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Abstract. We propose a key pre-distribution scheme based on the com-
plementary design of a Fano plane. The nodes are arranged hierarchically
in the form of a 6-nary tree. Key predistribution follows a determinis-
tic approach. Each node in our scheme requires storing significantly less
number of secret keys. Our scheme provides better resiliency compared
to other existing schemes and reasonable connectivity as well. It can be
found that any two nodes are connected either directly or via a key-path.
Moreover, any number of nodes can be introduced in the network by as-
signing a few keys to the newly joined nodes only, without disturbing
the existing set-up of the network.
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1 Introduction

Sensor nodes are small, mobile, low-cost, battery powered and resource (such as
memory, power etc.)-constrained devices. They are deployed with high density in
the target region to form a Wireless Sensor Network (WSN). Due to their huge
application in many areas (home front to military operation), WSN has become
a burgeoning field nowadays. There are two types of WSNs: Distributed and
Hierarchical. In Distributed network all the nodes are assumed to be uniform
whereas Hierarchical network comprised of sensor nodes with different memory,
power, transmission range etc.

The sensor nodes are supposed to collect data from the environment and then
transmit them to the base station by communicating with other nodes within the
specified transmission range. This communication, when takes place in hostile
region, is intended to be secret, for which secret keys need to be given to the
nodes. One of the possible methods is online key agreement, but this is practically
infeasible as this approach is highly expensive. The other approach is to store
the keys to the nodes before their deployment, which is termed as key pre-
distribution. Key predistribution can be of three types: (i) Probabilistic- where
the keys are chosen randomly from the key pool and given to the nodes so that
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any two nodes share common key with certain probability, (ii) Deterministic-
the selection and assignment of keys to the nodes follow a certain pattern, and
(iii) Hybrid - which is a combination of the above two approaches.

The parameters of a key pre-distribution scheme are : (i) Scalability- when it
is required to introduce a few new nodes to the network, existing set-up should
not be disturbed, i.e., key-chains of the existing nodes should not be altered; (ii)
Storage- less number of keys should be stored in the nodes so that rest of the
memory can be used for computation; (iii) Resilience- how robust the network
is against node capture; (iv) Connectivity- most of the nodes should share secret
keys so that they can communicate secretly.

There are two extreme key pre-distribution schemes. First, is to store one mas-
ter key to all the nodes in the network. Connectivity of the resulting network is
very high as any two nodes can communicate but the network is not at all resilient.
Capture of any single node will reveal the secret master key. As a result, the whole
network cease to work. Second is to store a secret key for each pair of nodes in
the network. Then connectivity and resiliency both are optimal, but the storage
requirement is too expensive which is not affordable. Hence we observe that any
of the above cases is not suitable due to the fact that the parameters storage, re-
siliency and connectivity are contradictory in nature. To achieve a scheme which
optimizes all the parameters, authors have tried to get a trade-off between afore-
said parameters. We discuss literature survey in the following subsection.

1.1 Previous Work

Eschenauer and Gligor [7] were first to use random key pre-distribution in WSN.
The key distribution scheme proposed by them includes random selection of key
chains from the large key-pools and then assigning the keys to the nodes. Any
two nodes can communicate if they share a common key. The scheme is referred
to as the basic scheme. Later Chan, Perrig and Song [5] proposed q-composite
scheme which is a modified version of the basic scheme: any two nodes can
communicate if they share at least q common keys.

