose δ = σ. We note that such marginally expensive computation
for identifying relevant domains may improve latency and accuracy. We evaluate this

Table 1. Trace description

ISP trace Campus trace
Trace collection period Nov 03-04, 2009 Aug 22 - Sep 22, 2010
Total number of DNS sessions 1.61 M 112.7 M
White-listed sessions 770.23 K 54.4 M
Total number of failed DNS packets after white-listing 57.72 K 1.28 M
IP addresses analyzed for maliciousness 9948 74.7 K (per segment avg.)
Number of clients (or aggregators) 8472 1735 (per segment avg.)
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correlation strategy for Conficker’s C&C server addresses in section 4. Note that the
analysis of discarded failed domain names identifies irrelevant queries belonging to
services like qq.com and ask.com while few excluded domains belong to Conficker,
strengthening our confidence in the new set.

4 Results

We validate our technique using the DNS datasets described below. For our analysis, we
consider only DNS type A records. Several DNS blacklist based services utilize the A
record to verify whether an IP address, domain name, or an executable (a feature used
by McAfee) is present in the blacklists. To exclude these queries from analysis, we
white-list a total of 31 trusted second-level domain names including several blacklist
services, Content Distribution Network services (such as akamai.net, cloudfront.net)
and popular domains (such as google.com, facebook.com). The white-list helps us focus
on other potentially malicious domains, in addition to refining the failed domains set
used for analysis. Additionally, we avoid processing answers with RFC 1918 (private)
addresses [7].

4.1 Data Sets

Table 1 details the traces used for analysis. The 20-hour long ISP trace contains known
malicious IPs belonging to the Conficker botnet. Using a blacklist, we obtain a set of
100 odd IPs labelled malicious, which we further verify manually by checking against
exhaustive databases such as robtex.com and mywot.com. We believe that these two
sources provide us with the most recent information concerning the queried domains or
IP addresses. The 19 IPs obtained post verification with the above sources, contain two
IP addresses hosting adult websites. We disregard these as non-fluxing behavior. One
C&C address apparently belongs to the domain-fluxing Kraken/Bobax botnet (based
on the domain names we see). However, the Kraken C&C address has a degree of only
two. The 16 remaining IPs belong to Conficker, some of which are sinkhole servers [1].
Nonetheless, we consider them as anomalous as they help keep the botnet alive. As a
result, we consider the remaining 9931 IPs as legitimate. Note that all IPs considered
for ground truth evaluation, have a degree of at least two.

We also use a DNS trace captured at a primary recursive resolver of a university
network. We divide the month-long trace into approximately week-long segments and
present our results on randomly chosen segments. Each segment contains an average of
295K IP addresses returned as DNS responses (after white-listing). As table 1 shows,
approximately 75K IP addresses have degree Dcncip > 2. For the campus trace, we use
the C&C server information from the ISP trace to obtain 29 IP addresses (out of 75K),
labelled as malicious. Since the ground truth information for the ISP trace is relatively
old, we again verify this set manually. As a result, we are left with four Conficker C&C
addresses which are common with those present in the ISP trace.

4.2 Latency Comparison

The latency of detection is expressed in terms of the number of successful domain
names required to analyze and detect a rogue server accurately. Figure 2(a) shows the
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Fig. 3. (a) ROC curve for changing correlation thresholds. (b) Correlation comparison for chang-
ing flux behavior.

gain obtained in terms of time taken to collect a set of botnet domain names. The figure
shows two classes of botnet IPs that we observe. Class I represents those C&C server
addresses where domain fluxing yielded both successful and failed queries. However,
for the C&C server in Class II, the bots issued none or very few failed DNS queries. In
our ISP trace with more than 50 domain names mapping to it, we find eight C&C server
addresses belonging to Class I and two belonging to Class II. Also, we observe that all
four C&C addresses in the analyzed campus trace segment belong to Class I.

Figure 2(a) shows the improved latency for the average time taken by Class I or II
addresses. From the figure, we observe that when failed domain names are correlated
with successful DNS domains, the time taken to collect 50, 100, 200 or 500 domain
names is considerably reduced. Especially, for 500 domain names, we see a gain of
an order of magnitude when the time of collection reduces from approximately 54000
secs to only 4600 secs. With Class II, however, we do not observe any gain since no
failures help in supplementing the set of successful botnet domains. Thus, we infer
that in context of applying statistical techniques for anomaly detection, the proposed
correlation mechanism can significantly reduce the time to collect input required for
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analysis of Class I C&C addresses. Note that we do not obtain 500 successful domains
for the Class II address. The analysis with the campus trace follows analogous behavior.
However, we plot the latency observed when correlating failures with successes, using
the criterion highlighted in section 3.2. We also note a higher initial latency for domain
name collection, owing to slower traffic seen for a campus (Tier-4) as compared to
a Tier-1 network trace. Although, the time of collection is reduced considerably even
with the campus trace. For instance, we observe 100 domains are collected 10K seconds
faster than when using only successful DNS traffic.

