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Abstract. The foreign mapping mechanism of Xen is used in privileged
virtual machines (VM) for platform management. With help of it, a priv-
ileged VM can map arbitrary machine frames of memory from a specific
VM into its page tables. This leaves a vulnerability that malware may
compromise the secrecy of normal VMs by exploiting the foreign map-
ping mechanism. To address this privacy exposure, we present a novel
application’s memory privacy protection (AMP2) scheme by exploiting
hypervisor. In AMP2, an application can protect its memory privacy by
registering its address space into hypervisor; before the application exists
or cancels its protection, any foreign mapping to protected pages will be
disabled. With these measures, AMP? prevents sensitive data leakage
when malware attempts to eavesdrop them by exploiting foreign map-
ping. Finally, extensive experiments are performed to validate AMP?2.
The experimental results show that AMP? achieves strong privacy resi-
lency while incurs only 2% extra overhead for CPU workloads.

Keywords: Direct Foreign mappings, Virtual machine, Hyprevisor, Pri-
vacy, Secrecy, Data leakage.

1 Introduction

In recent years, virtual machine monitors (VMMSs, or hypervisor) have been
widely adopted in modern computing systems, such as Xen[l], VMware[2] and
KVM[3] etc. The distinguishing security features of hypervisor, especially in VM
introspection (VMI), have aroused many researchers’ attentions. For example,
Livewire[d] proposes the concept of VM introspection and applies it in the field
of intrusion detection. AntFarm[5], Xenprobes[6], XenAccess[7] and VMwall[§]
incorporates VM introspection to monitor real-time memory status and disk ac-
tivity of Guest OS, and consequently infer guest-internal events, such as running
processes, file-system operation and network connections etc. VMwatcher[9] is
implemented for detecting malwares and kernel rootkits, which are difficult to
be done in conventional methods. SBCFI[I0] is used to protect the control flow
integrity of guest OS and improve its reliability and security. With the help of hy-
pervisor, Lycosid[11], Patagonix|[12] and Manitou[13] can effectively detect and
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identify hidden processes.These efforts effectively exploit the fact that hypervisor
can easily fetch memory pages from the target guest OS.

Related Work. In spite of various managemental gains as illustrated above due
to the privileged ability in Xen hypervisor, we observe that it is also desirable to
enforce some restrictions to this privilege to avoid misuse and/or abuse. In Xen
hypervisor, any software running in the Dom0 use-space can obtain arbitrary
memory pages by making direct foreign mappings. This non-restricted memory
sharing mechanism may potentially undermine the privacy of guest OS. For
instance, when a user logs in his bank account, his account’s password will be
temporarily stored somewhere in the memory, and malware residing in Dom0
may eavesdrop the password by performing direct foreign mappings. Murray et
al. [14] suggested to remove all uses of the direct foreign mapping operation
from Dom0 user-space to protect the privacy of virtual machine. Unfortunately,
Dom0 is designed to serve as a managing domain, and a simple removal of all
uses may undermine its availability and corrupt other security measures such as
VM introspection which has been widely used to solve system security problems
(e.g., ABIGI7IROIOMTIATIITH)).

Several efforts have been devoted to privacy protection of virtual machines
without significantly undermining their availability. Yang and Shin proposed
SP3[16] which exploits hypervisor to prevent application information from unau-
thorized exposure and does not require the operating system to be trustable. And
Chen et al[I7] also proposed their scheme to protect the privacy and integiety of
application data based on the same assumptions. However, if malware resides in
Xen’s privileged domain, it can still eavesdrops the application data by foreign
mapping. Borders etal. proposed Storage Capsules [18] which allow users to view
and edit sensitive files in a compromised machine without leaking confidential
data. The key technique is to take a checkpoint of current system state and dis-
able device output. When editing files and re-encrypting are done, the system is
restored to original state and device output is resumed. However, this methodol-
ogy leaves the gap that if storage capsules are equipped in Xen, malware residing
in Dom0 can steal confidential data by foreign mapping.

Our Contributions. In this paper, we propose a novel scheme to protect ap-
plication’s memory privacy in DomU even when there are malwares attempting
to eavesdrop them by direct foreign mappings. The scheme is called applica-
tion’s memory privacy protection (AMP?) which is designed to mainly protect
data resided in memory, such as decrypted secrets, password entered to login
bank account etc. Whereas files stored on disk are out of our concern, because
they can be properly protected via encryption. Compared to the SP? [16], the
Overshadow|[17] and the Storage Capsules [18] proposals, our methodology makes
special efforts to protect secret data in the case that malware resides in priv-
ileged domain(Dom0) in Xen, which enables our scheme to be complementary
to these above three proposals and to provide stronger privacy protection.To
keep availability, instead of removing the foreign mappings as in the Murray
et al. solution [14], our scheme restricted them in a way such that a memory
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page allocated to protected application is unable to be mapped by DomO0 or any
other privileged domains. To this end, we present a kernel module to accept
the request from the user-space and created a hypercall to send the protection
request to the hypervisor. Also, we carefully strengthen the page table updating
handler to intercept any mapping operation so that it can dynamically protect
application’s memory pages.