The main disadvantage of the aforesaid probabilistic schemes is that sharing
of common keys between any two nodes is not certain. On the contrary, the
schemes based on deterministic approach using combinatorial designs increases
the probability of key sharing between nodes to a greater extent. Naturally,
Combinatorial Design has become a useful technique of key pre-distribution.
Mitchell and Piper [11] were first to apply combinatorial design as one of the key
distribution techniques whereas Camptepe, Yener [1] introduced combinatorial
design for key predistribution in wireless sensor network. In this paper [1] two
combinatorial designs are considered: first is the symmetric (p2 + p + 1, p +
1, 1)-BIBD (or finite projective plane of order p) and the second is generalized
quadrangles. The advantage of this deterministic approach is that any two nodes
certainly share a common key, which improves the connectivity of the network
to significantly. The authors observed that the main drawback of deterministic
approach is that the scheme is not scalable as the network size N should satisfy
N ≤ p2 + p+1; if one wants to introduce some new nodes to the network which
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exceeds the bound then p has to be raised to the next prime number (as the
existence of projective planes of order p is confirmed for only prime values of
p), which results in a much more larger network than what is required, and the
key-chains at each node have to be changed. It is also observed that generalized
quadrangles induce better scalable network and provide better resilience than
projective planes [2]. For the scalability, they have proposed a hybrid scheme
which improves the resilience, but the probability of any two nodes sharing a
common key is reduced.

In 2005, Lee and Stinson [8] proposed a scheme on group-divisible design
or Transversal design. It is noticed that the expected proportion that any two
nodes can communicate directly is 0.6 and almost 0.99995 portion of the nodes
can communicate either directly or via intermediate nodes. Chakrabarti et al.
[3] provided an example to show that out of 2401 nodes in a network 18% of
the links will be destroyed if only 10 nodes are captured. This is the main dis-
advantage of this scheme. Later, in 2008, the authors had developed quadratic
schemes [9] based on Transversal designs and referred the method described in [8]
as linear schemes. Their work suggests that the quadratic scheme provides best
resilience unless the number of compromised nodes is high. If the number of com-
promised nodes increases beyond 20, then linear scheme is preferred to quadratic
scheme for better resilience. Quadratic schemes in general provide better con-
nectivity than linear schemes. Both linear and quadratic schemes are preferred
to 2-composite scheme if shared-key-discovery is taken into consideration.

In 2005, Chakrabarti et al. [3] proposed a probabilistic key predistribution
scheme. Construction of the blocks were in the same manner as proposed by
Lee and Stinson in [8]. The sensor nodes are then formed by random merging of
the blocks, which consequently increases the probability of sharing common keys
between sensor nodes. Their scheme provides better resiliency as compared to
the Lee-Stinson scheme at the cost of large key-chain size in each node. Dong et
al. [6] proposed a scheme by considering 3-design as the underlying design. Keys
are assigned to the sensor nodes in the network by Möbius Planes. This scheme
provides better connectivity than that of the scheme proposed by Lee-Stinson
[9] and better storage as compared to Camptepe-Yener scheme [1]. The prime
drawback of the scheme is that resiliency reduces rapidly with the increasing
number of compromised nodes.

Ruj and Roy [12] proposed a deterministic key pre-distribution scheme based
on Partially Balanced Incomplete Block Design. The authors claim that this
scheme gives better resilience than that of [8] storing less than

√
N keys to the

nodes where N is the network size. But to store that many keys to the nodes,
for a very large network is also expensive.

It is observed that the schemes based on deterministic approach provide high
connectivity, but the storage is also very expensive and the schemes are not
scalable in most of the cases. On the contrary, the probabilistic schemes are
scalable but do not confirm high connectivity. Our target is to develop a scheme
which gives scalability in deterministic approach and also provides better values
for the other parameters.
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1.2 Our Contribution

Here we present a deterministic key pre-distribution scheme. We have used the
complementary design of the Fano plane, i.e., a symmetric (7, 4, 2) - BIBD as
our basic building block and map it repeatedly to design the whole network.
The network thus formed is heterogeneous, i.e., the nodes are assumed to be
placed hierarchically on the basis of computation power, the chance of getting
compromised etc.

The storage requirement for this scheme is significantly less (better) than
majority of the existing schemes. Storage is an important factor as we all know
that once the nodes are deployed to the target region, any external source of
power is not available. Moreover, increased memory consumption for storage
will decrease the computation power.

