
Context-Related Access Control

for Mobile Caching

Zhi Xu1, Kun Bai2, Sencun Zhu1, Leslie Liu2, and Randy Moulic2

1 Pennsylvania State University, University Park PA 16802, USA
{zux103,szhu}@cse.psu.edu

2 IBM T.J. Watson Research, 19 Skyline Drive, Hawthorne NY 10532, USA
{kunbai,lesliu,rmoulic}@us.ibm.com

Abstract. Mobile caching is a popular technique that has been widely
applied in mobile applications to reduce the bandwidth usage, battery
consumption, and perceived lag. To protect the confidentiality of cached
data, the data with sensitive information has to be encrypted as it is
cached on mobile devices. Currently, several mobile platforms provide
encryption utilities which allow mobile applications to encrypt their local
caches. However, existing encryption utilities are too coarse-grained and
not directly applicable to dynamically enforcing fine-grained context-
related access control policies in context-aware mobile applications.

In this paper, we first show the necessity of new encryption schemes in
context-aware mobile applications by examples, and then propose three
encryption schemes for enforcing context-related access control policies
on cached data. The proposed encryption schemes adopt different cryp-
tographic techniques. By comparing the cache hit rate and communi-
cation gain, we analyze the impact of applying the proposed schemes
to the efficiency of the existing mobile cache management algorithm in
context-aware mobile applications. Further, we evaluate the performance
of these schemes through extensive simulations, and suggest the suitable
application scenarios for each scheme.

Keywords: Context-related access control, mobile caching, data en-
cryption schemes, context-aware mobile applications.

1 Introduction

1.1 Mobile Caching

Mobile caching is one of the most widely used techniques in web browsers, stream-
ing media applications, and data access applications on mobile devices [1] [2] [3].
Caching recently used data (e.g. routes, pictures of sights) on a mobile device can
help the mobile device to reduce the bandwidth usage, battery consumption, and
perceived lag.

As most third party mobile applications are only allowed to implement their
caches in the application space, one security concern for these mobile applications
is the confidentiality of cached data on mobile devices. The attacker may be

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 389–408, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

390 Z. Xu et al.

able to access the content of cached data easily if it is stored in plaintext. For
example, it has been shown in [4] that, all iPhones, iTouchs, and iPads running
iOS 4.0 or later versions log the user’s location information in plaintext to a
consolidated.db file. If the attacker can have access to an iPhone/iTouch/iPad or
its synchronized Mac/PC, he can easily map the movement of device using the
cached information in consolidated.db with tools, like iPhone Tracker.

To protect the confidentiality of cached data, the straightforward way is to
encrypt the sensitive data as it is cached on the mobile device. Several modern
mobile platforms provide encryption utilities which allow mobile applications to
encrypt their local caches, for example the data protection features in iOS 4, the
password-based encryption feature in BlackBerry OS, and the EncryptedLocal-
Store class in Adobe AIR.

1.2 Context-Aware Mobile Applications

In context-aware mobile applications, the application interacts with the user ac-
cording to its current context, which includes the current location of the mobile
device, the current state of the user, the current time, etc. [5] [6]. With the ad-
vances in portable devices and sensors, many context-aware mobile applications
have been introduced. For example, [7] proposed Smart Signs, a context-aware
guidance and messaging system providing guests customized route information;
[8] proposed a framework for mHealth in which the context-related policies are
applied when the physician attempts to access the patient’s Electronic Patient
Record (EPR); and [9] presents a mobile tourism application, TIP, which de-
livers information about sights based on the user’s current context.

Obviously, adopting mobile caching technique can also help improve the qual-
ity of service in these context-aware mobile applications. However, to enforce
context-related access control policies on cached data, the existing encryption
utilities are not directly applicable due to several unique challenges.

First, the data access policies to cached data (i.e., data file) in context-aware
mobile applications are fine-grained and context-related. Briefly, each data down-
loaded in the cache is associated with a unique context-related access control pol-
icy. Different data may have different access control policies. The cached data
accessible in the current context may no longer be allowed to access when the
context changes. Mostly, existing encryption utilities are coarse-grained and all
data cached in one application are encrypted with the same key. This key is usu-
ally generated basing on the application ID and user ID. Therefore, additional
extensions are required to suit for context-related policy enforcement.

Second, access control policy enforcement in context-aware mobile applica-
tions must be capable of reacting dynamically to the changes of context at run-
time, while keeping the efficiency of caching. Existing encryption utilities only
support one single context in the cache. When the context changes, the cached
data must be cleared. Especially, in mobile applications, the context of a mobile
device may change frequently. Erasing cached data whenever context changes
may greatly affect the efficiency of mobile caching. Otherwise, if the mobile

Context-Related Access Control for Mobile Caching 391

application is compromised, all cached data downloaded in both current context
and previous contexts will be leaked.

In this paper, we make the first effort to analyze the impact of enforcing
context-related access control policies on cached data to the efficiency of mobile
caching in context-aware mobile applications. Specifically,we present three en-
cryption schemes using different cryptographic techniques: Flush Scheme, Con-
text Based Encryption (CBE) Scheme, and Attribute-based Encryption (ABE)
Scheme. These schemes differ in the strategy to manage the cached data ac-
cording to context-related access control policies. Among these schemes, our
experiment results demonstrate that the CBE scheme is most suitable for mo-
bile applications in which the user is usually associated with a static set of
contexts and there is little data sharing among different contexts. For example,
in a mobile lab application, a scientist is assigned different data access privileges
when working on different projects and the project assignment does not change
frequently. The ABE scheme works best in mobile applications where the user’s
context changes frequently and some cached data are accessible in different con-
texts. For example, in the mHealth application, the context of a physician may
change frequently and unpredictable depending on the patient he is treating.

2 An Example of Context-Aware Mobile Health
Information Application

In this section, we present a context-awaremobile health information application,
shown in Figure 1, to explain the necessity of applying context-related access
control policies on cached data. Also, we show that new encryption schemes are
needed to provide confidentiality protection to cached data while allowing the
mobile application enjoying the benefits of mobile caching.