2 AMP? Scheme

In AMP?2, when an application needs to be protected, it issues the request to
hypervisor. Hypervisor maintains a protected applications memory page counter
table (AMPC table) which is used to keep the page counters registered by the
applicationE When foreign mapping to DomU’s pages occur, hypervisor will look
up AMPC table to get the counters and decide whether the foreign mapping can
be done. At the same time, AMP? also maintains a foreign mapping tracking
table (FMT table) to record all foreign mapping operations. If a memory page
which has been mapped by foreign mapping is dynamically allocated to a pro-
tected application, the previous foreign mapping will be redirected to some other
public page, such as shared info page etc, and the relevant entries in FMT table
will be cleared too. Finally, AMP? must be aware of the events of application
exiting, memory protection canceling and DomU destroying, and consequently
update AMPC table lest legitimate foreign mapping cannot be performed.

fn

"
@ PTE’s address
0‘

Fig. 1. Foreign mapping tracking table, FMT table

In the following, we illustrate with an example how AMP? works. It is as-
sumed that Dom0 has first 4 page out of a total 16 ones and the rest belongs to
DomU. AMP? intercepts all foreign mapping operations and maintains a FMT

! In our scheme, the AMPC table’s size is proportional to that of machine memory,
and one memory page correspond one entry in AMPC table. When a memory page
is registered, the corresponding entry in AMPC table is increased by 1. It is possible
that multiple processes sharing the same memory pages register its memory space
for protection. In this case, the values of some entries are larger than one.
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VFN MFN ATTR VFN MFN ATTR MFN  Machine memory
0x23 0x0c 0x23 0x0d 0x0f

0x22 0x0a 0x22 0x0b 0x0e

0x21 0x08 0x21 0x08 0x0d XXX: normal

0x20 0x07 0x20 0x06 0x0c | Password: secret
The page table of Application 1 The page table of Application 2

0x0b XXX: normal

0x0a XXX: normal
MFN .

(row/col) 0 1 2 3 0x09
o 0 0 0 0 0x08 Bank_account:
top secret

1l 0 0 1 1 0x07 XXX: normal

2 2 0 1 1 0x06 | Tel No.: sensitive
0x05

31 1 1 0 0
0x04

The AMPC table The FMT table

Fig. 2. AMP? example

table to record these operations, as shown in Figure 1. This FMT table shows
that seven machine page frames in DomU have been mapped by Dom0 and these
records are stored in a red-black tree, where the key of node represents the for-
eign mapped machine frame number (mfn). Taking the root as an example, the
page frame 0x09 has been foreign mapped 3 times by Dom0, and the correspond-
ing PTEs’ machine addresses are 0x00, 0x08 and 0x40 respectively, all at page
frame 0x0.Figure 2 shows the process that AMP? protects applications’ memory
pages when they apply protection to hypervisor. In the figure, there are two
applications applying protection to the hypervisor. They occupy seven pages in
total, the mfn of which are 0x6, 0x7, 0x8, Oxa, 0xb, Oxc and 0xd respectively. The
corresponding entries in AMPC table are increased by 1, except 0x8, which is
increased by 2 because it is occupied by two applications simultaneously. Then,
AMP? look up FMT table to check whether these pages have been recorded.
In our example, there are four pages having been foreign mapped, the mfn of
which are 0x7, 0x8, Oxa, and Oxc, respectively. Base on the mfns, AMP? can
quickly locate the target nodes and remove them from FMT table. Meantime,
AMP? can easily get corresponding PTE’s address and modify PTE to redirect
to public page, such as shared info page etc.

3 AMP? Design

3.1 Restricted Foreign Mapping

When a foreign mapping opeartion occurs, AMP? captures it and parses the
mapped machine page frame number (mfn) and the corresponding PTE’s ad-
dress. Then it checks whether the mapped page’s counter in AMPC table is
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above zero or not, which shows that whether some applications have applied
protection. If the counter is more than zero, AMP? fails this mapping request.
Otherwise the mapping can be performed and the operation is recorded in FMT
table. The reason to maintain FMT table is that, with FMT’s help, AMP? can
effectively redirect previous established foreign mappings when an application,
which is not protected before, requests for protection.

