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Abstract. The Domain Name System (DNS) protocol is used as a naming sys-
tem for computers, services, or any other network resource. This paper presents
a solution for the cache poisoning attack in which the attacker inserts incorrect
data into the DNS cache. In order to successfully poison the cache, the attacker re-
sponse must beat the real response in the race back to the local DNS server. In our
model, we assume an eavesdropping attacker that can construct a response that is
identical to the legal response. The primary aim of our solution is to construct a
normal profile of the round trip time from when the request is sent until the ar-
rival of the response, and then to search for anomalies of the constructed profile.
In order to poison the cache of a DNS server, the attacker has to know the source
port and the Transaction ID (TID) of the request. As far as we know, all current
solutions which do not change the protocol, assume an attacker that cannot see
the request and therefore has to guess the TID. All these solutions try to increase
entropy in order to make the guesswork harder. In our strict model, increasing
entropy is useless. We in no way claim that our scheme is flawless. Nevertheless,
this effort represents the first step towards preserving the DNS cache assuming
an eavesdropping attacker.
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1 Introduction

The Domain Name System (DNS) [1], [2] is a hierarchical naming system built on a
distributed database for computers, services, or any resource connected to the Internet
or a private network. The DNS distributes the responsibility of assigning domain names
and mapping those names to IP addresses by designating authoritative name servers
for each domain. Authoritative name servers are responsible for the domains in their
jurisdiction. In general, the DNS also stores other types of information, such as a list of
mail servers that accept email for a given Internet domain. This role of the DNS puts it
in a sensitive spot. The user must trust the DNS server to return the correct result for
his request. If the DNS server sends an incorrect IP address to the user, the user will
access a different site while assuming he is accessing the site he intended to access. This
problem becomes more severe with the DNS caching system that is used by the DNS
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servers for speeding up the requests’ processing. Attackers search for opportunities to
place faulty records into the DNS’s cache. Once the attacker manages to implant such a
record (that is to poison the cache), every user that requests this (poisoned) record will
receive an IP address of a malicious site.

The DNS protocol usually uses User Datagram Protocol (UDP) as a forth level pro-
tocol for its data communication. If for some reason the request or the response fails to
reach its destination, the DNS Server simply issues another request. For such a case, the
DNS Server needs to be able to handle the situation that arises from packet delays, as
these may be accidently interpreted as packet losses. The DNS operates in a straightfor-
ward approach. It simply accepts and caches the first valid response (that is, a response
from an authoritative server) and ignores all other responses. This is a drawback in the
DNS security and a gateway for attackers to poison the cache. (See [3].)

Pharming occurs when an attacker redirects a web site’s traffic to a bogus web site.
Pharming is the primary risk associated with cache poisoning. Attackers employ pharm-
ing for four primary reasons [4]: identity theft, distribution of malware, dissemination
of false information, and man-in-the-middle attacks.

This paper presents a Delay Fast Packets (DFP) algorithm which detects and pre-
vents attempts of cache poisoning attacks. In order to successfully poison the cache, the
attacker response must beat the real response (from an authoritative server) in the race
back to the DNS resolver, which is the local DNS server that originated the request. In
our model, we assume an eavesdropping attacker. The attacker can generate a response
that is identical to the real response. Since the window of opportunity is short, the at-
tacker tries to send a response as soon as possible and usually does so much faster than
it takes the authoritative server to generate a response. Our DFP algorithm identifies that
exact point by analyzing the distribution of the round trip time (RTT) from the moment
the request leaves the resolver to the time the resolver gets the response. This distribu-
tion is saved for each potential authoritative server. When the algorithm identifies an
anomaly in the RTT of a response, it delays the response for a short interval and waits
for another response of the same request to arrive. If no additional response arrives in
that interval, the delayed response is sent to the resolver.

