
Anonymity for Key-Trees with Adaptive

Adversaries�

Michael Beye1 and Thijs Veugen1,2

1 Information Security and Privacy Lab, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology,

The Netherlands
m.r.t.beye@tudelft.nl

2 Security Group, TNO, The Netherlands
thijs.veugen@tno.nl

Abstract. Hash-lock authentication protocols for Radio Frequency IDen-
tification (RFID) tags incur heavy search on the server. Key-trees have
been proposed as a way to reduce search times, but because partial keys
in such trees are shared, key compromise affects several tags. Buttyán [4]
and Beye and Veugen [3] devised trees to withstand such attacks, but as-
sumed adversaries to be non-adaptive, without access to side-channel in-
formation. We illustrate how in practice, side-channel information can be
used to attack the system.We also describe adaptive attacks that are easy
to mount and will significantly reduce tag anonymity. Theoretical analysis
of the implications on anonymity in key-trees leads to new requirements
and a new tree construction. Simulation is used to test its performance,
the results showing an improved resistance to adaptive attacks.

Keywords: RFID, Hash-lock protocol, key-tree, anonymity, anonymity
set, adaptive adversaries.

1 Introduction

We consider the problem of authenticating many Radio Frequency IDentification
(RFID) tags through hash-lock protocols, in an efficient way. The tags are au-
thenticated towards the reader through a challenge-response mechanism. Each
tag authenticates itself using some secret key combined with a random value. To
authenticate the tag, the reader will have to check the keys of all tags combined
with all possible random values, in order to find a match. Since this task is very
intensive for the reader, a key-tree is used. Each leaf of the tree represents a
tag, and each edge corresponds to a specific key. Every tag is assigned the keys
that lie on its path from the root of the tree (see Fig. 1). During the authenti-
cation protocol, a tag is authenticated step by step, i.e. edge by edge, such that
the computational load of the reader, and thus the total authentication time, is
lowered.
� Part of this research was performed at TNO for a master’s thesis for the University
of Utrecht (UU). Special thanks go to Gerard Tel (UU) for his advice, and to Harry
Fluks (TNO) for his work on the simulation code.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 409–425, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

410 M. Beye and T. Veugen

key 2 key 3

key A key B key C

key α

key D

key β

Tag 1Aα
(broken)

Anonymity
sets

key 1

Fig. 1. Key-tree with a single broken tag

However, the authentication mechanism should still remain secure. If hard-
ware level tampering is taken into account, keys that were assigned to compro-
mised tags can become known to the adversary. Because partial keys are shared
between neighboring tags in the tree, several additional tags may be partially
broken as well. How to construct the tree such that the impact to an average
tag’s anonymity will be minimal in case of one or more compromises?

In existing work on tree optimization [4, 3], adversaries are assumed not to
mount adaptive or side-channel attacks. However, we argue that in practice side-
channel information may be readily available, and we show how adaptive attacks
on the system can be mounted with minimal effort.

The main contribution of this paper is twofold. First, the effects of adaptive
and side-channel attacks on anonymity in key-trees are studied and distilled into
a new tree optimization problem. Because this problem is diametrically opposed
to Buttyán’s original optimization problem, a hybrid defense strategy is devised
and tested, to provide protection from both naive and adaptive / side-channel
attacks.

The layout of this paper is as follows: Section 2 will outline related work, with
a brief explanation of most relevant concepts. Section 3 will focus on side-channel
information, adaptive attackers and targeted attacks. Section 3.1 considers the
impact of such attacks on key-tree anonymity, and proposes a novel type of tree
as defence. Section 4 will evaluate the performance of this new construction by
means of simulations, and finally, conclusions are drawn in Section 5.

2 Related Work

Molnar was the first to propose using a tree of secrets for RFID tags [9]. Although
originally used for a system built around exclusive-OR and a pseudo-random
function, it can be applied to other challenge-response building blocks. Damg̊ard
and Østergaard Pedersen [5] use the same concept, but speak of correlated keys.
Nohara et al. in their “K-steps protocol” ([10], also dubbed NIBY) propose
to apply trees to the hash-lock setting. They use the term group IDs rather

Anonymity for Key-Trees with Adaptive Adversaries 411

than correlated keys, and their trees are unconventional (being of non-uniform
depth). Note that all these approaches use a sequence of group- and sub-group
IDs to narrow down a tag’s identity. As Molnar mentions, partial keys in such a
tree should be chosen independently and uniformly from a key space of sufficient
entropy. Failure to do so would make the system vulnerable to attack. If partial
keys are chosen properly, the adversary will have a large key space to search,
while the owner of the system can efficiently search through a limited subspace
(the actual tree).

