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Abstract. Radio-frequency identification (RFID) technology is the en-
abler for the future Internet of Things (IoT) where security will play an
important role. In this work, we evaluate the costs of adding different
security-layer variants that are based on symmetric cryptography to a
low-cost RFID tag. In contrast to related work, we do not only consider
the costs of the cryptographic-algorithm implementation, but also the
costs that relate to protocol handling of the security layer. Further we
show that using a tag architecture based on a low-resource 8-bit micro-
controller is highly advantageous. Such an approach is not only flexibility
but also allows combining the implementation of protocol and crypto-
graphic algorithm on the microcontroller. Expensive resources like mem-
ory can be easily reused, lowering the overall hardware costs. We have
synthesized the security-enabled tag for a 130 nm CMOS technology, us-
ing the cryptographic algorithms AES and NOEKEON to demonstrate
the effectiveness of our approach. Average power consumption of the mi-
crocontroller is 2�W at a clock frequency of 106 kHz. Hardware costs of
the security-layer variants range from about 1100GEs using NOEKEON
to 4500GEs using AES.

Keywords: Low-cost RFID tag, 8-bit microcontroller, AES, NOEKEON,
security layer, low power consumption.

1 Introduction

Over the last years, radio-frequency identification (RFID) technology has found
its way into many applications of our daily life. The integration of RFID func-
tionality into the latest smart phones (e.g. Nexus S, Blackberry Bold 9900)
emphasizes the relevance of this technology. An upcoming application that re-
lies on RFID technology is the Internet of Things (IoT). The vision of the future
IoT is that every object has communication capabilities by equipping it with
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an RFID tag. An important aspect of the IoT is security [5]. Equipping every
object with a tag presumes that they are cheap in price, making the integration
of security a challenging task.

A typical RFID system mainly consists of three components: a back-end
database, a reader, and one or more tags. The reader is connected to the back-
end database and communicates with the tags contactlessly by means of a radio-
frequency (RF) field. A tag is a small microchip attached to an antenna that
receives its data and probably the clock signal from the RF field emitted by the
reader. So-called passive tags also receive their power from the RF field.

The emergence of the IoT will not only pave the way for new applications
but will also require to have additional functionality available on the tags. Such
additional functionality comprises for example file management and security
features, which increases the control complexity on the tag. Today’s RFID tags
use state machines fixed in hardware for handling their control tasks. As soon
as the control complexity increases, the state-machine approach is no longer
practical and even inefficient. Using a microcontroller approach instead that is
more flexible seems to be favorable [13,14]. Having a microcontroller on the tag
for handling the control tasks, allows reusing it for computing cryptographic
algorithms that are necessary for the security features.

Our contribution in this paper is twofold and deals with the integration of
security on low-cost RFID tags. Firstly, we analyze the benefits of having a
combined implementation of protocol handling and cryptographic algorithm on
a microcontroller. We demonstrate this by using a synthesizable 8-bit microcon-
troller that is optimized for low-resource usage. Secondly, we define three dif-
ferent security-layer variants using the block ciphers AES and NOEKEON and
evaluate the hardware costs introduced by them. In contrast to related work, not
only the costs of the cryptographic-algorithm implementation alone are consid-
ered, but also the costs that arise from protocol handling of the security layer.
Our results underline that protocol handling constitutes a significant cost factor
and must not be neglected.

The remainder of this paper is structured as follows. In Section 2 we present
a system overview of our low-cost tag. Section 3 gives details about the deployed
security-layer variants and Section 4 describes the concept for realizing them on
the tag. The implementation results are provided in Section 5. Conclusions are
drawn in Section 6.

2 System Overview

RFID tags consist of a small microchip attached to an antenna. The microchip
contains an analog front-end and a digital part. Complexity of the digital part
ranges from simple state machines with a small EEPROM for storing its unique
identifier (UID), to contactless smart cards with powerful microcontrollers and
special coprocessors. Powerful microcontrollers as they are found in contactless
smart cards are not suitable for our low-cost tag. They consume too much power
and require too much hardware resources. Hence, we are using a self-designed
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8-bit microcontroller for our tag that is optimized for low-resource usage. A
preliminary version of the microcontroller has been published in [12].