Our contributions are two-fold. Firstly, we prevent attacks under a very strict model
against a powerful adversary. To our knowledge, we are the first to introduce an engine
that does not change the DNS protocol and which still assumes an eavesdropping at-
tacker that has all the information it needs in order to generate a valid response. DNS
requests and responses today are completely unencrypted and are broadcast to any at-
tacker who cares to look. Anybody with access to the copper infrastructure can eaves-
drop. Moreover, most of this wiring is relatively unprotected and easy to access. In fact,
this strict model has a significant impact on the motivation behind solutions that encrypt
the DNS packets (e.g. [5]). Existing solutions that do not change the DNS protocol do
not defend a DNS server in such model (as detailed in Section 3). In addition to the
strict model, our solution can be implemented as a black box that gets each request
right after it leaves the resolver. Therefore, no modifications are required, neither to the
DNS protocol nor to the BIND (Berkeley Internet Name Domain) server code.

The rest of this paper is organized as follows. Section 2 describes the cache poisoning
attack and the common approach to prevent it. Section 3 presents the state of the art
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algorithms against a cache poisoning attack. Section 4 presents our algorithm. Section
5 details the considerations we examined when we chose the algorithm parameters.
Section 6 presents our experimental results, and Section 7 concludes this paper.

2 Cache Poisoning

When a client waits for a DNS response, it will only accept the information returned if
it includes the client’s correct source port and address in addition to the correct DNS
transaction ID. These three pieces of information are the only form of authentication
used to accept DNS responses. Knowing the source IP is straightforward as we know the
address of the name server to be queried. The source port, however, and the transaction
ID present a challenge. BIND often reuses the same source port for queries on behalf of
the same name server, therefore discovering the source port is not a hard task [6]. The
only real obstacle that stands between the attacker and a successful cache poisoning
is the transaction ID field in the DNS protocol. Therefore, the attackers look for weak
spots in the protocol implementation that can allow them to make a good guess of the
transaction ID and, in this way, interfere with the traffic. In this section we present the
methods used by the attacker to overcome this obstacle.

BIND (Berkeley Internet Name Domain) [7] is the most commonly used Domain
Name System (DNS) server on the Internet. The earliest BIND servers did very little
to address security. In order to avoid a same transaction ID repeating at the same time
in the network, the server used an “Increment by One” method. Each new query was
issued with the previous transactionID+ 1. Guessing the transaction ID in such a case
is a fairly easy job. This weakness was patched and the new BIND versions issue a
random transaction ID to every new query. In the new version (BIND 9), the transaction
ID is a randomly generated number, or more precisely, the transaction ID is a pseudo
random generated number. The algorithm that generates the IDs in each of the BIND
versions is open to the public and can be easily obtained and studied. As shown in [8],
in many of the BIND 9 versions, the algorithm is weak and the next random number
can be derived from the previous one. This particular problem was fixed in the 9.5.0
BIND version. Here, in order to guess the correct transaction ID, an attacker can use
the birthday paradox. The attacker first simultaneously sends a large quantity of packets
to the DNS server requesting the same Domain Name. The DNS server generates the
same number of queries and sends them to the authority server. The attacker generates
the same amount of DNS bogus responses with a random transaction ID. The birthday
paradox dictates that a few hundred packets will suffice to promise a 50% success rate
where there will be a match of the transaction ID with at least one query and one bogus
response. This leads to a successful poisoning of the cache to the DNS server. Such
an attack was fully described in [9]. The birthday attack guaranties high chances of
success with a relatively low number of packets required. In regular packet spoofing, if
the attacker sends N responses for one query, the probability of success is N

T where T
is the total number of packets possible (in the DNS case T = 216 − 1 = 65535). In the
birthday paradox attack, the attacker only needs to match one of the requests to one of
the responses. The probability of success can be calculated by the following formula:

P(success) = 1− 1(1− 1
T )(1− 2

T )...(1− N−1
T ) = 1− T !

T N(T−N)!
.
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The power of the birthday paradox attack over the regular packet spoofing attack is that
it requires a relatively small number of packets in order to make a successful attack. A
mere 300 packets guarantees 50% success, while 750 packets guarantees a 99% success
rate. In the regular packet spoofing attack, 750 packets only guarantees a 750

65535 = 1.14%
success rate. The birthday paradox attack shows that even a randomly generated trans-
action ID used in the latest BIND versions is vulnerable to brute-force attacks.