The trade-off that exists between efficiency and security in tree-based pro-
tocols was already pointed out by Avoine [2], with respect to Molnar’s original
trees. Because tags share their partial keys, if one tag is compromised (i.e. has its
memory probed through invasive tampering), an adversary learns partial keys
for several other tags as well. This will enable him to decipher some of their
responses, resulting in reduced anonymity and facilitating tracking. Nohl and
Evans [11] try to quantify this more precisely. They distinguish between sce-
narios where compromised tags are chosen in a selective or a random way, and
compute the information leakage measured in bits. Their work is one of the few
that considers adaptive adversaries (those that selectively choose tags), although
not related to the construction of optimal key-trees.

A paper of particular interest is by Buttyán et al. [4], where the concept of
trees with variable branching factors is introduced, to better preserve anonymity
in case of attack. Anonymity in key-trees is expressed in terms of anonymity sets
(see Section 2.2). An optimization problem is formulated and solved, and the
performance of its solution is evaluated.

In [1], Buttyán et al. attempt to further improve the balance between com-
plexity and privacy in a new “group-based” authentication protocol. However,
because the first stage of this protocol includes an encryption of the tag’s per-
sonal ID, compromise of a group key would result in complete loss of anonymity
for all group members. In short, we believe that the results in [1] are flawed,
and that merging authentication steps into one step makes for more efficient
search, but by definition reduces preservation of anonymity (as follows from
results in [4]).

Beye and Veugen [3] also suggest improvements upon [4], by generalizing
Buttyán’s optimization problem. The resulting trees are provably optimal, and
greatly outperform Buttyán trees for some inputs. Beye and Veugen’s trees tend
to be slightly larger than required, allowing for future system expasion or tag
replacement. The results of [4] and [3] are summarized in Section 2.2.

2.1 Notation

This paper bases its notation on that of Buttyán in [4], but makes minor exten-
sions for adaptive adversaries:

– T = {t1, · · · , tN}: set of all tags in the system
– N : size of T , or actual number of tags in the system
– N ′: number of leaves in the tree (

∏
(B)), or maximum number of tags in the

system, N ′ ≥ N

412 M. Beye and T. Veugen

– c: number of compromised tags
– P (ti): helper function that returns the anonymity set to which tag ti belongs
– Pj : anonymity set j, 0 ≤ j ≤ �
– S: size of a given anonymity set
– T : the set of targeted tags, T ⊆ T
– S̄(T): average size over all anonymity sets for the members of T , in a given

configuration
– S̄〈−〉(c, T): S̄(T), averaged over all configurations of c compromised tags

across T (Definition 2)
– S̄0(c, T): lower bound for S̄(c, T), in the worst-case configuration of c com-

promised tags across T (see Definition 3)
– B = (b1, . . . , bd): a “branching factor vector” (or tuple), representing a tree

of depth d; furthermore, B\{b1, · · · , bx} denotes the vector (bx+1, . . . , bd)
– R(B): resistance to single member compromise for a tree with branching

factor vector B. R(B) ≡ S̄〈−〉(1,T)

N ≡ S̄0(1,T)
N

– Rc(B): resistance to c member compromise for a tree with branching factor
vector B, Rc(B) = S̄〈−〉(c, T)/N

–
∑

(B): shorthand for
∑d

i=1 bi, or the sum over all elements in B

–
∏
(B): shorthand for

∏d
i=1 bi, or the product over all elements in B

Sometimes T is left out of the notation, e.g. in S̄(c), when T = T . Similarly, c
is omitted in case of single member compromise (c = 1).

2.2 Key-Trees

Buttyán et al. noted that a time-anonymity trade-off exists, where narrow, deep
trees allow faster search, while wide, shallow trees provide more anonymity. Ob-
viously, if many tags share the same partial keys, many tags can be excluded
from the search space after each authentication stage, implying faster search.
The increased anonymity can be intuitively explained by the fact that when
partial keys are shared between fewer tags, the amount of information gained
by compromising a single tag is limited. Buttyán uses the concept of anonymity
sets (Pfitzmann and Köhntopp [12], Dı́az [6]) to quantify matters.

Definition 1. Assume a tag ti sends a given message m (or participates in a
protocol execution). For an observer O, the anonymity set P (ti) contains all
tags that O considers possible originators of m. Because all tags in P (ti) are
indistinguishable to O, ti is anonymous among the other tags in the set.

Anonymity sets provide a sliding scale for anonymity, where belonging to a
larger set implies a greater degree of anonymity. Total anonymity holds if the set
encompasses all possible originators in the whole system (one is indistinguishable
among all N tags in T), and belonging to a singleton set implies a complete lack
of anonymity.

Anonymity for Key-Trees with Adaptive Adversaries 413

To measure the level of anonymity offered by a tree, the level of anonymity pro-
vided to a randomly selected member is used. This expected size of the anonymity
set that a randomly selected member will belong to is denoted S̄ by Buttyán and
equals S̄(c, T) in our notation. One could also view it as the average anonymity
set size over all tags, as shown in Equation 1. Note that S̄ can be computed for
any given scenario where a tree is broken into anonymity sets.