As shown in Figure 1, Dr. House is a physician who has a mobile device
(e.g. iPad) with a context-aware mobile health information (MHI) application
installed on the device. This MHI application allows Dr. House to download and
read documents on the mobile device via the application’s user interface. These
documents are stored in the hospital’s content server and protected by context-
related access control policies. In this application, the context is determined the
status of user, for example, the task Dr. House is performing, the current indoor
location of mobile device, the patient who is being treated.

The red trace in Figure 1 shows the trace of Dr. House during a typical work-
day. In different contexts during the trace, Dr. House will be assigned different
privileges by the authority. Here we present two types of documents with dif-
ferent context-related access control policies to show the necessity of applying
fine-grained access control on the mobile cache in this application.

One type of documents is the patient’s Electronic Patient Record (EPR). To
protect an individual patient’s privacy, a physician is allowed to read the patient’s
EPR if and only if he is treating this particular patient in the patient’s room.
For example, in the first visit to Ellen, the MHI application downloads Ellen’s
EPR onto the mobile device and saves it in the cache. When Dr. House leaves

392 Z. Xu et al.

Cafeteria

Office

Emergency Room

Alice

Inpatient Care

Ellen

David

Bob

Calvin

User
(Dr. House)

JustinFeye

Cache

Cache
Manger

OS

MHI App

App
Functions

Mobile Device

Content
Server

DB

Authority

Fig. 1. A mobile health information system

Ellen’s room, the Ellen’s EPR may stay in the cache but can not be accessed any
more because of context change. When Dr. House visits Ellen again, the MHI
application can display Ellen’s EPR by reading its copy in the cache.

The other type of documents is theOn-Duty Notes which contains instructions
of standardized operations in the hospital. Different to EPRs, on-duty notes are
less sensitive and it can be accessed in different contexts as long as Dr. House is
within the hospital. Thus, once downloaded into the cache, Dr. House is allowed
to access the copy in the cache during the whole trace.

By the comparison of EPRs and on-duty notes,we show that different data
cached by context-aware mobile applications on mobile devices may have dif-
ferent access control policies. Thus, fine-grained access control mechanisms are
required to enforce their context-related access control policies on cached data.

3 Models and Assumptions

3.1 Mobile Caching Model

The Mobile Device (e.g. a smartphone) is connected to a Content Server in
the client-server manner through wireless connection. In the mobile device, an
Application Cache is implemented as a part of application. It contains two com-
ponents: the Cache is the local storage keeping the cached data; and the Cache
Manager is the component managing the cached data. Functions of Cache Man-
ager include cache replacement [10], cache invalidation [11], etc. At the server
side, we assume that an access control system has been deployed on Content
Server to guard the data access request from mobile devices to DB. The Au-
thority is in charge of user authentication as well as maintaining context-related
data access policies. This generic network model has been applied in many mobile
information systems, such as [12].

Context-Related Access Control for Mobile Caching 393

Cache
Cache
Manger

AC
Manager

1. Matching
with Data id

2. Cache Miss

6. Dec request
(with Data Loc)

7. Read Data
(with Data Loc)

8. Decrypted Data
(if access allowed)
or Access Denied message

Context-aware Mobile App

Content
Server

3. Data Request
(with Data id)

4. Requested Data
(with content
encrypted)

5. Save Data in
Cache

(2) Cache Miss Scenario

Cache
Cache
Manger

AC
Manager

1. Matching
(with Data id)

2. Cache Hit
(return Data Loc)

3. Dec request
(with Data Loc)

4. Read Data
(with Data Loc)

5. Decrypted Data
(if access allowed)
or Access Denied message

(1) Cache Hit Scenario
Context-aware Mobile App

Fig. 2. Basic workflows of proposed system design

In Figure 2, we illustrate the workflow of mobile caching with enforcement of
context-related access control policies. We explain the workflow as follows,
Cache Hit Scenario: If the requested data is contained in the Cache (i.e. Cache
Hit), the Cache Manager will send the reference of data (i.e. the location of
encrypted data in the Cache) to the AC Manager for decryption. The AC Man-
ager will be able to decrypt this data if and only if the data access is allowed by
the context-related access control policies associated with this requested data.
Cache Miss Scenario: If the requested data is not contained in the Cache (i.e.
Cache Miss), the Cache Manager will send a data request to the Content Server.
If access granted, the Content Server will encrypt the requested data and send
the ciphertext back to the Cache Manager. The Cache Manager will first save
the received data in Cache and then request AC Manager for decryption.

3.2 Trust Model

In this paper, we trust the integrity of mobile platform and the context-aware
mobile application. Specifically, we assume that the mobile application and the
mobile platform will perform correctly as required. Also, we assume that the
authority is aware of the current context and the context change of mobile device.
In Dr. House’s example, this assumption means that the attacker (including Dr.
House) can not fool the Authority with fake context information (e.g. the current
location of device) so as to get desired data access privileges. Various location
identification (e.g. GSM/3G technology [13]), location tracking [14], location
verification techniques (e.g. Echo protocol [15]) can be applied.

394 Z. Xu et al.

We also assume that the compromise of mobile application or mobile platform
will be detected within the context in which the compromise happened. Due to
the character of mobile devices, such as easy to steal, the attacker may physi-
cally possess the mobile device and compromise not only the mobile applications
but also the mobile platform. In this case, it is inevitable that the attacker will
have access to all information stored on the mobile device, including the de-
cryption keys. However, various techniques can be applied to the integrity mea-
surement insurance and compromise detection, such as such as Trusted Mobile
Platform [16], integrity measurements [17] and hypervisor based isolation [18].

3.3 Adversary Model

In this work, the adversaries are nonconforming or curious users who try to
bypass the context-related access control policy enforcements and access the
content of data stored in the mobile cache. As the application cache is usually
implemented in application space, we assume that the adversaries can read and
copy the encrypted data in the cache. For example, the adversaries may plug the
smartphone to a desktop and copy all the content in the cache storage to the
desktop for analysis. However, without the correct decryption key, the attacker
cannot get the corresponding ciphertext.