The big security news of Summer 2008 has been Dan Kaminsky’s discovery of a
serious vulnerability in DNS servers [10]. In this exploit, the attacker causes the target
name server to query for random host names at the target domain. The attacker can
spoof a response to the target server including an answer for the query, an authority
server record, and an additional record for that server, causing the target name server to
insert the additional record into the cache.

There are several solutions available for the problem of a cache poisoning attack as
presented in Section 3. In our algorithm we assume the attacker knows the transaction
ID, source port, or any other information from the request needed in order to generate
a valid response. In contrary to other solutions, we are not trying to increase entropy,
rather we assume it is known to the attacker. The presented algorithm detects anomalies
in the RTT of the responses. Since in order to get into the cache, a spoofed response has
to arrive before the correct one, the RTT of those responses is shorter than it usually is
and therefore is considered anomalous.

3 Related Work

There are several available solutions on how to prevent cache poisoning attacks and
attempts. In this section we present some of them. BIND is the most widely used DNS
software over the Internet [1], [2], and therefore it is a constant target to attackers’
attacks. New versions and version updates are constantly being released constantly with
new updates and patches for bugs and security issues. Therefore the easiest way to
enhance the security of a local DNS server is to run the most recent version of BIND.

DNS security solutions can be categorized into two categories. The solutions in the
first category extend the existing DNS protocol. Solutions in the second category re-
quire massive changes and thus new DNS servers deployment. Since a large-scale de-
ployment may not be reached in the near future, an extensive search is made in order to
design solutions that do not require new deployment.

A lot of effort has been spent in trying to make the DNS transaction ID more ran-
dom and less predictable [11], [12]. Ultimately, such efforts are insufficient since with
only 16 bits to fight over, a determined attacker can use a purely random attack, or
even a constant attack, and theoretically, eventually, and statistically speaking, break
through the requestor’s defenses. Most of the research these days is based on increasing
the entropy of DNS queries in order to make forging a valid response more difficult.
In [13] [14], the authors describe a method by which an initiator can improve transac-
tion identity using the 0x20 bit in DNS labels. This idea uses the question section to
add random bits to the query. DNS servers do not care if the question is presented in
upper or lower case, and therefore a combination of the cases can provide the essential
random bits to the query. In practice, all question sections in responses are exact copies
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of question sections from requests. The difference between lower and upper case let-
ter is the 0x20 bit. Therefore, for any character in the domain name in the question,
a request initiator can randomly choose this bit and the transaction ID can be effec-
tively lengthened beyond 16 bits. The effectiveness of this algorithm is a function of
the length of the domain. In the Random prefix [15], [16] method, the authors propose
to use wildcard Domain Names to increase the entropy. For example, if a user wants to
resolve the “www.example.com”, the DNS server will generate a random prefix for the
query and send “ra1bc3twqj.www.example.com”. The authoritative DNS server returns
the same domain name with the “www.example.com” IP address. This method using a
prefix length of 10 will generate in the region of log2 3610 ≈ 52 bits. In another solution,
presented in [17], the authors extend the DNS query ID with up to 63 alpha-numeric
characters into the query/response question name (QNAME) making the range of pos-
sible transactions IDs so large that any brute force guessing or birthday attack attempts
are futile.

Most name-servers, prior to the patches released on July 2008, always sent out their
queries from port 53. Therefore, another direction is to also randomize the source
port [18], [19], [12]. In this method, the name server uses a random source port for
his query. The name server cannot use an entire UDP port space, however, even an ex-
tra 10 or 11 bits of randomness is many times greater. A DNS source port randomization
becomes vulnerable if the DNS traffic is behind NAT. NAT cancels the DNS source port
randomization by translating source ports to non-random ports.