We emphasize that apart from storage-efficiency, this scheme provides rea-
sonable connectivity. The whole network is divided into 7 sub-networks each of
which forms a 6-nary tree-hierarchical structure. Most of the nodes in the same
sub-network are directly connected, but nodes from the different sub-networks
may be connected directly or via a key-path through the level 1 nodes (in the
worst possible case).

Apart from being cost-effective, storing significantly less number of keys leaks
very less information (in the form of secret keys) when captured. This leads to
improve the resilience of the network. Obtained results support the fact that
our scheme provides better resilience than the other similar schemes. Unlike the
existing deterministic key pre-distribution schemes, our scheme is flexible in the
sense that insertion of a large number of nodes can be done by adding only a
few keys to the newly joined nodes without disturbing the previously assigned
nodes.

Rest of the paper is organized in the following manner. Some definitions are
given in Section 2, the proposed scheme is discussed in detail in Section 3. Ob-
tained results are included in Section 4. Section 5 and Section 6 respectively
provides the connectivity and performance of the scheme following the conclud-
ing remarks in Section 7.

2 Preliminaries

Combinatorial Design is one of the mathematical tools used for key predistribu-
tion to the nodes. Some useful definitions from combinatorial designs are given
below:

Definition 2.01. A design is defined as a pair (X,A) such that (i) X is a set
of points or elements, (ii) A is a subset of the power set of X (i.e. Collection of
non-empty subsets of X)

Definition 2.02. A t-design is defined as a t - (v, k, λ) block design (with t ≤
k ≤ v) such that the following are satisfied (i) X = v , (ii) each block contains
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k points, (iii) for any set of t points there are exactly λ blocks that contain all
these points.

Definition 2.03. A t-design with t = 2 is known as (v, k, λ)-Balanced Incom-
plete Block Design[BIBD].

Example 2.01. A (10, 4, 2)-BIBD has X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {(0, 1, 2, 3); (0, 1, 4, 5); (0, 2, 4, 6); (0, 3, 7, 8); (0, 5, 7, 9); (0, 6, 8, 9); (1, 2, 7, 8);

(1, 3, 6, 9); (1, 4, 7, 9); (1, 5, 6, 8); (2, 3, 5, 9); (2, 4, 8, 9); (2, 5, 6, 7); (3, 4, 5, 8);
(3, 4, 6, 7)}

Definition 2.04. A t-design with λ = 1 is known as Steiner system.

Example 2.02. A (9, 3, 1)-design has X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {(1, 2, 3); (4, 5, 6); (7, 8, 9); (1, 4, 7); (2, 5, 8); (3, 6, 9); (1, 5, 9);

(1, 6, 8); (2, 4, 9); (2, 6, 7); (3, 4, 8); (3, 5, 7)}

Definition 2.05. Finite symmetric projective plane of order n is defined as a
pair of set of n2 + n + 1 points and n2 + n + 1 lines, where each line contains
n+ 1 points and each point occurs in n+ 1 lines.

Definition 2.06. The Fano Plane is the projective plane of smallest order i.e.,
of order 2. It is a (7,3,1) BIBD and it can also be considered as a Steiner system.

Therefore, all the projective planes are Steiner systems.

Example 2.03. Projective plane of order 2, a (7, 3, 1)-BIBD, i.e.,the Fano plane
is as follows: X = {1, 2, 3, 4, 5, 6, 7}
A = {(1, 2, 3); (1, 4, 7); (1, 5, 6); (2, 4, 6); (2, 5, 7); (3, 4, 5); (3, 6, 7)}.

Example 2.04. Projective plane of order 3, a (13, 4, 1)-BIBD is as follows:
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
A = {(1, 2, 3, 4); (1, 5, 6, 7); (1, 8, 9, 10); (1, 11, 12, 13); (2, 5, 8, 11); (2, 6, 9, 13);

(2, 7, 10, 12); (3, 5, 10, 13); (3, 6, 8, 12); (3, 7, 9, 11); (4, 5, 9, 12); (4, 6, 10, 11);
(4, 7, 8, 13)}.