While figure 2(a) shows average time taken for Class I and II anomalous entities,
figure 2(b) shows the pace at which those anomalies are detected, for the specific case
of 200 domain names. From the figure, we see that using the both successful and failed
DNS domains, we can detect more than 80% of the total IP addresses, an order of
magnitude faster than when using only the successful ones. We note that the cumulative
detection reaches 100% because of the presence of Class II address.

From the figures, we conclude that considering failed domain names assists in speed-
ing up detection of domain-fluxing botnet. While speeding up the detection through
methods presented in [11], the worst case detection latency is same as the original la-
tency where only domains from SQcncip are used. We also transform botnet detection
to a real-time detection approach through the speeding mechanism presented above, as
well as through the detection strategy.

4.3 Effect of the Correlation Parameter

We evaluate the significance of using the correlation as a feature for anomaly detection.
Figure 3(a) represents the Receiver Operating Curve (ROC) curve for changing thresh-
olds for correlation between DNS successes and failures. The ROC curve shows a de-
crease in false positive rate with a decreasing detection rate, when increasing Corrcncip
thresholds. A higher threshold requirement would imply that failures coincide with the
successful queries more frequently. We would expect benign IP addresses to have a low
correlation value. Hence, increasing the threshold results in decreasing false positives.
For this particular experiment, we note detecting a maximum of 12 (out of 17 C&C
IPs) as the remaining IPs do not have enough domain names for analysis (at least eight
domains). We also note a maximum false positive rate of only 0.6% which primarily
comprises of legitimate IPs with relatively lower entropy than seen for fluxing botnets
and few failures within the window of analysis (that is, a correlation value just above
the threshold). In contrast, fluxing botnets usually have a high number of failed domain
names within the corresponding bin. Note that the false positives include ISP’s intra-AS
DNS resolution queries where the hosts have been assigned random-appearing domain
names.

4.4 Correlation vs Number of DNS Failures

Through this experiment, we aim to study the behavior seen for malicious IPs, in terms
of the number of failed domain names generated. Figure 3(b) shows the correlation
observed for malicious and benign IPs. We compute the correlation for three cases
where we expect at least one, two or four failures to occur within the same window, as
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the cncip. The figure shows a decrease in correlation, for both benign and legitimate
IPs, though the correlation reduces only slightly for the malicious set. Such a study
implies that the correlation criteria may be adapted towards highly fluxing botnets while
keeping fewer false positives.

4.5 Variation in Entropy

We evaluate the impact of information entropy expressed by the domains which map to
a candidate cncip (that is, SENcncip). The effect of changing the entropy thresholds for
considering a cncip is shown through an ROC curve as in Figure 4. The figure shows
an increase in the detection rate and the false positive rate as the threshold for entropy
is decreased. This is in line with the observation that for a low threshold, several sets of
domain names, and in particular those for CDNs satisfy the filters used for detection.
Analogous to the performance with varying correlation threshold, the maximum false
positive rate observed is 0.52%. Analysis of false positives reveals DNSBL services
(redcondor), popular websites (sina.com.cn which offer multiple services), DNS and
HTTP servers providing service to multiple entities, blogging services (blogspot) and
CDN addresses. For instance, we observe redcondor IPs labelled malicious when the
entropy thresholds are 0.35 or lower, indicating that even though correlation may be
high for this DNSBL service, the entropy helps distinguish it from actual anomalies,
when using higher thresholds. In section 5, we discuss how botnets may attempt to
fool our detection approach into generating domains with low entropy. Note that we
determine the detection rate over the 12 detectable botnet IPs, as discussed previously.