S̄ =

N∑

i=1

|P (ti) |
N

=

�∑

j=1

|Pj |
N

|Pj | =
�∑

j=1

|Pj |2
N

, (1)

where P (ti) is a function that returns the anonymity set to which tag ti belongs,
Pj denotes an anonymity set and � is the number of sets. Set P0 is defined as
the set containing the compromised tag, e.g. in Figure 1 P0 = {t1Aα}. The sets
Pi, 1 ≤ i ≤ �, form a partitioning of T .

Buttyán then defines R, the resistance to single member compromise, as S̄
computed for a scenario where a single tag is broken, and then normalizing the
result (as in Dı́az [6]). Note that because we can freely order the anonymity
sets, c = 1 leads to a single unique configuration. With its range of [0, 1], R
is independent of N , allowing for easy comparison between systems of different
sizes.

R =
S̄

N
=

�∑

j=1

|Pj |2
N2

, (2)

where Pj denotes an anonymity set, � is the number of sets, d denotes tree
depth, and S̄ is computed for the (unique) scenario resulting from single member
compromise. Verify that, in this scenario, the number of sets � is indeed equal
to d+ 1.

Buttyán proposes the use of trees with different, independent branching fac-
tors on each level, sorted in descending order (as shown in Figure 1). We will
refer to such trees as “Buttyán trees”, and to trees with a constant branching
factor as “Classic trees”.

Trees will be described by their branching factor vectors B = (b1, . . . , bd),
where the variables bi (1 ≤ i ≤ d) are positive integers denoting the branching
factor at level i.

Buttyán et al. in [4] reach the conclusion that the branching factors near the
root contribute more to S̄ and R. For trees with variable branching factors this
means that a deep, top heavy Buttyán tree can potentially outperform a shallow
classic tree.

We rephrase Buttyán et al.’s optimization problem as:

Problem 1. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the lexicographically largest vector
B = (b1, . . . , bd) subject to the following constraints:

414 M. Beye and T. Veugen

∏
(B) =

d∏

i=1

bi = N , and
∑

(B) =

d∑

i=1

bi ≤ Dmax . (3)

Buttyán et al. provide a greedy algorithm that solves this problem recursively.
It starts with the prime factorization of N and tries to combine prime factors as
long as the sum (authentication time) remains acceptable.

However, Buttyán recognizes that trees need to stand up to more than single
tag compromise. Without going into mathematical detail, Buttyán suggests to
express S̄ for the general case in two different ways:

Definition 2. S̄〈−〉(c) expresses S̄(c) as the average over all
(
N
c

)
possible dis-

tributions of c compromised members across the tag set T .

Our notation is a natural extension of Buttyán’s S̄〈−〉, directly incorporating
c. Depending on how each successive member is picked from the tree, different
anonymity sets are broken down. Buttyán notes that computing S̄〈−〉 is hard,
and therefore suggests an alternative measure:

Definition 3. S̄0(c) represents the worst-case value of S̄(c) for all
(
N
c

)
possible

distributions of c compromised members across the tag set T .

Although not stated explicitly in [4], this worst-case value is attained in (any of)
the most uniform distributions of c compromised tags across T .

Proof. Assume that we are allowed to choose tags to be compromised sequen-
tially, with the aim to minimize the average anonymity set size. The first com-
promised tag leads to a unique configuration. Each subsequent compromised tag
leads to a new configuration, with more anonymity sets (of varying, decreasing
size). To minimize the average set size in the resulting configuration, the next
tag to be compromised should be chosen from (one of) the largest anonymity
set(s) in the current configuration. When sorting anonymity sets in ascending
order, we observe that this is equivalent to chooseing tags (as) uniformly (as
possible given the tree structure) across T . By induction, our claim holds for
any c. ��

Again, Buttyán’s notation S̄0 is generalized to directly incorporate c. Buttyán
correctly remarks that S̄0(c) is far easier to compute, and acts both as a lower
bound and an accurate approximation for S̄〈−〉(c).

A different tree construction was proposed by Beye and Veugen [3], who mod-
ify Buttyán’s optimisation problem to:

Problem 2. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the vector B = (b1, . . . , bd) that max-
imizes R(B) subject to the following constraints:

∏
(B) =

d∏

i=1

bi ≥ N , and
∑

(B) =

d∑

i=1

bi ≤ Dmax . (4)

Anonymity for Key-Trees with Adaptive Adversaries 415

The main idea is that the condition
∏
(B) = N is too strict and could lead to

inferior solutions. It is shown in [3] how key-trees can be optimized for Problem 2,
and that they indeed better retain anonymity when tags are compromised. The
number of leaves in the tree, N ′ =

∏
(B), will generally be larger than the actual

number N of current tags in the system, and therefore gives an additional buffer
of tag IDs which is useful when expanding the system, or replacing compromised
tags. Note that because a key-tree only needs to be constructed once (and as
a pre-computation stage), the efficiency of the tree-building algorithm is not
critical. However, both Buttyán’s algorithm, as that of Beye and Veugen are
sub-linear in the size of inputs N and Dmax.