When a data item is required and there exists a cache, the mobile application
will always check if there is a copy of requested data before sending a request to
the remote content server. Therefore, we assume that the attacker may attempt
to access data cached in the previous context by some featured functionalities,
such as the “go backward” button and “view history records” function.

3.4 Design Rationale

To enforce the context-related access control policies, one thought is to imple-
ment a reference monitor for mobile cache within the mobile application. How-
ever, implementing such a reference monitor is too complex and impractical.
First of all, this reference monitor will bing a high overhead. It has to keep a
detailed record of current context of mobile device, and download the associated
access control policies for every data within the cache. Second, the implemen-
tation is difficult because the reference monitor at mobile application has to be
the same as the reference monitor that is already deployed at content server.
Third, the context-related access control policies themselves are sensitive and
some companies do not allow downloading these policies from the authority.

Thus, we propose an approach that applies cryptographic techniques to en-
forcing context-related access control policies. Intuitively, once a data query is
approved, the content server will encrypt the requested data with its associated
context-related access control policy and send the ciphertext to the mobile ap-
plication. The encrypted data can be cached locally on the mobile device. At
the mobile application(client) side, the mobile application is given a decryp-
tion key generated basing on the current context by the authority. The mobile

Context-Related Access Control for Mobile Caching 395

application will decrypt data on-the-fly. The plaintext of data only appear in
the memory and will be deleted after usage.

Compared to the approach with reference monitor, the mobile application
in our approach only needs to maintain a decryption key corresponding to its
current context and perform decryption operations. When context changes, the
mobile application simply replace the outdated decryption key by the new de-
cryption key of the new context. Moreover, cached data will remain in the cache
in the CBE Scheme and ABE Scheme with even less negative impact to efficiency
of existing mobile caching schemes. Details of designs and implementations will
be introduced in later sections.

4 Proposed Schemes

To enforce context-related access control policies within the AC Manager, we
propose three cryptographic schemes: Flush Scheme, Context Based Encryption
(CBE) Scheme, and Attribute Based Encryption (ABE) Scheme. These schemes
differ in the strategy of policy enforcement and they perform best in different
application scenarios. Briefly,

– In the first (simplest) scheme, Flush Scheme, the user is only allowed to
cache data requested within the same context. When the context changes,
all existing cached data will be erased.

– In the second scheme, Context Based Encryption Scheme, the cached data
are encrypted basing on the context when they are downloaded from the
content server. When the context of mobile device changes, existing data in
the mobile cache will not be erased. If the mobile device change from context
A to context B and then back to context A, the cached data downloaded
previously in context A can still be accessed if it is still in the cache.

– In the third scheme, Attribute-Based Encryption Scheme, we adopt the
ciphertext-policy attribute-based encryption (CP-ABE) technique to further
improve the caching efficiency and flexibility by allowing possible sharing
among different contexts. For example, suppose that the data m is down-
loaded in context A, and it is allowed to be accessed by a mobile device in
both context A and B according to the context-related access control policy.
If the mobile device changes from context A to context B and m is in the
mobile cache, the user will be able to access the cached data m.

In the rest of section, we explain the motivation of proposed schemes and their
strategies to deal with context changes. Due to the space limit, the detailed
encryption and decryption procedures are not presented.

4.1 Scheme One: Flush Scheme

In Flush Scheme, the user is only allowed to cache data requested within the
current context. The Flush Scheme utilizes the context-based access control en-
forcement at the Content Server. If the downloading request of a data is allowed

396 Z. Xu et al.

at the Content server, the access to its cached copy of data should be allowed too
in the same context. However, whenever the context changes, the AC Manager
will erase all existing cached data.

The Flush Scheme can be implemented using Secret Key Cryptography (SKC).
For each context of a user, the Authority generates a random secret key Krand,
which will be sent to AC Manager. When context changes, the AC Manager
will replace the old context’s decryption key by the one of new context. In any
circumstances, the AC Manager only keep the decryption key of current context.
The cached data may be in the form of Mdata = (Cdata,T imedata exp,IDcontext,
Hash()).

4.2 Scheme Two: Context Based Encryption Scheme

In the Context Based Encryption (CBE) Scheme, the cached data are encrypted
based on the current context of user. When the context changes, the existing data
in the Cache will not be affected. The deletion of cached data in CBE scheme
is managed by the Cache Manger according to ordinary cache management
schemes, such as Latest Recent Used (LRU) scheme.

The decryption procedure in CBE Scheme involves two contexts. One is the
context in which the data is encrypted at Content Server and delivered to the
mobile cache. The other is the context in which the AC Manager tries to decrypt
the data. In the CBE Scheme, the decryption can be performed correctly if and
only if these two contexts are the same.

Here a context can be represented by a set of privileges assigned to this
particular user within this context or simply an ID assigned to this context. A
user may re-enter the same context multiple times. For instance, in the example
of MHI application, whenever Dr. House enters Ellen’s room, the context will
be the same. Thus, Dr. House will be able to read Ellen’s EPR directly from the
cache when revisiting Ellen’s room, if its encrypted copy is still in the cache.

The CBE Scheme can also be implemented using SKC. For each context of a
user, the Authority generates a secret key Kcontext based on the current context
of mobile device/user. When the user enters the same context, the assigned
decryption key will be the same as well. The cached data in CBE Scheme is in
the form of Mdata =(Cdata,T imedata exp,IDenc context, Hash()).

4.3 Scheme Three: Attribute-Based Encryption Scheme

In the third scheme,Attribute-Based Encryption Scheme, we adopt the ciphertext-
policy attribute-based encryption (CP-ABE) technique [19] to further improve
the caching efficiency and flexibility by allowing possible sharing among differ-
ent contexts. In the ABE Scheme, a cached data may be accessed in different
contexts as long as these contexts satisfy the data’s associated context-related
access control policies. For instance, in the example of MHI application, if the
On-Duty Notes is already in the cache, Dr. House will be able to access the
cached copy in different contexts during the trace. Because Dr. House is always
in the hospital in this example.