3.2 Application Applying for Protection

In the hypervisor-based implementation, we define a hypercall for applications
to issue protection requests.When AMP? is aware of the protection request, it
firstly obtains the head of the list virtual memory area (that is mmap) and the
page global directory (pgd) base on the PID of the application, and then parses
the mfn of the occupied pages,including page directory, page table, and currently
occupied machine frames. Secondly, AMP? updates AMPC table according to
these mfns (The index of AMPC table is mfn, and the value of the table en-
try represents the counters). Because the request is for protection, the value of
corresponding enntries is increased by 1.

In morden OS, the memory page is allocated to a process until it is actually
needed. Therefore, AMP? will capture all the events of normal pages mapping in
DomU, retrieve the page allocated to the protected application, and eventually
register it for protection in the application’s runtime. The detail is illustrated in
section 4. At last, AMP? looks up FMT table to check whether there exists any
recorded mapping. If a mapping is found in FMT table, AMP? will modify the
mapping to redirect to the public page, such as shared info page which is designed
for share infomation between Dom0 and DomU. Furthermore, any child process
created by the protected application will also be automatically protected.

3.3 AMP? Page Table Updating

AMP? page table updating extends the interface of Xen’s. We implement
our checking logic by intercepting all Xen’s page table updating routines.
In these routines, the eventual control structure to be handled is a simple
pair:(ptr, val),the ptr is machine address of PTE, and the val is new contents
(the key is mfn) of PTE. Figure 3 illustrates the AMP? page table updating
framework. It first checks the P (present) bit of val to determine that the updat-
ing is mapping or unmapping. If it is a mapping operation, and even is a foreign
mapping operation, AMP? will ensure that the counter of entry whose index is
val.mfn in AMPC table is equal 0. Only in this case, the foreign mapping can
be performed and meantime the operation will be recorded in FMT table.(In
the opposite case, the foreign mapping failed.) Otherwise, if it is a normal guest
domain page mapping, AMP? will check whether the ptr (that is machine ad-
dress of PTE) locates in a protected process’s address space or not. If it does,
AMP? will increase the page’s counter by 1 in AMPC table based on the val.mfn.
In the meantime, AMP? checks against FMT table to redirect previous foreign
mapping to a public page if this memory page had been foreign mapped before.
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Start: (ptr, val, dom)

Is mapping or unmapping?

Is foreign
mapping?

Chcek val.mfn
against FMT

Chcek the counter
of val.mfn against
AMPC table

Dose ptr belong
to a protected
process?

pdate FMT table pdate AMPC table
Update MPC
Foreign to record the for protection and nomal page Update the nomal page table to cancel nomal page
mapping failed | | foreign mapping redirect previous map FMT table unmap rotection unmap
and perform it foreign mapping P

Fig. 3. AMP? page table updating

Dose ptr belong
to a protected
process?

On the other hand, if the updating is an umapping operation, and it is from a
privileged domain, AMP? will check the val.mfn against FMT table. If a record
is found, it is shown that this is a foreign unmapping operation. And AMP?
will clear the relevant entry in FMT table based on the mfn. Otherwise, if the
unmapping is from the guest domain and the address of PTE belongs to a
protected application, AMP? will update AMPC table to cancel the memory
page’s protection.

4 AMP? Implementation

In order to accept the request for protection from the application, we provide
a hypercall and a kernel module. User explicitly issues a register request, which
triggers the kernel module. Handler in the module parses corresponding page
tables based on the pid, wraps up all mfns as a request, and invokes the hypercall
to pass the request to AMP2. It increases the corresponding entries in AMPC
table and check whether the pages for protection have been mapped by Dom0
in the past. If it is, AMP? will redirect the foreign mapping to other public page
such as shared info page in read-only mode for security.

Due to on-demand paging, it is insufficient to only protect the pages which the
application actively registers. We add codes into the Xen’s handler responsible
for PTE updates to protect the memory page which is dynamically allocated
to the application. In the para-virtualization, OS can update a PTE either by
using hypercall, or with the help of writeable page table. Either way, the hyper-
visor can intercept PTE updates. It is no doubt that hypercall always trap into
hypervisor by definition. Meantime, a modification to a PTE incurs a page fault
which always traps into hypervior too. Therefore, we modify the Xen’s handler
for PTE updates to achieve our goal. The relevant modified handlers include
do mmu update, do update va mapping, and ptwr emulated update.

In AMP?2, besides explicitly canceling its protection by issuing a hypercall,
the exit of a protected application also results in canceling protection. Therefore,
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AMP? needs to intercept page unmaping events for lifting the page’s protection.
Unfortunately, normal page unmapping goes through a fast path for the sake
of optimization and never traps into hypervisor. The only exception is that the
page unmapping caused by foreign mappings. The reason is that Xen modifies
the mm struct.context of an application to add a has foreign mappings field in
it. When the page unmapping occurs, the system call will check whether the field
is set. If it not, hypervisor will unpin the page table. It means that modifying
the page table will not trigger any page fault. If it is set, clearing the PTE will
arouse the page fault and the hypervisor will emulate this direct page table write.
Therefore, we also add an is protected filed in that structure (mm struct.context)
and modify the do exit handler to implement our check logic.