Since the DNS protocol does not include any security, Domain Name System Se-
curity Extensions (DNSSEC) [20] were developed as described in RFC 3833 [21].
DNSSEC was designed to prevent cache poisoning by having all its answers digitally
signed, thereby allowing the correctness and the completeness of the data to be easily
verified. DNSSEC is a new protocol and only lately have some of its critical pieces
been formally defined. Using DNSSEC necessarily means deploying new servers or
reinstalling the protocol in the existing ones. Consequently, deploying the protocol on
large-scale networks becomes a challenging task. DNSSEC introduces new security
issues such as chain of trust problems, timing and synchronization attacks, Denial of
Service amplification, increased computational load, and a range of key management
issues as presented in [22].

DNSCurve [5] is an alternative to DNSSEC. DNSCurve uses high-speed elliptic
curve cryptography, and simplifies the key management problem that affects DNSSEC.
There is not much documentation on DNSCurve, but like DNSSec, it is hard to deploy.

4 The DFP Algorithm

The primary aim of the DFP algorithm is to estimate the RTT (Round Trip Time)
between the DNS Server and each of the authoritative servers it encounters and to
delay the responses that are arriving too fast according to the approximation. Further-
more, the processing time for each service type (MX, A, AAAA, CNAME, PTR etc...)
might have different lengths, such as in a case due to a more extensive database search
on the authoritative side. Therefore, the DFP algorithm estimates the RTT for each
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service type the authoritative server can provide. For each authoritative server and ser-
vice type, the estimated RTT predicts the average time needed for the next response to
arrive. If for any reason, a response comes too soon, according to the DFP algorithm,
the DNS Server waits for a certain amount of time before it forwards the response to
the requestor. If another valid response arrives in that window of time, both responses
are dropped, and a new request is generated (as is done when a regular DNS packet loss
occurred). If the attacker is persistent and sends a response for each request, the user
experiences DoS (Denial of Service) attack, since the DFP algorithm will not pass any
of the responses back to the user. In this case, the user does not get the service, but at
least he is also not exposed to more harmful attacks such as fishing and theft of critical
information. Moreover, under the assumption of an eavesdropping attacker and with-
out changing the DNS protocol, we believe that there is no solution that can also solve
the DoS problem. A simple cache poisoning attack with an eavesdropping attacker is
presented in Figure 1. A local name server that is deployed with the DFP engine is not
vulnerable to a cache poisoning attack as shown in Figure 2.

Attacker eavesdrops 
and sends response

Local Name Server
(LNS)

Authoritative Name Server
(ANS)

1. LNS sends request
2. LNS gets response from Attacker
3. LNS saves response in cache
4. LNS gets response from ANS

Attacker

Fig. 1. Cache Poisoning Example

1. LNS sends request 
2. DFP records departure time
3. DFP gets too fast response from attacker
4. DFP delays the too fast response
5. DFP gets response from ANS
6. DFP drops both response

Attacker eavesdrops 
and sends response

Local Name Server
(LNS)

Authoritative Name Server
(ANS)

Attacker

Fig. 2. DFP Operation

Algorithm 1 presents a simplified pseudo-code that demonstrates the idea of the DFP
algorithm. In the case of a multiple packet attack, the algorithm closes the request after
the first duplicate response, so any other response will not have a corresponding request
and, thus, will be dropped. Another issue we have to consider is the legal too fast packets
that might affect the RTT estimations. In the case where there are no attacks, those
too fast packets can mark a change in the topology of the network and therefore must
be considered in the RTT estimations. However, in the case of possible attacks, the
algorithm should not include them in the estimations, as they may be an attempt of the
attacker to lower our RTT estimations in order to make a successful attack in the near
future. Therefore, too fast packets must not affect the RTT until the algorithm verifies
their authenticity. This functionality is omitted from the the pseudo-code in order to
save its simplicity.