By complementary design we mean the design where each block is mapped to
another block such that they are mutually exclusive and exhaustive. The com-
plementary design of the Fano plane is a 2-(7,4,2) design,i.e., it is a symmetric
(7, 4, 2)-BIBD. From the structure it is clear that the design is no longer a Pro-
jective plane and obviously not a Steiner system either, as any pair of keys is
included in exactly two nodes.

Any design (X, A) can be mapped to a sensor network where the elements of
the set X represent the keys and the blocks of the set A correspond to sensor
nodes.
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3 Proposed Scheme

3.1 Key Predistribution to Seven Nodes

In this section we will discuss a particular Steiner system that is taken as a
basic building block to design our key predistribution in the hierarchical struc-
ture of nodes and then explain how it can be mapped to a sensor network.
Let us consider a 2 - (7, 4, 2) design where X = {1, 2, 3, 4, 5, 6, 7}. The blocks
are given by the set A = {(4, 5, 6, 7), (2, 3, 5, 6), (2, 3, 4, 7), (1, 3, 5, 7), (1, 3, 4, 6),
(1, 2, 6, 7), (1, 2, 4, 5)}. Note that each block shares exactly two common elements
with all other blocks. We map the system to the sensor network by considering
X to be the key-pool i.e. all the elements to be the keys and sets (blocks) in
A correspond to the key-chains of each sensor node. Here seven elements cor-
respond to seven keys and each block represents a sensor node (key chain of
the node). This assigns a set of seven keys to seven nodes such that all nodes
together contain exactly seven keys and any two are connected by exactly two
common keys.

3.2 Key Predistribution to the Tree Hierarchy

We label all the nodes and all the keys by 1, 2, 3, 4, . . . . In level 1, seven
keys {1, 2, 3, 4, 5, 6, 7} are distributed to the first seven nodes as described
above. Thus the key-rings assigned to the nodes 1, 2, 3, 4, 5, 6, 7 are respectively
{4, 5, 6, 7}, {2, 3, 5, 6}, {2, 3, 4, 7}, {1, 3, 5, 7}, {1, 3, 4, 6}, {1, 2, 6, 7}, {1, 2, 4, 5}.
Loosely speaking, the node-set {1, 2, 3, 4, 5, 6, 7} of these seven nodes form a 2-
(7, 4, 2) design in level 1. We refer the keys {1, 2, 3, 4, 5, 6, 7} chosen in level 1 as
level 1 keys. In level 2, node 1 forms a 2-(7, 4, 2) design with new six level 2 nodes
8, 9...13. A set of seven keys is required to complete the key set. Note that node

Table 1. Components of 2 - (7, 4, 2) designs formed by level 1 nodes

Node Node-set Key-set

node 1 {1, 8, 9, 10, 11, 12, 13} {4, 5, 6, 7, 8, 9, 10}

node 2 {2, 14, 15, 16, 17, 18, 19} {2, 3, 5, 6, 11, 12, 13}

node 3 {3, 20, 21, 22, 23, 24, 25} {2, 3, 4, 7, 14, 15, 16}

node 4 {4, 26, 27, 28, 29, 30, 31} {1, 3, 5, 7, 17, 18, 19}

node 5 {5, 32, 33, 34, 35, 36, 37} {1, 3, 4, 6, 20, 21, 22}

node 6 {6, 38, 39, 40, 41, 42, 43} {1, 2, 6, 7, 23, 24, 25}

node 7 {7, 44, 45, 46, 47, 48, 49} {1, 2, 4, 5, 26, 27, 28}
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1 already contains the keys {4, 5, 6, 7}. We choose three new keys, say {8, 9, 10}
and take the key set {4, 5, 6, 7, 8, 9, 10} for the key predistribution among seven
nodes. We call the new keys 8, 9, 10 chosen in level 2 as level 2 keys. This process
is repeated for the other nodes of level 1. The 2 - (7, 4, 2) designs corresponding
to all the level 1 nodes are explicitly described in Table 1. In level 3, each of
level 2 nodes are attached to 6 new level 3 nodes and the corresponding key
chain is chosen in the same manner i.e. keeping the four keys same as the level 2
keys contained by level 2 nodes and adding three new level 3 keys. This process
is repeated until keys are assigned to all the nodes in the network. We provide
below the algorithm KPDistribution for assigning keys to the tree hierarchy as
explained above. We consider a hierarchical structure using a 6-nary tree for key
predistribution.