Our tag uses the ISO14443 standard for communication and operates in the
high frequency range at a carrier frequency of 13.56MHz. Low-level functional-
ity is implemented according to ISO14443-3 [6]. High-level functionality is im-
plemented according to ISO14443-4 [9] and uses a block-transmission protocol
for exchanging application data as specified in ISO7816-4 [7]. The digital part of
our tag mainly consists of five components: the framing logic, the low-resource
8-bit microcontroller, the bus arbiter, the EEPROM, and the true-random num-
ber generator (TRNG). The framing logic is connected to the analog front-end
and provides a byte interface to the microcontroller. Low-level commands that
are time critical are directly handled by the framing logic, commands on higher
level are forwarded to the microcontroller. The 8-bit microcontroller is the cen-
tral part of our security-enabled tag and controls all other components of the
digital part through an Advanced Microcontroller Bus Architecture (AMBA)
Advanced Peripheral Bus (APB) [1]. The APB is managed by the bus arbiter.

High-level protocol functionality of the tag, including commands for security
and file-management operations, as well as the cryptographic algorithm itself
are entirely implemented in the program memory of the microcontroller. Hence,
there is no dedicated coprocessor that handles encryption or decryption of data
as typically found in the design of security-enabled tags. Random data that is
required for security operations is generated within the TRNG and transferred
to the memory of the microcontroller over the APB. The EEPROM is divided
into files and is used for storing configuration data of the tag, the UID, the cipher
key, and user data. Files are handled through file-management operations that
allow selecting a file, reading from a file, or writing to a file. Depending on the
file, different access rights are granted.

3 Security Layer

Two security services have been selected for implementation on our tag to quan-
tify the costs of adding security functionality. The two security services are tag
authentication and reader authentication. Tag authentication ensures originality
of the tag to prevent simple cloning of. Reader authentication ensures originality
of the reader to restrict access to certain resources on the tag.

The security services are based on a challenge-response protocol using sym-
metric cryptography as defined in ISO9798-2 [8]. We have selected two different
cryptographic algorithms for the security services: AES [11] and NOEKEON [2].
Both algorithms are block ciphers with a block size of n = 128 bits. Selecting two
different block ciphers allows analyzing their influence on the overall implemen-
tation costs. AES has been chosen because it is standardized and provides high
security. NOEKEON has been selected since it provides a good trade off between
security and resource usage (encryption and decryption function of NOEKEON
can be implemented with very little overhead). Using symmetric cryptography
requires that reader and tag share a secret key K. The key can be stored on
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the tag, for example, during a personalization phase that is performed within a
protected environment (i.e. it can be assumed that there is no adversary).

Tag Authentication. The basic principle of tag authentication is illustrated
in Figure 1. The reader sends a randomly-selected challenge rR with a length
of n

2 bits through a tag-authenticate command (AT CMD) to the tag. After
receiving rR from the reader, the tag generates itself a random number rT of the
same length, and encrypts the concatenation of the two random numbers rR | rT
under the secret key K. The encrypted value is then sent to the reader, which
can decrypt it with its secret key. If both reader and tag use the same secret key,
the decrypted value will contain the random number rR that has initially been
selected by the reader, and the tag is treated as authentic.

Reader Authentication. The second security services is reader authenti-
cation, which is depicted in Figure 2. The reader sends a request command
(RQ CMD) to the tag, which in turn generates a random number rT with a
length of n

2 bits that is transmitted to the reader. It is important to note that
the tag has to store rT internally to be able to verify later whether the reader
is authentic or not (consumes n

2 bits of memory). After receiving rT the reader
generates its own random number rR (also with a length of n

2 bits), and en-
crypts the concatenation of the two random values rT | rR (position of random
numbers is interchanged compared to tag authentication) using its secret key K.
As next step, the encrypted value is transmitted through a reader-authenticate
command (AR CMD) to the tag, which decrypts the value using its secret key.
When both reader and tag use the same secret key K, the decrypted value will
contain the random number rT initially selected by the tag, and the reader is
treated as authentic. Alternatively, the reader can also decrypt rT | rR instead
of encrypting it. This has the advantage that the tag only needs to support
encryption and not encryption and decryption, which makes for block ciphers
like AES a significant difference in terms of resource usage. The tag finalizes the
authentication step by sending a message to the reader with the status of the
authentication process (OK or FAIL).