The difference in output can be illustrated with the help of the examples in
Table 1:

– Set 1, borrowed from [4], shows that Buttyán’s algorithm is not optimal in
the setting of Problem 2. The output of Beye and Veugen’s algorithm is
lexicographically larger, although not much.

– In Set 2, the input contains relatively large primes. Buttyán’s algorithm can-
not improve upon the Classic tree at all, leaving much room for improvement
by Beye and Veugen’s algorithm. The difference in performance is about as
large as between the Classic and Buttyán trees in Set 1.

– For Set 3, Buttyán’s algorithm performs similarly and provides the same
output as Beye and Veugen’s algorithm. Set 3 is a relatively small example
to test whether a large bd has a positive effect on the entire tree.

Table 1. Test cases

Input Classic Buttyán Beye and Veugen Hourglass

Set 1: N = 27000, (30, 30, 30) (72, 5, 5, 5, 3) (73, 5, 3, 3, 3, 3), (70, 3, 3, 3, 2, 9),
Dmax = 90 N ′ = 29565 N ′ = 34020.

Set 2: N = 24389, (29, 29, 29) (29, 29, 29) (84, 4, 3, 3, 3, 3), (80, 4, 3, 3, 10),
Dmax = 100 N ′ = 27216 N ′ = 28800

Set 3: N = 1728, (12, 12, 12) (24, 4, 3, 3, 2) (24, 4, 3, 3, 2) (20, 4, 3, 9),
Dmax = 36 N ′ = 2160

3 Adaptive Adversaries

Buttyán et al. in [4] and Beye and Veugen in [3] assume their adversaries to be
non-adaptive and to select tags at random (naively). Their aim is to provide
optimal defense (by maximizing S̄〈−〉(c, T)) in the expected average case – a
uniformly random distribution of compromised tags.

We would like to model other possible lines of attack and see what is required
to best preserve anonymity in those cases. First of all, we wish to distinguish
the following two goals that an adversary may have:

416 M. Beye and T. Veugen

1. Universal tracking: an attacker wants to track any and all tags in the system.

2. Targeted tracking: an attacker wants to track certain tags in the system.

In both scenarios, naive attacks can be mounted by breaking tags at random,
thus reducing the expected anonymity set size of the average tag (S̄〈−〉(c, T) and
S̄〈−〉(c, T), respectively).

However, clever adversaries may employ additional knowledge to expedite
matters. In cryptographic literature, a side-channel attack is commonly defined
as “any attack based on information gained from the physical implementation
of a crypto-system, rather than theoretical weaknesses in the algorithms, which
is the aim of cryptanalysis.” The following formal definition is based on that of
Köpf and Basin’s [8]:

Definition 4. Let K be a finite set of secret inputs, M be a finite set of mes-
sages, and D be an arbitrary set. We model cryptographic systems as (consisting
of) functions of type F : K ×M → D, where we assume that F is invoked by
two collaborating callers. One caller is an honest agent that provides a secret
argument k ∈ K and the other caller is a malicious agent (the attacker) that
provides the argument m ∈ M . We assume that the attacker has no access to the
values of k and F (k,m), but that he can make physical observations about F ’s
implementation IF that are associated with the computation of F (k,m) (side-
channel information). The malicious agent performs an attack in order to gather
(side-channel) information for deducing k or narrowing down its possible values.
Such an attack consists of a sequence of attack steps, each with two parts: A
query phase in which the attacker decides on a message m and sends it to the
system, and a response phase in which he observes IF while it computes F (k,m).

In the setting of RFID key-trees, the most obvious example of side-channel infor-
mation is serialized issuing. RFID tags are delivered in batches and companies
often implement systems in a structured way. Adversaries that are interested in
breaking the keys belonging to a particular company, departement or person, will
often be able to easily learn some additional information about the RFID tags,
and consequently about the construction of the key-tree. Choosing keys from
the tree and assigned them to tags in such an orderly fashion can give rise to
strong correlations between date of issuing, physical location and key material.

Using this information, an attacker could mount the following attacks:

Ad 1. Universal tracking: to track all tags efficiently, an attacker will aim to make
the average anonymity set size over all tags (S̄) as small as possible. Assuming
that tags are distributed and compromised at random (no known side-channel
information can be exploited), the expected remaining anonymity after an at-
tack is equal to S̄〈−〉(c, T) (by definition). In some cases, an unknown order in
the tree (i.e. serialized issuing) can work against this adversary’s goals, by mak-
ing the spread of his compromised tags less uniform than he expects. However,
if the adversary manages to exploit such an underlying source of side-channel
information, it can help him to select his compromised tags with a more uniform
distribution. This will shift the results closer to the worst-case value S̄0(c, T).