Let us consider a network having maximum N nodes. Let K denote the total
key-pool and l denote the maximum level in the hierarchical tree structure. The
four keys assigned to N[i] are stored in N[i][1],N[i][2], N[i][3], N[i][4] respectively.
Choose {u4, u5, u6 u7} ∈R K, where the symbol ∈R stands for random selection.

Algorithm. KPDistribution

i := 0;
N [1][1] := u4; N [1][2] := u5; N [1][3] := u6; N [1][4] := u7;
procedure KPDistribution (u1, u2, u3, u4)
X := {u4, u5, u6, u7} ;
Choose {u1, u2, u3} ∈R B where B ⊆ K −X, B is the set of unused keys
X := X ∪ {u1, u2, u3};

j := 6i+ 2;
N[j][1] := u2, N[j][2] := u3, N[j][3] := u5, N[j][4] := u6;
N[j+ 1][1] := u2; N[j+ 1][2] := u3; N[j + 1][3] := u4; N[j + 1][4] := u7;
N[j+ 2][1] := u1; N[j+ 2][2] := u3; N[j + 2][3] := u5; N[j + 2][4] := u7;
N[j+ 3][1] := u1; N[j+ 3][2] := u3; N[j + 3][3] := u4; N[j + 3][4] := u6;
N[j+ 4][1] := u1; N[j+ 4][2] := u2; N[j + 4][3] := u6; N[j + 4][4] := u7;
N[j+ 5][1] := u1; N[j+ 5][2] := u2; N[j + 5][3] := u4; N[j + 5][4] := u5;

p := 1; r := 1; s := 0; m := r + s;
while (p < l) do

r := r + 6p; s := s+ 6p−1;
p++;
for i := m to (r + s− 1) do in parallel

call KPDistribution (N[i][1],N[i][2],N[i][3],N[i][4])
end do

m := r + s;
end do
end KPDistribution
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Fig. 1. Key predistribution to a sub tree upto level 3

4 Results

Theorem 4.01. (a) Number of nodes in level j is nj = 7×6j−1 , ∀ j ∈ {1, �}
where l denotes the total number of levels present in the network.

(b) Total number of nodes in the network is Tnodes = 7
5 (6

� − 1).
(c) Number of keys that are used for the first time in level j is

kj = 21× 6j−2, ∀j ≥ 2; k1 = 7;

(d) Total number of keys in the network is K = 7 [1 + 3
5 (6

�−1 − 1)].
(e) Number of nodes to which a level i key is assigned to, is Ni = 2×{3l+1−i−1}

.
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(f) The maximum level required to accommodate Tnodes number of nodes in the
network is l = �log(57Tnodes − 5)�.

Proof :

(a) The result holds trivially for i = 1.
Let us consider the following notations:

Level 1 nodes are denoted by N
(1)
i1

, i1 ∈ {1, 2, ... 7 }. Level 2 nodes are

denoted by N
(2)
i1,i2

, i1 ∈ {1, 2, ... 7 } , i2 ∈ {1, 2, ... 6 } , where N
(2)
i1,i2

represents the ith2 child at level 2 of ith1 node at level 1. Level t nodes are

denoted by N
(t)
i1,i2,...it

, i1 ∈ {1, 2, ... 7 } , i2, i3, ..., it ∈ {1, 2, ... 6 } .

Clearly total number of nodes in tth level is 7× (6× 6× ...× 6) (t− 1 times).

Fig. 2 illustrates the detailed hierarchical tree structure upto level 5.