Security-Layer Variants. For a detailed analysis of the costs caused by adding
a security layer to our tag, three security-layer variants are considered. The first
variant (named Variant 1 in the following) only supports tag authentication.
Thus, the tag needs to implement the encryption function of the block cipher
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and to handle one additional command. This is the least-expensive scenario.
The second variant (Variant 2 ) realizes both services tag authentication and
reader authentication. For reader authentication, the alternative method previ-
ously described is used, where the reader decrypts the value rT | rR. Hence,
the tag needs only to implement the encryption function of the block cipher.
Three additional reader commands have to be handled by the tag and memory
for storing rT inside the tag has to be provided. The third security-layer vari-
ant (Variant 3 ) is the most expensive one. Tag and reader authentication are
supported. As in case of Variant 2, three additional reader commands need to
be handled and memory inside the tag has to be reserved for storing rT . How-
ever, the important difference to Variant 2 is that the reader-authentication
approach is used that requires the tag to support also the decryption function
of the block cipher. In order to prevent potential attacks on protocol level such
as reader-impersonation, every tag should use a different secret key K. Further,
the tag accepts an AR CMD only if it directly follows a RQ CMD (i.e. using an
AT CMD after the RQ CMD aborts the reader-authentication process).

4 Concept for Implementing the Security-Layer Variants

The way we implement the security-layer variants on our tag differs from the tra-
ditional approach typically found in related work, where protocol handling and
cryptographic algorithm are implemented separately. There, protocol handling
is implemented in a control state machine fixed in hardware and the crypto-
graphic algorithm is implemented within a coprocessor that is highly optimized
for low-resource usage. A schematic view of this approach is given in Figure 3.
As already shown in various publications, for example in the work of Yan et al.
[13] and Yu et al. [14], using a programable controller for handling complex
control tasks on RFID tags is advantageous. The design becomes more flexible,
easier to maintain, and faster to adapt.

Our tag uses also a programable approach for handling the complex parts of
the protocol (high-level protocol). Complex parts of the protocol include for ex-
ample: reconstructing chained reader commands, handling file-access commands,
and managing configuration-parameters of the tag. Moreover, when adding a se-
curity layer, control complexity further increases. Generation of random values
has to be triggered and the values have to be transferred to concerning locations
in memory. Encryption and decryption of data has to be initiated and results
have to be checked. Combining the security layer with existing tag functional-
ity like handling file-access commands and managing configuration parameters
also increases control complexity. Hence, we only use a fixed state machine in
hardware (called framing logic) for time-critical commands that require low con-
trol complexity (low-level protocol) and whose functionality is typically fixed.
Complex protocol parts are processed by an 8-bit microcontroller optimized for
low-resource usage, which can be reused for computing cryptographic algorithms
as well. A schematic view of this combined approach is presented in Figure 4.
The program code of the microcontroller contains both the implementation of
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the high-level protocol and the cryptographic algorithm. Another benefit of this
combined approach is the easier and more efficient reuse of costly resources like
memory (registers of the microcontroller).

5 Implementation Results

We have implemented the three security-layer variants previously described using
the block ciphers AES and NOEKEON, respectively. For each block cipher,
various versions with different optimization targets are used. Implementation
results are given for a 130 nm CMOS process technology [3] after place and route
using Cadence RTL compiler and involve all components of the tag’s digital part
excluding TRNG and EEPROM.

Central element of our tag is a synthesizable 8-bit microcontroller optimized
for low-resource usage. The microcontroller is based on a Harvard architecture
using an 8-bit wide data memory (register file) and a 16-bit wide program mem-
ory (program ROM). Depending on the targeted application, up to 64 registers
can be included into the register file (specified during synthesis). The program
ROM is realized as look-up table and contains the instructions that the micro-
controller should execute. Size of the program ROM is also flexible and can be at
maximum 128kB. Synthesizing the microcontroller core (control unit, program
counter, and arithmetic-logic unit (ALU)) without register file and program
ROM for a 130 nm process technology results in a chip area of 1067GEs. A pre-
liminary version of the microcontroller has been published in [12] to which we
refer for more details.