Context-Related Access Control for Mobile Caching 397

Specifically, in the ABE Scheme, the privileges of a user in a context is rep-
resented by a set of attributes. In each context, the user will be assigned a
decryption key generated by the attributes assigned to the current context. On
the other hand, the context-related access control policy associated with one
data is represented by an access structure A on a set of attributes. During the
encryption, the encryptor (i.e. Content Server) encrypts the plaintext of data
with A. In the AC Manager, the decryption can be performed correctly if and
only if the attributes of user’s decryption key satisfy the access structure A

associated with the ciphertext. Various CP-ABE schemes have been proposed,
currently we adopt the CP-ABE scheme introduced in [19] to describe how we
apply this scheme in our ABE Scheme. Specifically, the Authority first generates
a master key MK and a public key PK. The public key PK will be given to the
Content Server and AC Manager on a mobile device. The master key MK will
never leave the Authority. When a context starts, the AC Manager will receive
a decryption key D which is generated based on the master key MK and the
set of attributes assigned to the user in this context.

When encrypting data, the Content Server encrypts the data content with
the public key PA and an access structure A. The ciphertext is now in the form
of Mdata = (Cdata,T imedata exp,IDcontext,A, Hash()). When decrypting data,
the AC Manager uses its current decryption key D, public key PK, and follows
the access structure A. Due to the space limit, please refer to [19] for details of
the CP-ABE scheme.

5 Simulation

In this section, we study the impact on existing mobile cache management
schemes when applying proposed encryption schemes to enforce context-related
access control policies on cached data. Specifically, we measure the changes of
efficiency of the underlying cache replacement algorithm that are caused by ap-
plying proposed schemes. Efficiency is critical to our proposed schemes. Because
enforcing context-related access control policies over the cached data may neu-
tralize the benefits gained by caching. If allowing mobile caching with access
control is too costly, people would prefer disallowing caching any sensitive data
on the mobile device. Each of proposed schemes has its own pros and cons in
terms of efficiency. Details of cost and benefit analysis are presented in appendix.

5.1 Simulation Setup

A Query Model with Context Changes. Existing query models proposed
to evaluate mobile caching algorithms do not take context into consideration.
Therefore, we present a new query model to simulate the user behavior in the
context-aware mobile application.

In our new query model, we use a sequence of ordered queries to represent
the data queries issued by one user within a period of time. Each query con-
sists of a data ID, a context ID, and a timestamp, representing respectively the

398 Z. Xu et al.

data requested, the current context, and the current time when the query is
raised. The ThinkTime between neighbor queries in the sequence by following
an Exponential distribution. The timestamp for the first query in the sequence
is zero.

To model the database protected by context-related access control policies
at content server, we crate a database and divide its data items into different
groups. Each group corresponds to one context. To model the case when data
may be accessible in two contexts, we randomly select a portion (p) of data in
each group and pair them. Those paired data will be considered as the equivalent
data items. For each group/context, we generate a set of queries satisfying a zpif
distribution on the data in the database. These sets of queries represent the data
queries generated by the user in different contexts.

The context change mode is application-specific and is usually derived from
traces of real user behavior [20] [21]. In this paper, we consider the general case
of context changes. Specifically, we create a Markov Chain model, in which the
states represent possible contexts of users and the state transitions represent the
context changes. Each state has one transition to itself, representing that the
next query will stay in the current context, and one transition to any other state
in the model, representing the context change. We assume that, if a context
change happen, the next query may be in any one state in the model with the
same probability. Formally, let S (s, s′ ∈ S) denotes the set of states in the
model, the context of current query is at X , the context of next query is at X ′,
and λ be the probability that the s′ will state in the same context. Then,

Pr(X ′ = s′|X = s) =

{
λ ifs′ = s
1−λ
|S|−1 s′ �= s

(1)

Parameters Selection. Four parameters are considered in simulations: cache
size, data sharing rate, context change rate, and time-to-live (TTL). Cache size
represents the resource constraint on mobile devices. Context change rate repre-
sents the dynamics of user’s status and the query pattern of user. Data sharing
rate describes the characteristic of data in DB. TTL defines the maximum length
of time a data item is allowed to cache locally. Table 1 presents the settings of
other parameters in simulations.

Efficiency Measurements. The efficiency metrics in the study are the Cache
Hit Rate (CHR) and the Communication Gain (CG). The cache hit rate is
computed by dividing the sum of the queries that are answered using Cache
by the sum of the total queries in the simulation. The communication gain is
computed by the data transmission saved by caching minus the data transmission
brought by synchronization between a mobile device and Authority. We compare
the three proposed schemes under different cache size, expiration time (i.e. Time-
To-Live), and context change frequency.

The CG is measured by counting the amount of data down-
loaded by mobile device with a sequence of queries. In the base case

Context-Related Access Control for Mobile Caching 399

Table 1. Simulation parameter settings

Parameter Setting

Query sequence length 1200

Zipf distribution θ=0.80

Number of context sets 4

Database size each context 1000

Cache size 20, ..., 400

ThinkTime (Tt) Exponential Distribution (mean=100s)

Data item size (the same size) 1KB, 15KB, 100KB

Data sharing distribution p=5%

(i.e. disallowing caching), the total amount of data downloaded is de-
noted by BaseAmount = (sequence length × data size). So, we com-
pute CG by Syn Cost + Comm Cost − BaseAmount. The Synchro-
nization Cost (Syn Cost) stands for context change information down-
loaded from Authority whenever context changes. That is Syn Cost =
(number of context changes) × (data downloaded per context change);
The Communication Cost(Comm Cost) stands for the amount of data
downloaded from Content Server with the sequence of queries. That is
Comm Cost = |Mdata| × (sequence length)× (1− CHR).