1
)1(
iN

(2)
,11iN

2,
)2(
1iN 3,

)2(
1iN 4,

)2(
1iN

1,1,
)3(
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)3(
1iN 3,1,

)3(
1iN 4,1,

)3(
1iN 5,1,

)3(
1iN 6,1,

)3(
1iN

1,6,1,
)4(
1iN

2,6,1,
)4(
1iN 3,6,1,

)4(
1iN 4,6,1,

)4(
1iN 5,6,1,

)4(
1iN 6,6,1,

)4(
1iN

1,1,6,1,
)5(
1iN

2,1,6,1,
)5(
1iN 3,1,6,1,

)5(
1iN 4,1,6,1,

)5(
1iN 5,1,6,1,

)5(
1iN 6,1,6,1,

)5(
1iN

(2)
,61iN(2)

,51iN

Fig. 2. Hierarchical tree structure upto level 5
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(b) As the levels of the nodes are exhaustive and disjoint, we have

Tnodes = n1 + n2 + ...+ nl,

where l represents the total number of levels in the network. Thus

Tnodes =

j=t∑

j=1

nj = 7

l−1∑

j=0

6j.

Hence the result follows.

(c) k1 = 7 holds trivially, as level 1 contains only one Complementary Fano
plane consisting of seven keys.
Observed that, from level 2 onwards, each Complementary Fano plane in a
level includes six new nodes and three new keys in the following level. Hence

kj = 3× nj−1 , ∀ j ∈ { 2 , � },

where ni denotes the number of nodes in level i. The result follows on sub-
stitution of the expression for ni from (a).

(d) As the keys appearing for the first time in a particular level are exhaustive
and disjoint, we have

K = k1 + k2 + ...+ kl,

l being the total number of levels in the network. Thus

K =

j=t∑

j=1

kj = 7 + 21

l−2∑

j=0

6j

Hence the result follows.

(e) The key that appears for the first time in level i is contained in only one
Complementary Fano plane and hence goes to four nodes in level i. In (i +
1)th level, that key goes to each of the four Complementary Fano planes
corresponding to each of the previous level nodes and in each system, the
key is contained in three new nodes. Thus we observe that the nodes to
which a level i key is contained, form four ternary trees with their root in
level i. The number of nodes to which a level j key is assigned to is given by∑l

i=j 4× 3i−j . Hence the result follows.

(f) Follows directly from (b) 	


The results in (b),(d) and (f) establish inter-relationship between the total num-
ber of nodes, total number of keys and the maximum number of levels required
to accommodate all the nodes. Thus, when any two of them are known or given,
third one can be obtained. Result(e) helps us to calculate resilience, as will be
seen later in Section 6.
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5 Connectivity

We now discuss how the nodes are connected by single-hop (direct) paths. From
the key distribution pattern among the nodes in the network, it is observed that
any two nodes can share at most 2 (i.e. 0 or 1 or 2) keys. So we summarize
below the possible cases as the following: Let A be any node from level ≤ k in
the network.

Case 0: The node B be chosen from level k. A shares 0 keys with B in level k
and hence A is not connected to any of its descendants in level ≥ k either.

Case 1: The node B be chosen from level k. A shares 1 key with B in level k.
In (k + 1)

th
level, B has six children namely : B1, B2, B3, B4, B5 and B6. A is

connected to exactly three of them by sharing only one key with each. Without
loss of generality, let us assume that A is connected to B1, B2, B3 and is not
connected to B4, B5, B6. To get the connectivity of the node A with the grand
children of B, i.e. Bij for i, j ∈ {1, 2 · · ·6} in level k+2, we observe the following
subcases:

Subcase 1.1: B1, B2 or B3 falls under Case 1 and same arguments hold as in
Case 1 with B := Bi, for i ∈ {1, 2, 3}; k := k + 1.

Subcase 1.2: B4, B5 or B6 falls under Case 0.