Anonymity for Key-Trees with Adaptive Adversaries 417

Ad 2. Targeted tracking: when attacking a specific subset of tags T ⊂ T , without
side-channel information, the expected result S̄〈−〉(c, T) = S̄〈−〉(c, T); tags in T
are no different from the average tag. However, if the attacker is able to exploit
side-channel information, his efforts can be focussed on breaking tags in T (or in
branches that contain members of T). Note that breaking other tags does have
a limited impact : it reduces the set size for those tags (if any) in T which have
not had any of their keys revealed yet (and are thus in the same anonymity set).
Still, breaking tags in T itself has by far the largest impact.

Even worse, we argue that a stronger and more readily available source of
side-channel information exists, when considering adaptive attacks :

Definition 5. In an adaptive attack, the attacker can use the observations
made during his first n queries to IF to choose his message m for the n + 1st
query.

The most obvious adaptive attack in the current setting would be to test target
tags before deciding whether to compromise them or not. Because we already
assumed that our attacker has the capability to interrogate a tag and observe its
response (for the purpose of tracking), this type of attack would be almost trivial
to mount in practice. By simply interrogating a candidate tag, the adversary can
determine how many (and even which) keys it shares with his set of “already
known keys”.

An adaptive adversary has the ability to compromise only those tags that best
suit his purposes (i.e. do the most harm with a minimal c), making the following
attacks possible:

Ad 1. Universal tracking: if a candidate tag shares too many of its keys with
previously compromised tags, it can already be tracked to some extent. It does
not form a worthy target for actual compromise, because it would not yield
enough new keys. Only tags from unknown parts of the tree, that (mostly) use
unknown keys, will be compromised. The resulting distribution is more uniform
than the expected case, and more closely resembles the fully-uniform worst-case
distribution. The rapid breakdown of remaining large anonymity sets will push
anonymity metrics towards their worst-case value S̄0(c, T).
Ad 2. Targeted tracking: if a candidate tag replies with partial keys that are
known, it is located in a known part of the tree, and the tag is selected for
compromise. This focusses the efforts in a particular sub-tree and rapidly breaks
down the anonymity of this subset of tags. Although it would be hard for the at-
tacker (without additional knowledge) to choose which part of the tree to attack,
a (randomly selected) subset T can be attacked in particular. Attacks that com-
bine adaptive strategies with other side-channel information (e.g. exploitation
of serialized issuing) would have a serious impact the anonymity in specifically
chosen target sets.

To keep the input to our simulations manageable, we assume that tags in T are
adjacent tags in the tree. We believe this will fit (most) real-world sources of
side-channel knowledge. However, to model adversaries trying to track a subset

418 M. Beye and T. Veugen

T of a different shape (e.g. adaptive testing in a tree with no internal order), a
different model would be required.

We generalize S̄(c, T) to represent the anonymity provided to a randomly
selected tag ti ∈ T , for some target set T ⊆ T .

S̄(c, T) =
∑

i∈T

|P (ti) |
|T | , (5)

where P (ti) is a function that returns the anonymity set to which tag ti belongs.

Definition 6. S̄〈−〉(c, T) expresses S̄(c, T) as the average over all
(
N
c

)
possible

distributions of c compromised members across the tree T .

Definition 7. S̄0(c, T) represents the worst-case value of S̄(c, T) for all
(|T |

c

)

possible distributions of c compromised members across the (sub-)tree contain-
ing T .

The worst case for tags in T is attained for those scenarios where all c tags fall
into those branches containing members of T , and the spread of these tags is
(as close as possible to) uniform. If c ≥ |T |, then the remaining tags are spread
uniformly (so far as possible) over the remaining branches of the tree.

3.1 Theoretical Impact of Targeted Attacks

Buttyán notes that his result graph for S̄0(c, T)/N seems to “become a constant”
when c = b1. The same trend was observed in the simulation results in [3].
Buttyán mainly uses it to support his claim that the preservation of anonymity
relies mostly on the first element of the branching factor vector [4], while we use
this observation as our foundation for a better defense against targeted attacks.
First we expand upon the informal explanation of this observed behaviour given
in [3], which will clearly illustrate the impact of side-channel attacks.

Definition 8. We define a turning point of function S̄0(c, T)/N as a point
where its second derivative exhibits a jump discontinuity. In specific, the rate of
decline of S̄0(c, T)/N suddenly slows down by an order of magnitude.

Corollary 1. Let ci be the number of compromised tags for which S̄0(c, T)/N
reaches its i-th turning point. Then ci =

∏
(b1, b2, · · · , bi) (product of the first i

branching factors of B). The value of S̄0(ci, T)/N will equal R(B\{b1, b2, · · · , bi}),
in other words is determined only by the remaining branching factors, further down
in B.