For comparison purpose, we ignore the cost for building a secured communica-
tion channel between a mobile device and authority. Also, we ignore the context
change request message sent from a mobile device to Authority. We just measure
the data required to transfer from Authority to a mobile device. Suppose the size
of original data is |Pdata|. For encryption and decryption, the Flush and CBE
scheme use the AES-128, and the ABE scheme uses the cpabe toolkit. In addi-
tion, SHA-1 is used for the one-way hash function. For each proposed scheme,
we calculate |update| (i.e. the new context information downloaded per context
change) and |Mdata| (i.e. the response from Content Server with the ciphertext
of requested data). Note that, in ABE scheme, the sizes of decryption key and
ciphertext depend on the number of attributes associated with the decryption
key and the access structure A, respectively. In our experiments, a decryption
is about 23.8 KB with 3 attributes and 94.4KB with 8 attributes. When A con-
tains 7 attributes, the size of ciphertext will be about 14.4KB larger than the
plaintext. When A contains 15 attributes, the size of ciphertext is about 15.2KB
more than the plaintext. For our discussion, we assume that the size of decryp-
tion key is 23.8KB (3 attributes case) and the size of ciphertext will increase
with 14.4KB (7 attributes case).

5.2 Experiment 1: CHR vs. Cache Size and Data Sharing Rate

In this experiment, we measure the performance of our proposed schemes with
different cache sizes. Considering the data sharing, we also measure its CHR
with three sharing rates (Hot, Cold, and Random). By sharing, we mean a data

400 Z. Xu et al.

item is allowed to be access by multiple set of contexts. As data queries follow a
zipf distribution [22], popular data items are data that are queried most.

– Hot-Sharing: randomly choose 50 (i.e. 5%× 1000) from the top 20% popular
data items;

– Cold-Sharing: randomly choose 50 from the 20% of least popular data items;
– Random-Sharing: randomly choose 50 from the whole DB;

As we can see from Figure 3(a), increasing the cache size may help improve the
CHR in the proposed schemes. Among these schemes, the ABE scheme always
achieves the highest CHR in all cache sizes, and the CBE scheme is close to
ABE scheme. Both CBE and ABE scheme have much higher CHR than Flush
scheme. Further, when the sharing rate increases, the ABE scheme gains more
advantages. For Flush scheme, we observe that the effect of increasing cache size
is affected by context changes. As shown in the Figure 3(a), when the cache size
increases to a threshold point, the CHR cannot be improved any more. This
is because the Flush scheme will empty the Cache whenever there is a context
change. When the cache size is big enough for any single context, increasing its
size will not improve the performance of CHR.

5.3 Experiment 2: CHR vs. Context Change Rate

In this experiment, we study the impact of increasing context change frequen-
cies on the CHR with different sized cache. Specifically, we measure CHR with
three cache sizes: 400(BIG), 200(MEDIUM), and 20(SMALL). The purpose is to
investigate the resistance to frequent context changes in proposed schemes. The
scheme resistant to frequent context changes will be suitable for applications in
dynamic environments. As the context change rate reflects the user’s behavior
pattern, the experiment results help the application developer to choose right
combination of schemes and cache sizes for different behavior patterns.

From the experiment results shown in Figure 3(b), the CBE and ABE schemes
are more resistant to context changes. To both CBE and ABE schemes, the cache
size is the dominating factor for CHR. To the contrary, Flush scheme highly relies
on the context change rate.

Furthermore, a careful comparison between CBE and ABE schemes shows
that the gap between these two are shrinking as the cache size increases. This
is because ABE scheme utilizes the space in cache more efficiently than CBE
scheme. Without sharing, data shared by multiple contexts may have several
copies in the Cache belonging to different context sets in CBE scheme. Therefore,
when the cache size is small, ABE scheme achieves more advantages. When the
cache size is big, the effect of cache space utilization is reduced.

5.4 Experiment 3: CHR vs. TTL

Time-To-Live (TTL) is the duration a data item is allowed to be cached on a
mobile device. TTL is determined by Authority when giving the permission as-
signment, and enforced at Content Server when sending the data. For Authority,

Context-Related Access Control for Mobile Caching 401

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cache Size

C
ac

he
 H

it
R

at
e

ABE Scheme(Cold)
ABE Scheme(Hot)
ABE Scheme(Random)
CBE scheme
Flush scheme

(a) The impact of changing cache size
to CHR

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

λ

C
ac

he
 H

it
R

at
e

Flush scheme(cache size=20)

Flush Scheme (cache size=200)

Flush Scheme (cache Size=400)

CBE scheme (cache size=20)

CBE scheme (cache size=200)

CBE scheme (cache size=400)

ABE scheme (cache size=20)

ABE scheme (cache size=200)

ABE scheme (cache size=400)

(b) The impact of context change rate
to CHR

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

TTL (s)

C
ac

he
 H

it
R

at
e

Flush scheme(λ=40)
Flush scheme(λ=70)
Flush scheme(λ=85)
CBE scheme(λ=40)
CBE scheme(λ=70)
CBE scheme(λ=85)
ABE scheme(λ=40)
ABE scheme(λ=70)
ABE scheme(λ=85)

(c) The impact of TTl to CHR

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5
x 10

4

Size of data (in KB)

C
om

m
un

ic
at

io
n

G
ai

n
(in

 K
B

)

Optimal of mobile caching (no access control)
Flush Scheme
CBE Scheme
ABE Scheme

(d) A comparison of CG with various
data size

Fig. 3. Evaluation of mcRBAC Schemes

he wants to assign the TTL “just long enough” for future data access. The idea
is quite similar to Belady’s optimal cache replacement algorithm, which always
discards the data that will not be needed for the longest time in the future. But,
the Authority sets TTL from perspective of security.

In this experiment, given a cache size, we would like to investigate how to
choose TTL according to user’s query pattern, i.e. the context change frequency.
The result will help us (1) understand the impact of TTL with different DB
access patterns in proposed schemes; (2) understand how to choose right TTL for
different DB types. A comparison combining all three schemes is in Figure 3(c).
From the experiment results of ABE and CBE schemes, we see that the CHR
keeps increasing as the TTL increases, because both schemes allow accessing data
cached in previous contexts. Therefore, keeping data in the cache for longer time
will result in higher CHR.