Case 2: The node C be chosen from level k. A shares 2 keys with C in level
K. In (k + 1)

th
level, C has six children namely, C1, C2, C3, C4, C5 and C6. A

shares only one key with exactly four of them, only one key with exactly one and
no key with the remaining one. Without loss of generality, let us assume that A
shares exactly one key with C1, C2, C3, C4, only one key with C5 and does not
share any key with C6.
To observe how node A is connected with the grand children of C, i.e., Cij for
i, j ∈ {1, 2 · · ·6} in level k + 2, we have the following sub cases:

Subcase 2.1: C1, C2, C3 or C4 fall under Case 1 and same arguments hold as
in Case 1 with B := Ci, for i ∈ 1, 2, 3, 4; k := k + 1.

Subcase 2.2: C5 falls under Case 2 and same arguments hold as in Case 1 with
C := C5; k := k + 1.
Subcase 2.3: C6 falls under Case 0.

Example:

Let us discuss here how we observe the connectivity of a particular node. Ac-
cording to above discussion we assume that the network consists of 4 levels of
nodes and keys.

Connectivity of a level 1 node (say N1). All the nodes of level 1 form a
2-(7, 4, 2) design, so each node is connected to the other six nodes, and each pair
of nodes shares exactly two common keys. Hence, N1 shares two keys with all
other six nodes at level 1, i.e. with N2, N3, N4, N5, N6 and N7.
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Now in level 2, N1 is connected to all its own six children by sharing two
common keys with each of them i.e. N1 shares two keys with its children in level
2. There are exactly one child of each level 1 node with which N1 shares two
keys. Therefore, number of nodes in level 2 with which N1 shares two common
keys is 12 and the number of nodes in level 2 with which N1 shares exactly one
common key is given by 24. Out of total 42 nodes in level 2, N1 is connected to
36 nodes.

In level 3, the number of nodes with which N1 shares two common keys is 12
and the number of nodes with which N1 shares exactly one common key is 120.
Thus, out of total 252 nodes in level 3, N1 is connected to 132 nodes.

Similarly in level 4, N1 is connected to 12 nodes by sharing two common keys
and 408 nodes by sharing exactly one key.

Hence out of total 1512 nodes in level 4, N1 is connected to 420 nodes. Total
number of nodes to which N1 is connected is = 6+36+132+420 = 594. As all
the level 1 nodes are uniform, any level 1 node is connected to 594 nodes out of
total 1813 nodes in the network. This implies that only one level 1 node is directly
connected to almost 32% of the nodes in the whole network. So, intuitively we
can say that all the nodes in the network is connected to at least one level 1
node.

Connectivity of a level 2 node (say N8). We note that out of seven nodes
in level 1, N8 shares two keys with exactly two nodes, no key with one node,
and only one key with the remaining four nodes. Therefore six nodes of level 1
are connected to N8.

N8 is one of the child of N1, therefore N8 shares two keys with the other five
children of N1 in level 2. Also N2 in level 1 shares two keys with N8, hence, out
of the six children of N2, one shares two keys, one no key and remaining only
one key with N8. Thus number of nodes with which N8 shares two keys in level
2 is 6 and the number of nodes with which N8 shares only one key in level 2 is
16. Thus total 22 nodes of level 2 are connected to N8.

Following similar arguments, N8 shares two keys with 12 nodes in level 3 and
the number of nodes with which N8 shares a common key is given by 72. Hence
N8 is connected to 84 nodes in level 3.

In level 4, N8 shares two keys with 12 nodes and one key with 264 nodes.
Thus N8 is connected to 276 nodes in level 4. Therefore N8 is connected to 376
nodes in the whole network. As all the level 2 nodes are uniform, any level 2
node is connected to 376 nodes in the network.

Similarly, we can calculate these values for other level nodes also, and intu-
itively we can predict that this scheme has reasonable connectivity.

6 Performance

We calculate resilience by the following formula proposed by Lee-Stinson [8]

fail(s) = 1 −
l∏

i=1

(
1 − Ni − 2

N − 2

)si
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where fail(s) denotes the portion of total link failure when s number of nodes
are compromised; Ni denotes the number of nodes to which a level i key is
assigned to, si is the number of compromised nodes in the ith level and s is the
total number of compromised nodes. Therefore we must have

∑l
i=1 si = s.