Proof. Assume the worst-case scenario, where the distribution of broken tags
across T is always at its most uniform (by definition of S̄0(c, T)). This implies
that each subsequent tag to be broken, must come from (one of) the largest
remaining anonymity set(s). For c ≤ b1, each newly compromised tag will thus
come from a top-level branch containing zero compromised tags. Each com-
promise reveals one new top-level key, which was previously unknown to the

Anonymity for Key-Trees with Adaptive Adversaries 419

adversary. This key is shared with a whole top-level branch containing N
b1

tags,

and its compromise has a large impact on S̄0(c, T)/N .
For b1 < c ≤ b1 · b2, targets will again fall in the largest remaining sets, but

these are now housed in the second-level sub-trees and are much smaller than
before. All top-level and b1 of the second-level keys are known, so the following
b1 · b2 − 1 compromised tags each yield one new second-level key as the most
significant result. These keys are shared among less tags (N

b1·b2). Thus, each

additional compromise has a smaller impact on S̄0(c, T). Although S̄0(c, T)/N
does not actually become a constant, the speed of its decline changes drastically.

Such a turning point will occur whenever all keys from a given level � have
become known to the adversary. There are

∏
(b1, · · · , b�) such keys, so to reveal

them requires (in this worst-case) an equal amount of compromised tags. This
means that c1 = b1, c2 = b1 · b2, · · ·, cd =

∏
(B). In these cases, all sub-trees (τj

for 1 ≤ j ≤
∏

(b1, · · · , b�)) suspended below the branches on level � are identical,
and each contains exactly 1 broken tag. From the fact that all tags are housed in
an identical subtree, it follows that S̄0(c, T)/N for the whole tree is equal to the
local S̄0(1, τj)/N

′ for any j. By definition, S̄0(1, τj)/N (for a tree τj containing 1
broken tag) equals R(B′) (from Equation 2, also verified by observing a subtree
with one compromised member in Figure 1). However, the local S̄0(1, τj) and
R(B′) are based on τj ’s local B

′ = B\{b1, b2, · · · , b�} and N ′ =
∏

(b�+1, · · · , bd).
By induction on �, it follows that S̄0(c, T)/N for the whole tree T assumes

the values R(B\{b1}) (for c = c1), R(B\{b1, b2}) (for c = c2),· · ·,1 (for c = cd)
at its turning points. Hence, the remaining anonymity of the remaining tags is
dependent only on the remaining branching factors b�+1, · · · , bd further down in
the tree. ��

We expect a similar situation to hold for S̄<−>(c, T), although we cannot offer a
formal description. According to the Coupon Collector’s Problem [7], one would
need to break approximately b1 · log(b1) tags to hit each top-level branch once
(assuming branches contain sufficiently many tags, such that breaking tags does
not change the probabilities for each branch significantly). However, because tags
picked from other branches also (slightly) impact S̄〈−〉(c, T), we expect a turning
trajectory rather than an exact turning point. Still, we expect the rate of decline
for S̄<−>(c, T) to depend on the same factors as S̄0(c, T).

We have seen that given side-channel information, a target subset T can be
rapidly broken down into small anonymity sets. With a Universal Attack based
on side-channel information, attackers can cause S̄0(c, T) and S̄〈−〉(c, T) to reach
their turning points and associated low anonymity values prematurely. Beye &
Veugen’s Optimized Buttyán trees [3] remain the best defense in this case.

For Targeted Attacks, the situation in the branches containing T will strongly
resemble the one described in the previous paragraphs. Given enough side-
channel knowledge, directed attacks inside a smaller sub-tree ignore the top-
level branching factor(s). Because the adversary can pick tags from the right
branches accurately, the remaining branches offer little to no protection. We
therefore postulate that the values reached by S̄0(c, T) and S̄〈−〉(c, T) after the
turning points are most important, not when the turning points are reached.

420 M. Beye and T. Veugen

These values mostly depend on the tail end of B, not the head. Also, we feel
that the difference between belonging to a large and a medium anonymity set is
less critical than the difference between belonging to a small anonymity set, and
having no anonymity at all.

3.2 Hourglass Trees

Based on the conclusions of the previous section, we arrive at two conflicting
optimization problems. Maximizing the top branching factor is key in defend-
ing against Universal and naive attacks, while the lower branching factors play
a central role in defending against Targeted Attacks. Without making further
assumptions about real-world adversaries, an optimal way of allocating weights
cannot be found. To test our hypotheses experimentally, we propose the “Hour-
glass” tree shape. It is top-heavy like Buttyán or Beye & Veugen trees (to provide
defense against naive and Universal Attacks), but some weight has been shifted
to the lowest branching factor to defend against heavy Targeted Attacks. We
expect this tree shape to perform better in such scenarios, without sacrificing
too much of their strength versus Universal or naive attacks.

Without being able to formulate exact requirements for the tree shape, de-
signing a new tree-building algorithm is not possible. For the purpose of our
experiments we will manually adjust B as follows. The bottom branching factor
bd of Beye & Veugen’s Optimized Buttyán trees is normally between 2 and 4.
We will increase it to a value of around 9, by moving weight from the other bi,
which we expect will provide noticeable results. Note that in some cases, such
modification allows for the merging of other branching factors, resulting in a
more shallow tree (see Table 1).