In the Flush scheme, the CHR increases to a threshold and then stops in-
creasing with the increase of TTL. This is because flush scheme will empty the
cache when context changes. Thus, the context change rate λ determines the
value of threshold in Flush scheme. As shown in the figure, the larger λ results

402 Z. Xu et al.

in higher maximum CHR. Therefore, when applying CBE or ABE schemes, one
may consider adjusting TTL as a way to improve the efficient of existing cache
management schemes, similar to the idea of using Adaptive TTL approach [23]
to maintain the cache coherency. when applying Flush scheme, user’s query pat-
tern (including context change pattern) should also be considered. A overly large
TTL will be a waste in Flush scheme. How to set an optimal TTL for a cached
data can be one of our future works.

5.5 Experiment 4: CG vs. Data File Size

In previous experiments, the ABE always achieves the highest CHR. However,
the size of cipher-text in ABE scheme is larger than in the other two schemes.
The purpose of this experiment is to show the tradeoff between CG and CHR
in different cache sizes. We present the results in Figure 3(d).

In this comparison, the optimal results are generated using the Hypothetical
Optimal Scheme with no access control. As shown in the figure, when data size
increases, the CG in all schemes increases. When the CG is below 0, it means
that it downloads more data than the case without caching. In such a case, it
would be better not to allow caching at all.

Flush scheme has very little overhead, however, the gain from CHR is also
little. When the size of data increases, the benefits of CHR become greater. CBE
scheme has little overhead but moderate CHR. Therefore, its CG is very close to
the optimal case. However, as the file sizes increases, the gap between these two
will increase because of the differences in CHR; ABE scheme has a high overhead
thus not suitable for cases when data size is small. However, when the data size
increases, the benefits of CHR starts to beat the overhead. When the file size
is greater than 30KB, the CG of ABE climbs to above 0. Also notice that, the
gap between ABE and CBE scheme is shrinking, meaning that the advantage
in CHR may be more important when the data size is big and the sharing rate
is high. If the sharing rate is not high, ABE scheme may not beat CBE scheme
by gaining from CHR improvement on allowing data sharing. Therefore, when
the data size is small, the Flush scheme and CBE scheme may be more suitable
in terms of CG. When the data size is moderate, CBE may be a better choice.
When the data size is huge, one may consider the ABE scheme. Because, in this
case, achieving better CHR has more direct effect to CG.

5.6 Experiment 5: CG vs. Context Change Rate

In Experiment 2, we have shown that, the ABE scheme has the best CHR when
context changes frequently. In perspective of CG, things may be different because
the great overhead of context changes in ABE scheme. In this experiment, we
study the impact of context change rate in the same setting as Experiment 2,
but now we compare schemes from the perspective of CG. The data size in this
experiment is fixed as 50 KB.

The result of comparison is shown in Figure 4. From the experiment results,
we can clearly see the tradeoff of applying different schemes. The Flush scheme

Context-Related Access Control for Mobile Caching 403

Fig. 4. The impact of context change rate to CG

has the lowest overhead, and yet its CHR is limited. To another extreme, the
ABE scheme can achieve highest CHR, and yet its overhead of context change
is too high. When context changes frequently or the gain from CHR is too little,
the CG of ABE scheme will be much below 0. The CBE scheme provides the
best CG in this experiment. As we can see from Figure 4, it is always close to
the optimal case. Therefore, when the cache size is small and data file is not
big, the CBE scheme would be the best choice. ABE scheme is more suitable for
cases with bigger data size. Flush scheme would perform best if the cache size
is big and the data sharing rate is small.

6 Related Work

6.1 Context-Related Access Control for Mobile Computing

In [24], a system called CRePE (Context-Related Policy Enforcing) is proposed,
which extends the permission checking of Android to support enforcing context-
related security policies at run-time. Differently, no permission checker is re-
quired in the proposed schemes. Instead, we rely on cryptographic techniques
and enforcing context-related security policies by carefully assign the user dif-
ferent decryption keys according to their contexts.

Also, in many research works, such as [25, 26], the authors consider context
as environment roles and propose context-related access control approaches by
extending the RBAC model with spatial and temporal information. For example,
[25] proposes a Spatial Role-based Access Control (SRBAC) model which allows
the authority to use location information in security policy definitions. [26]
proposes a GEO-RBAC model which allows securing the access to spatial data
in location-aware applications.

404 Z. Xu et al.

Different to these extended RBAC models, first of all, our work is more data-
oriented and focuses on enforcing the access control policy at the mobile device
side. Second, we rely on the deployed access control system to detect and enforce
the context change (i.e. updating the decryption key). The AC Manager does
not run as a reference monitor. Third, our focus is not about how the context of
mobile device changes. Instead, our proposed schemes focus on mechanisms of
enforcing context-related access control policies when the context changes.

6.2 Distributed Data Management

Many cryptographic techniques have been applied to enforce access control poli-
cies on distributed data. For example, [27] proposes a Fine-grained Distributed
data Access Control (FDAC) Scheme which applies Key-Policy Attribute-Based
Encryption (KP-ABE) to protect distributively stored sensed data in wireless
sensor networks. Different from the FDAC scheme in [27], the mobile device in
our design does not allow to encrypt or publish data. The mobile device only has
the decryption function and is limited by decryption key assigned. In addition,
[28] and [29] introduce the Attribute Based Messaging (ABM) system which al-
lows the message sender to specify allowed recipients with attribute-based access
control policies. Specifically, [29] discusses employing CP-ABE to provide end-
to-end confidentiality for ABM. [30] applies the ABM to secure the first response
coordination in mobile environment. Different from the push model in ABM, we
adopt the pull model in which the data request is generated by the mobile device
and responded by the server. Moreover, [29] focuses on recipients classified by
attributes. Differently, our focus is the same recipient with changing contexts.