The algorithm was tested on real traffic from the local DNS server of our university.
The traffic contains 385,000 DNS requests.
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Algorithm 1. DFP - Delay Fast Packets
1: PacketDictionary.Init() //mapping responses to request
2: StatsDictionary.Init() //save auth. server statistics
3: loop
4: NewPacket ⇐ Sni f f DNSPacket()
5: key ⇐ GetKey(NewPacket.Auth− server,NewPacket.TransactionID,NewPacket.Type)
6: if NewPacket.isQuery() then
7: PacketDictionaly.put(key,NewPacket)
8: else
9: RequestPacket ⇐ PacketDictionary.get(key)

10: if RequestPacket == NULL then
11: Drop(NewPacket)
12: else
13: if RequestPacket.hasDelayedResponse() then
14: Drop(DelayedResponse)
15: PacketDictionary.clear(key)
16: Drop(NewPacket)
17: else
18: RTT ⇐ NewPacket.TimeO f Arrival−RequestPacket.TimeO f Send
19: DelayTime ⇐ AuthServerStats.AddSample(RT T,NewPacket.Auth −

Server,NewPacket.Type)
20: DelayPacket(DelayTime)
21: PacketDictionary.clear(key)
22: end if
23: end if
24: end if
25: end loop

AddSample(RTT, Auth-Server, Type)
1: AuthServerStats = StatsDictionary.get(Auth−Server+Type)
2: if AuthServerStats == NULL then
3: AuthServerStats =CreateStat(key)
4: AuthServerStats.EstimatedRT T ⇐ RT T
5: AuthServerStats.DevRT T ⇐ 0
6: end if
7: AuthServerStats.EstimatedRT T ⇐ (1−α)×AuthServerStats.EstimatedRT T +α×RT T
8: AuthServerStats.DevRT T ⇐ (1 − β) × AuthServerStats.DevRT T + β × |RT T −

AuthServerStats.EstimatedRT T |
9: if RT T < AuthServerStats.EstimatedRT T − AuthServerStats.DevRT T ×

AuthServerStats.FactorWindow then
10: return (AuthServerStats.EstimatedRT T + AuthServerStats.DevRT T ×

AuthServerStats.FactorWindow)−RT T
11: else
12: return 0
13: end if
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The DFP algorithm uses two hash tables. PacketDictionary maps between the outgo-
ing requests and the incoming responses; StatsDictionary stores the statistics for each
authoritative DNS server. On each packet arrival, a key is constructed from the author-
itative server IP, the transaction ID, and the packet type. If the packet is a request, the
packet is saved, by its key, in the PACKETDICTIONARY hash table. If the packet is
a response, the corresponding DNS request is retrieved, once again, by the same key.
The scenario when no matching request is found, that is, there is a response with no
request, can be a result of two cases. One, the attacker sends multiple responses and
the request was previously cleared. Two, there is a response without a request. In both
cases, this condition can never be fulfilled unless there is an attack on (or a bug in) the
DNS server; therefore, the packet is dropped. If the corresponding request has a delayed
response (a too fast response was previously arrived to that request), the algorithm re-
moves the request from the PACKETDICTIONARY hash table and drops both responses.
In the normal case, where both the response and the request are found, the algorithm
calculates the RTT between the local DNS server and the authoritative DNS server by
measuring the time difference between the time the request is sent to the arrival of the
response. Note that the RTT is calculated for each authoritative server and service type.
It then calculates the ESTIMATEDRTT DEVRTT and estimates the normal window. If,
however, the packet is too fast, it is delayed for d milliseconds, where d is the deviation
between the RTT and the upper bound of the estimated normal window. Otherwise, the
response is immediately sent to the server to be saved in the cache.

5 Design Parameters

The DFP algorithm uses the following formula in order to detect too fast packets:
RTT < EstimatedRTT −DevRTT ×FactorWindow. Each DNS response that arrives
too soon according to the formula is considered suspicious and delayed, thereby al-
lowing time for another possible response with the same transaction id to arrive. The
variables in the formula are controlled by three parameters: α, β and FactorWindow.
The performance of the DFP algorithm, in terms of speed, detection accuracy, and mem-
ory consumption, depends on how well these parameters are configured. In this section
we describe the considerations and the experiments that led us to choose the values for
these three parameters.