4 Simulation

It has already been shown in [3] that Beye & Veugen’s trees can yield a lexi-
cographically larger B than Buttyán’s approach. We now want to evaluate our
Hourglass trees and compare them to Classic and Beye & Veugen trees. To do
this, we will compute anonymity measures for each of these tree shapes, under
different circumstances.

S̄0(c, T), S̄〈−〉(c, T) and S̄0(c, T) will be computed by iterating over all pos-
sible scenarios in an efficient way, and taking the (weighted) average and mini-
mum. We will estimate S̄〈−〉(c, T) by means of random sampling, for reasons of
tractability. Where applicable, anonimity measures for trees with N ′ > N tags
will be scaled by a factor N

N ′ as discussed in [3].
Side-channel knowledge (or adaptive behavior) is modeled by a probability P

for successfully applying knowledge to select a tag from T , where a higher P
represents more side-channel knowledge. In case of failure (probability 1−P), a
random tag is selected from the entire (uncompromised) population. Hence, the

total probability of selecting the (c+ 1)th tag from T equals P + |T |−c
N−c (1− P),

excluding the c tags that were previously compromised.

Anonymity for Key-Trees with Adaptive Adversaries 421

In our experiments, |T | = 100, while P = 0.1, 0.5 and 1.0. To approximate
S̄〈−〉(c, T), 10,000 random samples were taken and averaged. This resulted in a
smooth graph for all inputs, except where P = 0.1, for Sets 1 and 2. In these cases
100,000 samples were taken, leading to better results. Running all calculations
for 0 ≤ c ≤ 100 was still feasible on the hardware used (Pentium-IV 2.0GHz
running Windows XP).

Table 1 shows the three input sets for which we have evaluated the Classic,
Beye & Veugen and Hourglass trees.

4.1 Graphs for Naive Attacks

Figures 2, 3 and 4 show the performance of the different trees, in the case of
naive attacks (compromise at random, without side-channel knowledge). The
datasets are selected by relevance, and we discuss how these results relate to our
hypotheses and claims.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

4

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
0
(c

,T
)

Classic
Beye & Veugen (scaled)
Hourglass (scaled)

Fig. 2. S̄0(c, T) for Set 1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
0
(c

,T
)

Classic
Beye & Veugen (scaled)
Hourglass (scaled)

Fig. 3. S̄0(c, T) for Set 2

422 M. Beye and T. Veugen

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
<
−

>
(c

,T
)

Classic
Beye & Veugen
Hourglass (scaled)

Fig. 4. S̄〈−〉(c, T) for Set 3

Figure 2 shows the Beye & Veugen and Hourglass trees performing similarly
for Set 1, in terms of S̄0(c, T). The same trend was observed for Set 2 (Figure 3),
and for S〈−〉(c, T) in Set 3 (Figure 4). The fact that the differences between
Hourglass and Beye & Veugen trees is not large in the absence of side-channel
knowledge, again supports our claim that the value of S̄ depends mostly on the
first element of B. It also confirms our hypothesis that a small decrease in b1
does not have major negative impact on the anonymity in case of naive attacks.

The Hourglass tree shape seems to offer no benefit in the non-adaptive (naive)
scenario’s (as expected), and performs only slightly worse than the other trees
in terms of S〈−〉(c, T) (as in Figure 4).

4.2 Graphs for Targeted Attacks

Figures 5 and 6 show the results in case of Targeted Attacks (on a target subset
T of size 100, with the aid of side-channel knowledge or adaptive testing). Again,
a selection of result datasets is shown, based on relevance.

It is interesting to observe Classic trees performing very well in these sce-
nario’s, which is due to their large value of bd. As expected, superior results for
S̄0(c, T) are attained with Hourglass trees, second only to Classic Trees. They
outperform Beye & Veugen’s Optimized Buttyán trees significantly (Figure 6).
However, Beye & Veugen’s trees can perform better in terms of S̄〈−〉(c, T) at
low c values, as was the case for Set 3 (0 ≤ c ≤ 20) in Figure 5.

For S̄〈−〉(c, T), Hourglass trees under perform in scenarios with low side-
channel knowledge (P = 0.1). Although we did not expect this, it can be ex-
plained by the fact that the expected average distribution will remain closer to
uniform than in cases with more side-channel knowledge – in other words, we
remain close to a naive attack. For low P values, S̄〈−〉(c, T) behaves much like
S̄〈−〉(c, T), for which we have seen that Hourglass trees degrade performance
(slightly).

In case of higher side-channel knowledge, the strength of Hourglass trees be-
comes more apparent. An intersection point exists (see Figure 5), where

Anonymity for Key-Trees with Adaptive Adversaries 423

Hourglass trees start outperforming Beye & Veugen trees. This point arises ear-
lier when stronger side-channel knowledge is available. Indeed, for the worst-case
S̄0(c, T), P = 1.0, the turning point comes very early (c = 20), and the Hourglass
tree performs significantly better than its competitor (see Figure 5).