6.3 Access Control on Mobile Devices

Some research works have been done to design access control systems for mobile
devices. For example, [31] proposes a mandatory access control (MAC)-based
mechanism on cellphone with the purpose of controlling the program accesses
to important system resources. [32] proposes the design of a trusted subsys-
tem which can be used to enforce MAC on mobile devices. [33] proposes a
TaintDroid system, which tracks the information-flow of privacy sensitive data
through third-party applications. [34] proposes a Porscha system, which en-
forces Digital Rights Management policies on smartphones. Both TaintDroid
and Porscha require to implement a reference monitor within the kernel of An-
droid platform.

In this work, we focus on enforcing context-related access control policies on
the application cache only. All components of access control are within the mo-
bile application space and implemented by the developer of context-aware mobile
app. Thus, our proposed schemes can be easily implemented on commodity mo-
bile devices with little modification and overhead.

Context-Related Access Control for Mobile Caching 405

7 Conclusion

We study the problem of enforcing context-related access control on cached
data in mobile devices. Specifically, we propose the design of three encryption
schemes adopting different cryptographic techniques. We present a quantitative
comparison of proposed schemes through analysis as well as simulations. We
show an application on commodity smart phones.

In our future work, we are planning to work on two directions: one direction
is to apply the proposed schemes to other context-aware mobile applications.
The other direction is to look for best cryptographic implementations suitable
for proposed schemes on different smartphone platforms.

References

1. Jiang, Z., Kleinrock, L.: Web prefetching in a mobile environment. IEEE Personal
Communications 5, 25–34 (1998)

2. Höpfner, H., Wendland, S., Mansour, E.: Data caching on mobile devices - the
experimental mymidp caching framework. In: Proc. of the 4th International Con-
ference on Software and Data Technologies (2009)

3. Apple, “Safari developer library: Storing data on the client”,
http://developer.apple.com/library/safari/

4. Allan, A., Warden, P.: Got an iphone or 3g ipad? apple is recording your moves
(2011), http://radar.oreilly.com/2011/04/apple-location-tracking.html

5. Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In:
Proc. of The Workshop on Mobile Computing Systems and Applications, pp. 85–
90. IEEE Computer Society (1994)

6. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W.
(ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

7. Lijding, M., Meratnia, N., Benz, H.: Smart signs show you the way. IO Vivat 22(4),
35–38 (2007)

8. Kyriacou, E.C., Pattichis, C., Pattichis, M.: An overview of recent health care
support systems for eemergency and mhealth applications. In: Proc. of 31st Annual
International Conference of the IEEE EMBS (2009)

9. Hinze, A., Buchanan, G.: Context-awareness in mobile tourist information systems:
Challenges for user interaction. In: Proc. Workshop on Context in Mobile HCI, in
Conjunction with Mobile HCI (2005)

10. Johnson, T., Shasha, D.: 2q: a low overhead high performance buffer management
replacement algorithm. In: Proc. of the 20th International Conference on Very
Large Databases (1994)

11. Cao, G.: A scalable low-latency cache invalidation strategy for mobile environ-
ments. IEEE Trans. on Knowl. and Data Eng. (2003)

12. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A role-based access control model and
reference implementation within a corporate intranet. ACM Trans. Inf. Syst. Se-
cur. 2, 34–64 (1999)

13. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:
Supporting location-based conditions in access control policies. In: Proc. of the
2006 ACM Symposium on Information, Computer and Communications Security,
ASIACCS 2006, pp. 212–222 (2006)

http://developer.apple.com/library/safari/
http://radar.oreilly.com/2011/04/apple-location-tracking.html

406 Z. Xu et al.

14. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: Proc. of the 6th Annual International Conference on Mobile Computing
and Networking, MobiCom 2000, pp. 32–43 (2000)

15. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proc.
of the ACM Workshop on Wireless Security (WiSe 2003), pp. 1–10 (2003)

16. N. DoCoMo, IBM, I. Corporation: Trusted mobile platform: Hardware architecture
description (2004)

17. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
integrity on mobile phone systems. In: Proc. of the 13th ACM Symposium on
Access Control Models and Technologies, SACMAT 2008, pp. 155–164 (2008)

18. Cox, L.P., Chen, P.M.: Pocket hypervisors: Opportunities and challenges. In: Proc.
of the Eighth IEEE Workshop on Mobile Computing Systems and Applications,
HOTMOBILE 2007, pp. 46–50 (2007)

19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proc. of the 2007 IEEE Symposium on Security and Privacy, SP 2007, pp.
321–334 (2007)

20. Chen, G., Kotz, D.: A survey of context-aware mobile computing research, Hanover,
NH, USA, Tech. Rep. (2000)

21. Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In:
Proc. of the IEEE International Conference on Computer Communications (IEEE
INFOCOM 2006) (2006)

22. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: Proc. of the Conference on Computer
Communications (IEEE Infocom 1999) (1999)

23. Cate, V.: Alex-a global file system. In: Proc. of USENIX File System Workshop
1992, pp. 1–12 (1992)

24. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-Related Policy Enforce-
ment for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

25. Hansen, F., Oleshchuk, V.: Srbac: A spatial role-based access control model for
mobile systems. In: Proc. of 7th Nordic Workshop on Secure IT Systems (2003)

26. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: Geo-rbac: A spatially aware
rbac, vol. 10. ACM (2007)

27. Yu, S., Ren, K., Lou, W.: Fdac: Toward fine-grained distributed data access control
in wireless sensor networks. In: Proc. of the IEEE International Conference on
Computer Communications (IEEE INFOCOM 2009), pp. 963–971 (2009)

28. Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using attribute-
based access control to enable attribute-based messaging. In: Proc. of the 22nd
Annual Computer Security Applications Conference, pp. 403–413 (2006)