Finally, when a domain exits, the relevant resources allocated to it will be
recycled, and the protection about an application in the very domain will also
consequently be lifted. Therefore, we modifiy the resources recycling routine,
especially the memory pages recycling handler: relinquish memory, to clear cor-
responding entries in AMPC table to lift protection when a domain exit.

5 Evaluation

In this section, we first analytically examine the security guarantees provided by
AMP?2. Then we measure the performance overhead. The machine used in our
evaluation has a 3.0 GHZ Core 2 processor with 1GB of RAM. The version of
hypervisor is Xen 3.3.0, and the kernel’s version is XenoLinux 2.6.18. There are
two virtual machine instances(one is Dom0, the other is DomU). Xen allocates
512 MB of RAM to Dom0, and the rest is allocated to DomU.

5.1 Security Analysis

As memtioned above, FMT table and AMPC table are key data structures to
achieve our goal. Therefore, the integrity of them(including codes of AMP?)
should be guaranteed. According to our design, all of them are kept in hypervi-
sor space, which runs in the highest privileged level. And there is no supported
method to modify the Xen code in runtime even taking control over Dom0. In
other words, it is difficult to bypass AMP? by patching out its check codes or
tampering data structures without recompiling the Xen. Although there was a
backdoor to subvert hyperviosr by overwriting Xen code and data structures by
conducting DMA to Xen’s memory[19], and it is indeed a real threat to AMP?2.
Fortunately, however, Wang[2(] proposed HyperSafe that endows Xen hyper-
visors with a unique self-protection capability to provide lifetime controlflow
integrity. With the help of HyperSafe, the integrity of AMP? can be effectively
protected.

In real usage, whenever an application needs to make sensitive operations, it
just applies a protection request to AMP2. And before the application exists or
cancels its protection, any foreign mapping to protected pages will be disabled.
And the pages which are foreign mapped before will be redirected. Therefore,
AMP? don’t detect whether malware is running in Dom0 or hides its presence.
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5.2 Performance Evaluation

To evaluate the performance overhead introduced by AMP2, we measured the
runtime overhead with some CPU and memory intensive workloads, including
two programs from the SPEC CPU 2000 integer benchmarks, and two other real
world applications.
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Fig. 4. Applications performance normalized to native Linux. (The numbers on top of
bars represent runtime of applications normalized to native Linux without Xen).

We tested the application’s performance in the guest OS in three scenarios:
native Linux, Xen with and without AMP?2. First, we executed these applica-
tions in native Linux and measured the runtime. Then, these applications were
executed in Xen without AMP2. Last, we measured the runtime overhead in the
Xen with AMP2. The final performance result is shown in Figure 4. The perfor-
mance overhead is presented as a relative runtime normalized to native Linux.
Since these applications run in the guest OS, the mainly performance penalty
comes from PTE updating, maintaining AMPC table and checking against FMT
table. Therefore, the performance of an application with a frequent page table
updating will be influenced dramatically. Overall, AMP? increases applications
execution time by only 2% CPU workloads.

Another possible performance penalty may exist in the foreign mapping in
Dom0. When the foreign mapping request is sent to hypervisor, AMP? will
search FMT table, and decide whether the mapping can be performed. And if
the mapping is valid, AMP? will record the pair of pte’s address and target mfn.
Figure 5 shows the times consumed to execute foreign mapping in Dom0. We
tested 16 sets of data in total, ranging from two pages to thirty-two pages, and
compared the consumed time. As the mapped pages increase, the size of FMT
table and the time consumed to manipulate it increase too. However, using for-
eign mapping to map large amount pages is not always needed except for security
reasons, so we can tolerate the performance penalty in most circumstances.
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Fig. 5. Normalized performance of foreign mapping (The x-axis shows the page num-
bers mapped, and the y-axis shows the times consumed to complete foreign mappings)

6 Conclusion

This paper proposed AMP? to protect the application’s memory data privacy
from malware’s evil eavesdropping via foreign mapping. When foreign mappings
to DomU pages occur, hypervisor will decide whether the mappings can be done
based on security requirements. We detailed the modifications and extensions
made to hypervisor. To protect the target application, we presented a kernel
module to accept the request from the user-space and created a hypercall to
send the protection request to hypervisor. Finally, we strengthened the page
table updating handler to intercept any mapping operation so that it can dy-
namically protect application’s memory pages. Extensive practical experiments
were carried out and the results shows that AMP?2 can successfully protect the
memory data privacy without significant performance penalties.
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