5.1 The Window Parameters

The Window is the time interval in which response arrivals are considered normal.
Each response that arrives before the window begins is considered suspicious. Each
pair of authoritative server and request type has its own window. For example, for
www.abc.com authoritative DNS server with type A, the window might begin 3400
ms after the request is sent, while for type MX it might begin after 3800 ms. The Win-
dow Starting Point is the beginning of the window. Each response arriving before
the starting point is considered as a too fast packet. Respectively, the Window Ending
Point is the end of the window and each response arriving after the ending point will be
considered as a too slow packet. A false alarm occurs when a packet originated by the
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Fig. 3. The window Parameters

authoritative server arrives before the window starting point. Every false alarm causes
the DNS server to store the packet in memory for a short time and release it only after
it is safe. Figure 3 presents these parameters over the time axis. The sending time of a
specific request is tsend request . The average of the arrivals times of all legal responses
for the specific request type and authoritative name server is tavg responses. This average
has margins that define the window’s starting point and ending point. Any response that
arrives between tsend request to Wstart point is considered too fast and any response that ar-
rives after Wend point is considered too slow. Some authoritative servers are infrequently
requested and due to the dynamics of the network the DFP algorithm might not have
enough samples in a certain point to create a distribution. The algorithm either takes the
minimum values of the window starting point and window ending point, if they exist,
or it takes the minimum values of an authoritative name server from the same parent
domain.

The window has a very dynamic nature. Its starting point constantly changes and
shifts on the time axis. This is due to the dynamic nature of the internet network and
the constant changes in the RTT of the arriving requests. The window starting point
dictates which packets are considered too fast, and which thus need to be delayed, and
which packets are within the normal time boundary and can therefore immediately pass
through. An attacker might try to influence the location of the window by flooding the
authoritative server. In this case, the latency of the responses from the flooded author-
itative server increases and the window is shifted to the right, resulting in a delayed
starting point and fewer chances to successfully poison the DNS cache. In order to ad-
just the parameters that define the window starting point, there are two observations to
consider:

– An early starting point allows more packets to pass through without a delay. The
DNS server does not need to delay too many suspected packets (until it is safe
to pass them on) and therefore the latency is reduced. However, the window of
opportunities is increased, and a potential attacker can hit just above the starting
point and pass the filter without triggering an alarm.

– A late starting point delays more packets since it considers them as too fast packets.
This configuration hardens the attacker cache poisoning attempt since in order to
avoid the DFP filter he has to compete on a small time interval. However, a late
starting point forces the DNS server to delay many packets, considering them as
potential threats. The major consideration of this configuration is the larger memory
consumption and a slower response of the DNS server to the users.
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In the following sections (5.2 and 5.3) we refer to α, β and the FactorWindow.
We perform a set of experiments in order to demonstrate the influence of each of the
parameters on the window starting point and hence on the tradeoff between the number
of false alarms and the probability of detecting and preventing a potential attack.

5.2 α and β Considerations

The two parameters influencing the EstimatedRTT and the DevRTT parameters in the
DFP algorithm are α and β. They determine the weight of the new RTT sample against
the history, thereby influencing the window starting point. In order to find how α and
β influence the number of fast packets detected by the DFP algorithm, we conducted
several experiments on real traffic without any attempted attacks. In each experiment
we measured the number of false positives alarms. The following figures 4, 5, 6 demon-
strate the results of the experiments, using different values of α and β. In order to clearly
demonstrate the results, the graphs present only 100 packets that represent the general
case.
Note: The FactorWindow parameter is set to 2 in each of the following experiments.
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Fig. 4. α=0.125, β=0.25

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Request#

T
im

e
 (

m
il
li
s
)

Sampled
Estimated
STD
Starting Point

Fig. 5. α=0.875, β=0.75
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Fig. 6. α=0.2, β=0.4