29. Bobba, R., Fatemieh, O., Khan, F., Khan, A., Gunter, C.A., Khurana, H., Prab-
hakaran, M.: Attribute-based messaging: Access control and confidentiality. ACM
Transactions on Information and Systems Security, TISSEC (2010)

30. Weber, S.G.: Securing first response coordination with dynamic attribute-based
encryption. In: Proc. of World Congress on Privacy, Security, Trust and the Man-
agement of e-Business 2009 (2009)

31. Xie, L., Zhang, X., Chaugule, A., Jaeger, T., Zhu, S.: Designing system-level de-
fenses against cellphone malware. In: Proc. of the 28th IEEE International Sym-
posium on Reliable Distributed Systems, pp. 83–90 (2009)

32. Zhang, X., Seifert, J.-P., Sandhu, R.: Security enforcement model for distributed
usage control. In: Proc. of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, Sutc 2008 (2008)

Context-Related Access Control for Mobile Caching 407

33. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proc. of the USENIX Symposium on Operating Systems Design
and Implementation, OSDI (2010)

34. Ongtang, M., Butler, K., McDaniel, P.: Porscha: Policy oriented secure content
handling in android. In: Proc. of the 26th Annual Computer Security Applications
Conference, ACSAC (2010)

35. Bethencourt, J., Sahai, A., Waters, B.: The cpabe toolkit in advanced crypto soft-
ware collection, http://acsc.cs.utexas.edu/cpabe/

A Appendix

A.1 Security Analysis

Inter-Context Compromise Resistance. In both CBE and ABE schemes,
data downloaded in previous contexts may remain in the cache. If the mobile ap-
plication is compromised, the attacker may possess the decryption key of current
context. The content of cached data accessible in current context will be leaked
inevitably. However, in both schemes, the data leakage is limited to only cached
data that are accessible in the current context. Because the compromise will be
detected by the authority within the current context, only the decryption key of
current context is stored in the mobile application. Therefore, the attacker can
only possess the decryption key of current context.

Collusion Resilience. According to the adversary model, the attacker may
possess multiple mobile devices. In this case, it is critical for access control
schemes to be resilient to collusion attacks. That is, the attacker should not
be able to derive new decryption keys by keys he possessed. To defend against
collusion attacks, in the Flush Scheme, the context’s secret key Kcontext is ran-
domly chosen for each context thus collecting multiple keys will have no use at
all. Similarly, in the CBE Scheme, the keys are randomly generated basing on
a set of contexts instead of for every single context. Thus, the attacker will not
be able to use multiple decryption keys of different users or the same user to
generate a new decryption key. In the ABE Scheme, the collusion resilience is
provided by the CP-ABE scheme. For example, [19] adds randomness in the
data encryption and decryption key generation to prevent collusion attacks.

A.2 Computation Overhead Analysis

The major computation overhead is caused by performing decryption by AC
Manager. If there is a cache hit and the data is allowed to be accessed, both
Flush Scheme and CBE Scheme need one round decryption operation with a
secret key. If there is a cache hit by data id but the access is denied, both Flush
Scheme and CBE Scheme result in access denied by a simple value-based com-
parison. More expensively, CBE Scheme requires a decryption attempt to reveal
the feasibility of decryption. Because the ABE Scheme requires to perform a se-
ries of decryption operations following the access structure A. According to the

http://acsc.cs.utexas.edu/cpabe/

408 Z. Xu et al.

measurements in [19], the decryption workload depends greatly on the particular
access tree A and the set of attributes involved in the decryption. From the per-
spective of decryption algorithm implementation, the efficiency of elliptic curve
based operations is the key for the decryption speed.In [27], the author presented
an efficient implementation of elliptic curve based operations on sensors with low
computational capacity. Currently, the implementation we are using is the cpabe
toolkit implemented at Advanced Crypto Software Collection (ACSC) developed
by John Bethencourt, et al. [35].

A.3 Implementation Complexity Anslysis

Flush Scheme and CBE Scheme depend on SKC based decryption which is easy
to implement and has many efficient implementations already. The CP-ABE, on
which ABE Scheme relies, is relatively new compared to SKC and only have
several implementations provided by research groups.

A.4 Efficiency Metrics

Efficiency is critical to our proposed schemes. Because enforcing context-related
access control policies over the cached data may neutralize the benefits gained
by caching. If allowing mobile caching with access control is too costly, people
would prefer disallowing caching any sensitive data on the mobile device.

Cache Hit Rate (CHR). The Cache Hit Rate (CHR) is represented by the
percentage of data accesses that results in mobile cache. It is computed by di-
viding the sum of the queries that are answered using Cache by the sum of the
total queries in the simulation. Other performance metrics, such as query delay,
throughput, and data communication cost, all have a strong relation with CHR.

Communication Gain. Communication Gain (CG) measures the benefits of
applying a proposed scheme in terms of data downloaded. Applying access con-
trol may require extra data downloaded, because of the synchronization between
the Authority and the mobile device. To measure CG of a proposed scheme, we
count the overall data downloaded with a sequence of queries and then compare
it with that in the case without caching (i.e. base case). If the CG of a scheme is
negative, it means that applying this scheme will need to download even more
data than the base case.

	Context-Related Access Control
for Mobile Caching
	Introduction
	Mobile Caching
	Context-Aware Mobile Applications

	An Example of Context-Aware Mobile Health Information Application
	Models and Assumptions
	Mobile Caching Model
	Trust Model
	Adversary Model
	Design Rationale

	Proposed Schemes
	Scheme One: Flush Scheme
	Scheme Two: Context Based Encryption Scheme
	Scheme Three: Attribute-Based Encryption Scheme

	Simulation
	Simulation Setup
	Experiment 1: CHR vs. Cache Size and Data Sharing Rate
	Experiment 2: CHR vs. Context Change Rate
	Experiment 3: CHR vs. TTL
	Experiment 4: CG vs. Data File Size
	Experiment 5: CG vs. Context Change Rate

	Related Work
	Context-Related Access Control for Mobile Computing
	Distributed Data Management
	Access Control on Mobile Devices

	Conclusion
	References