4.6 Size of Time Bin

The impact of varying the size of time bins is shown in Table 2. In all experiments,
we observe that false positives increase with larger time bins. The wider bins allow a
higher possibility of inclusion of failures within the corresponding cncip bin, resulting
in an increased Corrcncip value. Thus, more candidate IP addresses meet the criteria
set by filter F2 (in figure 1) and the ones with high entropy may be incorrectly labelled
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Table 2. Impact of changing time bin
size

Window size 4 8 16 32 64 128 256
(sec)

ISP trace
FPR (%) 0.022 0.043 0.043 0.097 0.173 0.259 0.302
TPR (%) 75.0 75.0 75.0 75.0 75.0 83.33 83.33

Campus trace
FPR (%) 0.021 0.039 0.084 0.120 0.209 0.434 0.752
TPR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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malicious. From the table, we also observe that smaller window sizes result in fewer
IP addresses being detected within the ISP trace. An inference of this observation is
that bots spread their DNS queries making temporal correlation between failures and
successes difficult. The false positive rate, however, is less than 0.3% for ISP trace (and
0.75% for campus trace) for all experiments making the choice of larger windows pos-
sible. However, the marginal or no increase in detection rate and false positive rate, for
the change in window size from 4 secs to 128 secs implies that a window as small as
4 secs may be sufficient for detecting a domain-fluxing botnet like Conficker. Note that
the false positives for the campus trace are higher when compared to the ISP trace, as
we frequently observe DNSBL based NXDOMAIN failures within the campus dataset.
Such DNSBL failures affect the correlation/entropy parameters resulting in more be-
nign IPs classified as malicious.

Dyndns is a service for generating customizable/random temporary domain names.
In the ISP trace, we observe several random sub-domains for dyndns which exhibit high
entropy characteristics, with several failures belonging to this service. Our detection
mechanism designates these IP addresses as benign owing to presence of temporally
distant failures, reinforcing our hypothesis of utilizing temporal correlation of failed
domains for anomaly detection through the use of small time bins. We also limit our
study to a maximum bin size of 256 seconds as fast-fluxing botnets have low DNS
Time-To-Live (TTL) values.

5 Discussion

In this work, we detect Conficker C&C addresses which exhibit high entropy owing
to randomized distribution of alphanumeric characters composing the domain names.
However, to evade our detection mechanism, botnet owners may alter the way domain
names are composed. For instance, our separate study has observed combination of
dictionary words being used as an alternate way of domain-fluxing. Some example
domain names that we observe for a botnet are haireconomy.ru, greedycake.ru and
empirekey.ru [2]. The information entropy computed for a set of such domain names
indicates that owing to high edit distance values, such domain names can still be distin-
guished through entropy analysis.

To validate the robustness of our approach, we artificially inject domain queries as
observed above, with some of them failing and some domain names successfully map-
ping to a reserved address. We randomly choose clients to insert such DNS queries.
Based on our study, we still detect the simulated anomalies with similar experiment
parameters as used previously for evaluation. Also, in future if botnet owners formulate
a DGA where the observed entropy is lower than that observed for fluxing botnet de-
tected in this work, our detection mechanism can detect them with low false positives,
as hinted by figure 4.

A direct weakness of our detection strategy is reliance on failed domain names. Our
experiments are based on analyzing the first few successful domain names and thus
correlating failures that are present in their vicinity. In the event that no failures are
present, or failures that occur right after the window of analysis, our detection strategy
may fail in which case switching to the algorithm for correlating failures to supplement
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the set SQcncip would help. Thus, a combination of both the strategies presented in
this work may be useful for fast anomaly detection. It is possible to generate DNS
queries slowly such that the failed queries are outside the time window considered in
our scheme. Such an approach, however, will slow down the bot in identifying its C&C
server and hence constraining the botnet writer again.

Our technique for detection can be mapped back to detect individual bots that issued
the queries for a malicious cncip. For instance, with our campus trace analysis, we
observe 12 hosts within our AS querying for three of the four C&C addresses, and 10
hosts (subset of the 12 above) querying for the remaining C&C address. While the Tier-
1 ISP trace may not have individual clients (we would mostly observe aggregators), the
mechanism applied for a smaller-sized network or when applied recursively, may result
in more accurate detection of anomalies and bots, owing to a better DNS failure signal.

6 Conclusion

In this paper, we proposed methodologies for utilizing failed domain names in the quest
for rapid detection of a fluxing botnet’s C&C server, the bots within the local network,
and the related domain names, and thus revealing the botnet infrastructure. Utilizing
only DNS traffic, we reduce the resource requirement for botnet detection. We also
considerably reduce the latency of detection when compared to previous techniques.
For faster detection, we utilize not only the entropy of the domain names successfully
mapping to an IP address, but also that of the correlated failed DNS queries occurring
within the vicinity of the succeeding DNS query. With our technique, we achieve a false
positive rate as low as 0.02% with a high detection rate. As a future work, we plan to
utilize SERVER FAILURE based DNS failures, or failures related to the name servers,
as a means for detecting botnets which exhibit double fast flux.
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