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
<
−

>
(c

,T
)

Classic
Beye & Veugen
Hourglass (scaled)

Fig. 5. S̄〈−〉(c, T) for Set 3, P = 1.0

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

number of compromised members c

av
er

ag
e

se
ts

iz
e

S̄
0
(c

,T
)

Classic
Beye & Veugen (scaled)
Hourglass (scaled)

Fig. 6. S̄0(c, T) for Set 2

5 Conclusions and Future Work

Simulation results support our intuition with regards to our proposed anonymity
measures S̄0(c, T) and S̄〈−〉(c, T). They represent the anonymity in a target
subset T in the same way that S̄0(c, T) and S̄〈−〉(c, T) do for the whole tree T .
Their rate of decline is directly related to the branching factors. As anticipated,
the remaining anonymity in case of Targeted Attacks depends heavily on the
branching factors located in the tail of B. This means that maximizing S̄(c, T)
and S̄(c, T) are indeed contradicting goals, and real-world assumptions regarding
attackers will dictate where the emphasis should lie.

424 M. Beye and T. Veugen

The Beye & Veugen trees perform well in terms of S̄0(c, T) and S̄〈−〉(c, T), but
not for S̄0(c, T) and S̄〈−〉(c, T) with high side-channel knowledge and c values,
as we expected.

The proposedHourglass trees perform best in terms of S̄0(c, T) and S̄〈−〉(c, T),
but only with high side-channel knowledge and c values. Their performance in
terms of S̄0(c, T) and S̄〈−〉(c, T) is only slightly below that of Beye & Veugen
trees. To summarize: if we expect heavy Targeted Attacks, Hourglass trees will
provide prolonged protection, at only a small “cost” in overall anonymity in
other attack scenarios.

Some possible directions for future work are:

– Better simulation of real-world scenarios, specifically side-channel knowledge
and adversarial behavior. For example modeling non-continuous target sets,
and realistically estimating the size of target sets, minimum and maximum
values for c, and the amount and nature of side-channel knowledge available
to adversaries.

– Given the trade-off between maximizing S̄(c, T) and S̄(c, T), find a way to
prioritise between defending against targeted and general attacks, and design
an algorithm to optimize trees accordingly.

– Look into new measures for anonymity which do not show absolute declines,
but the ratio between current anonymity set size and the decline caused by
the next tag being compromised. This would fit the idea that a decline in
set size from 1,000 to 999 does not have the same impact as going from a
set of size 2 to having no anonymity at all.

References

1. Avoine, G., Buttyán, L., Holczer, T., Vajda, I.: Group-based private authentication.
In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks, pp. 1–6 (2007)

2. Avoine, G., Dysli, E., Oechslin, P.: Reducing Time Complexity in RFID Sys-
tems. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306.
Springer, Heidelberg (2006)

3. Beye, M., Veugen, T.: Improved Anonymity for Key-trees. Cryptology ePrint
Archive (2011)

4. Buttyán, L., Holczer, T., Vajda, I.: Optimal Key-Trees for Tree-Based Private
Authentication. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp.
332–350. Springer, Heidelberg (2006)

5. Damg̊ard, I., Pedersen, M.Ø.: RFID Security: Tradeoffs between Security and Ef-
ficiency. Cryptology ePrint Archive, Report 2006/234 (2006)

6. Dı́az, C.: Anonymity Metrics Revisited. In: Dolev, S., Ostrovsky, R., Pfitzmann,
A. (eds.) Anonymous Communication and its Applications. Dagstuhl Seminar Pro-
ceedings, vol. 05411, Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl (2006)

7. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors, caching
algorithms and self-organizing search. Discrete Appl. Math. 39(3), 207–229 (1992)

Anonymity for Key-Trees with Adaptive Adversaries 425

8. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: ACM Conference on Computer and Communications Security, pp. 286–
296 (2007)

9. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices,
and architectures. In: CCS 2004: Proceedings of the 11th ACM Conference on
Computer and Communications Security, pp. 210–219. ACM, New York (2004)

10. Nohara, Y., Nakamura, T., Baba, K., Inoue, S., Yasuura, H.: Unlinkable iden-
tification for large-scale rfid systems. Information and Media Technologies 1(2),
1182–1190 (2006)

11. Nohl, K., Evans, D.: Quantifying Information Leakage in Tree-Based Hash Proto-
cols (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 228–237. Springer, Heidelberg (2006)

12. Pfitzmann, A., Köhntopp, M.: Anonymity, Unobservability, and Pseudonymity -
A Proposal for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

	Anonymity for Key-Trees with AdaptiveAdversaries
	Introduction
	Related Work
	Notation
	Key-Trees

	Adaptive Adversaries
	Theoretical Impact of Targeted Attacks
	Hourglass Trees

	Simulation
	Graphs for Naive Attacks
	Graphs for Targeted Attacks

	Conclusions and Future Work
	References