5.1 Implementation Results of AES and NOEKEON

The two block ciphers AES and NOEKEON have been used for realizing the
security-layer variants described in Section 3. For each cipher, three different
optimization targets have been used: fast, balanced, and small. The target fast
aims for shortest execution time of the cipher by using techniques like code dupli-
cation and loop unrolling, balanced provides a good trade off between execution
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Table 1. Implementation results of the block ciphers AES and NOEKEON

Algorithm
Optimization

Encryption Decryption Code size
Utilized

target registers

[clock cycles] [clock cycles] [bytes] -

AES
fast 3149 4570 2034 39

balanced 3369 5101 1816 39
small 5104 8286 1602 39

AES fast 3070 n/a 1050 39
(encr. only) small 4270 n/a 858 39

NOEKEON
fast 3817 3785 980 35

balanced 5839 5824 532 25
small 7563 7546 414 23

NOEKEON fast 3805 n/a 652 35
(encr. only) small 7553 n/a 382 23

time and code size, and small is optimized for minimal code size where as many
operations as possible are handled through function calls that can be reused.
Encryption function and decryption function of both ciphers are implemented.
Moreover, for security-layer variants Variant 1 and Variant 2, also encryption-
only versions of the two algorithms are realized (with targets fast and small).
Data that needs to be encrypted or decrypted is located in the register file of the
microcontroller. The cipher key is stored in the EEPROM and has to be loaded
each time during processing of data.

A summary of the implementation results is presented in Table 1. The AES
implementations used in this work are similar to the ones published in [12].
In contrast to AES, NOEKEON requires only bit-wise Boolean operations and
cyclic shifts which can be implemented with compact code size. No large look-
up tables are required. We are using NOEKEON in indirect mode that applies
an additional key schedule to increase resistance against related-key attacks.
The key schedule in indirect mode can be precomputed, since the operation is
independent of the processed data and all rounds use the same key. Hence, a lot
of computation time can be saved when storing the precomputed working key
in the EEPROM instead of the original cipher key.

5.2 Implementation Results of the Security-Layer Variants

Adding security to our tag influences mainly register-file size and ROM size of the
microcontroller. For simplification, costs introduced by the TRNG and through
storing additional data like the cipher key in the EEPROM are neglected. These
costs are independent of the selected security-layer variant and the chosen block
cipher.

Our tag with advanced file-management functionality utilizes 45 8-bit registers
in the register file and 2214 bytes of code in the ROM for high-level protocol
handling. Synthesizing the microcontroller with this configuration for our 130nm
target technology results in a chip size of roughly 9 kGEs (after place and route).
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Only 9 of the 45 registers are permanently used for handling the protocol (e.g.
to store status of tag and parameters). The remaining 36 registers are used
for temporarily storing data (e.g. to reassemble chained reader commands) and
can be reused when computing cryptographic algorithms. Since the computation
of AES on our microcontroller requires 39 registers, only 3 additional registers
are necessary when combining the computation of protocol and cryptographic
algorithm. When using NOEKEON, no additional registers are necessary. Even
the “largest” NOEKEON version consumes only 35 registers and fits within the
36 registers that can be reused from protocol handling.

When selecting a security layer based on Variant 2 or Variant 3 that involves
reader authentication, additional registers are required for storing the random
number rT . Since rT has a length of n

2 = 64bits, 8 additional registers are neces-
sary. As a result, the total number of utilized registers increases to a maximum
of 56 registers when reader authentication is supported and AES is used, and 53
registers when NOEKEON is used.

For determining the overall costs of the different security-layer variants, not
only the size of the register file but also the size of the ROM has to be considered.
ROM size is influenced by the security-layer variants through two parameters:
the implementation of the block cipher and handling of the additional reader
commands. Information about the code size of the different block-cipher imple-
mentations have already been given in Section 5.1. The required code size for
handling the additional reader commands depends on the security-layer variant
and ranges from 250 bytes for Variant 1 to 460 bytes for Variant 2.