In our scheme, the nodes are arranged hierarchically in the network, i.e., the
lower level nodes (which are very less in number) are more powerful and hence
are less liable of getting compromised than higher level nodes (which are much
more in number).

The average values of fail(s) corresponding to certain values of s has been
listed in Table 2, which describes how the network collapses with increasing num-
ber of compromised nodes. This table shows that the proposed scheme provides
reasonable resilience.

Table 2. Network collapses with increasing number of compromised nodes

s fail(s) s fail(s) s fail(s)

10 0.017549 110 0.238873 450 0.718262

20 0.032655 120 0.252230 500 0.752019

30 0.056979 130 0.290375 550 0.800994

40 0.072504 140 0.302058 600 0.825032

50 0.112959 150 0.314306 650 0.850413

60 0.135263 200 0.396464 700 0.868336

70 0.149500 250 0.469364 750 0.884240

80 0.169968 300 0.574162 800 0.907102

90 0.207049 350 0.635533 850 0.918233

100 0.220104 400 0.679556 900 0.938538

In Table 3, we provide the comparison based on the performance of our scheme
with Lee-Stinson linear scheme [8], Chakrabarti et al. scheme [3], Ruj-Roy scheme
[12] and Lee-Stinson quadratic scheme [9], where Tnodes denotes total number
of nodes in the network and Tkeys denotes total number of keys present in each
node.

The comparison between the schemes has been shown graphically in Fig. 3 and
Fig. 4. In Fig. 3 we show the comparison of our scheme with Lee-Stinson linear
scheme [8], Chakrabarti et al. scheme [3], Ruj-Roy scheme [12] and Lee-Stinson
quadratic scheme [9] for less number of compromised nodes i.e. 1− 10 nodes. In
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Table 3. Comparison with some of the existing schemes

[8] [3] [12] [9] Ours

Tnodes 1849 2550 2415 2197 1813

Tkeys 30 ≤ 28 136 30 4

fail(10) 0.201070 0.213388 0.0724 0.297077 0.017549
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Fig. 3. Comparison of resilience for small number of compromised nodes

Fig. 4 we provide the comparison with Lee-Stinson linear scheme [8] and Lee-
Stinson quadratic scheme [9] for a large number (i.e., 10-200) of compromised
nodes. It is very clear from the figures that the networks based on other schemes
collapses very fast compared to ours.

Remarks. We feel that generalizing the scheme by considering the complemen-
tary design of any projective plane (instead of Fano plane) will improve the
connectivity of the network. This is due to the fact that complementary de-
sign of a (p2 + p + 1, p + 1, 1) projective plane is in the form of a symmetric
(p2 + p + 1, p2, p2 − p)-BIBD, i.e., a set of p2 keys are shared between p2 − p
nodes in the network, which increases by a greater extent with increasing values
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Fig. 4. Comparison of resilience for large number of compromised nodes

of p (a prime number). Thus, key-sharing between the nodes can be achieved
to the desired level for complementary design of higher order projective planes.
But we have to analyse the resilience of those schemes also. As our future work
we would like to achieve improved connectivity with a reasonable trade off with
resilience.

7 Conclusion

In this paper we have introduced a key predistribution scheme for wireless sensor
network based on Complementary Fano plane. Our approach is deterministic and
the sensor nodes are arranged hierarchically in the form of a 6-nary tree struc-
ture. The proposed scheme is significantly storage-efficient and has the flexibility
of introducing new sensor nodes by adding only a few keys to the joining nodes
without disturbing the existing set-up. We have analysed the connectivity of our
scheme and it was noticed that all the nodes in the network are well-connected.
It is observed that any node shares two keys with a considerable portion of the
network. Obtained results support that the resilience of the resulting network is
found better than some of the similar combinatorial design based schemes.
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