Synthesizing our tag with the different security-layer variants for a 130nm
process technology gives actual numbers about the area requirements in hard-
ware. The register file of the microcontroller is built up with latches to minimize
chip area. The ROM of the microcontroller is implemented as look-up table
which gets mapped by the synthesis tool to an unstructured mass of standard
cells. Detailed synthesis results after place and route obtained with Cadence
RTL compiler are provided in Table 2. The least-expensive security-layer vari-
ant, which is Variant 1 with the code-size optimized version of NOEKEON,
results in an area overhead of 1074GEs. The most-expensive security-layer vari-
ant, which is Variant 3 with the speed-optimized version of AES, leads to an
overhead of 4465GEs.

When considering only the area requirement of the block-cipher implemen-
tation, AES encryption function and decryption function can be realized with
2772GEs. Implementing the encryption-only version costs less than 1600GEs.
This is a consequence of heavily reusing registers that are normally utilized for
handling the protocol. The so far smallest AES coprocessor implementation has
been reported by Feldhofer et al. [4] and consumes about 3400GEs. The small-
est encryption-only version of AES, recently published by Moradi et al. [10], has
a size of 2400GEs. NOEKEON comes at much lower costs. The smallest version
of NOEKEON containing encryption and decryption function counts 751GEs.
Comparison with related work is difficult since we could not find any published
low-resource hardware implementation of NOEKEON.
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Table 2. Overhead costs introduced by the different security-layer variants

Security layer
Protocol Block-cipher Total
costs costs costs

Variant Algorithm
Regi- Code

Total
Regi- Code

Total
sters size sters size

- [bytes] [GEs] - [bytes] [GEs] [GEs]

AES

Variant 1
fast 0 250 500 3 1050 1614 2115
small 0 250 500 3 858 1517 2017

Variant 2
fast 8 460 1257 3 1050 1678 2935
small 8 460 1257 3 858 1615 2872

Variant 3
fast 8 452 1165 3 2034 3300 4465
balanced 8 452 1165 3 1816 2981 4146
small 8 452 1165 3 1602 2772 3937

NOEKEON

Variant 1
fast 0 250 500 0 652 887 1387
small 0 250 500 0 382 574 1074

Variant 2
fast 8 460 1283 0 652 1041 2323
small 8 460 1283 0 382 660 1943

Variant 3
fast 8 452 1191 0 980 1545 2736
balanced 8 452 1191 0 532 883 2074
small 8 452 1191 0 414 751 1942

Costs introduced by handling the additional reader commands and potentially
storing the random number rT range from 500GEs to 1283GEs. Although of-
ten neglected in related work, handling the protocol part of the security layer
constitutes a significant portion of the overall costs and can even be the domi-
nating factor. An example is Variant 2 with the code-size optimized version of
NOEKEON, where 66% of the overhead costs are caused by the implementation
of the protocol.

Simulating our microcontroller with the most-expensive security-layer variant
(Variant 3 with speed-optimized version of AES) gives an average power con-
sumption of 2 �W at a clock frequency of 106kHz and a voltage of 1.2V. This
value is very low since the microcontroller is highly optimized for low power
consumption. Another advantage that arises from the combined implementation
of protocol handling and cryptographic algorithm on the microcontroller is that
no additional power is consumed for handling the security layer. When using a
dedicated coprocessor, additional power would be required during computation
of the cryptographic algorithm.

6 Conclusion

In this work we have evaluated the hardware overhead that arises from inte-
grating different security-layer variants into a low-cost RFID tag. The security-
layer variants are based on the cryptographic algorithms AES and NOEKEON.
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We have used a combined implementation of high-level protocol handling and
cryptographic algorithm on a low-resource 8-bit microcontroller. This combined
approach provides high flexibility and allows reusing registers of the microcon-
troller that are only temporarily used during protocol handling. In that way AES
encryption function can be implemented with an overhead of about 1600GEs
and NOEKEON encryption function with an overhead of about 600GEs when
using a 130 nm CMOS technology. The microcontroller has a power consumption
of 2 �W at a clock frequency of 106 kHz. Total costs of the security-layer variants
range from 1100GEs to 4500GEs and consider also the protocol handling of the
security layer. Protocol handling can make up a significant part of the total costs
and must not be neglected.
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