In each of the experiments, the newest sample is given a much higher weight since
it is better at predicting the future RTT. Figure 4, deals with the case of low values
of α and β. Low α and β values, as in TCP RTT estimation, smooth the estimated
RTT function, since more weight is given to the history of the samples rather than to
the newest sample (in comparison to higher values of α and β). For each peak in the
sampled RTT, the DevRTT rises. (Note, for example, the peak in the sample RTT and
the rise of DevRTT at packet number 10.) As a result, the window starting point be-
comes low. This situation allows potentially malicious responses a wider window of
opportunity to attack the DNS server. Only two packets were considered too fast in
this configuration. The graph shows that those packets’ RTT time exceeded the starting
point. In Figure 5, we used high values of α and β. High values give most of the weight
to the newest sample. Hence, the RTT deviation is very small and the window starting
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point is extremely late, making DNS attacks attempts very hard to succeed. However,
this situation also creates many false alarms as any fluctuation in the RTT will probably
put the new sample before the window starting point. We see that in this configuration
about 20% of the packets were considered too fast. Figure 6 deals with the case of
medium values of α and β. The values of α and β are the median of the ‘Low’ and ‘High’
configurations. As expected, the window starting point in this case is later than in the
‘Low’ configuration and the RTT deviation is higher than in the ‘High’ configuration.
We see that in this configuration five of the packets were considered too fast.

Our experiments show that most of the time the deviation of the RTT is relatively low.
Therefore the created starting point is rather high. The change in the deviation occurs
when an extremely slow packet arrives. In this situation, the window starting point is
lowered for a short period of time and possible attacks have a higher chance of success.
However, as we can see from the results, slow packets seldom arrive. In consideration
of memory consumption, it is important to prevent false alarms that might be created by
valid too fast packets. Thus, for those, the ‘Low’ version should be chosen. However, if
the local DNS server can afford saving more too fast packets, the better configuration is
the one that prevents more attacks, and in that case it is better to choose the ‘Medium’
or even (if memory is not a problem) the ‘High’ configuration.

5.3 FactorWindow Considerations

After setting up the α and β parameters, the configuration of the FactorWindow param-
eter should be determined. This parameter goal is to lower the starting point created by
α and β. As before, the tradeoff between the number of false alarms and the probability
of a successful attack dictates which value will be chosen. Figures 7, 8 and 9 present
the FactorWindow influence on the window starting point. As above, in order to clearly
demonstrate the results, the graphs present only 100 packets that represent the general
case.
Note: The α and β parameters are set to 0.125 and 0.25 respectively in each of the
following experiments.
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Fig. 7. Factor Window = 1
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Fig. 8. Factor Window = 2
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Figure 7 deals with the case where FactorWindow = 1. FactorWindow = 1 means
that the window starting point is modified only by α and β. Therefore the created start-
ing point is high and the probability for a packet to come before the starting point is
respectively high. In this case, many packets will have to be delayed. We see that in this
configuration, about 30% of the packets are considered too fast packets.

In Figure 8 we used FactorWindow = 2, i.e. the starting point is two estimated de-
viations from the estimated RTT. Using the ‘Chebyshev inequality’ the probability for
a packet to exceed the starting point is less than 1

4 . However, in practice, the bound is
tighter. Our experiments show that only about 1

10 of the packets are considered as too
fast.

Figure 9 deals with the case where FactorWindow= 3. Again, using the ‘Chebyshev
inequality’ the probability for a packet to exceed the starting point is less than 1

9 , but in
practice, almost no packet exceeds the starting point. The window starting point is so
low that an attacker can easily intrude even without knowing that a detection and pre-
vention DFP algorithm is running. In this configuration, only one packet is considered
too fast.

The main consideration for choosing the configuration of the FactorWindow param-
eter is, again, the tradeoff between the number of false positives and the probability of
a successful attack. By analyzing our results, we conclude that the best value for the
FactorWindow2 is 2.

5.4 Slow Packets Consideration

The main assumption of the DFP algorithm is that the deviation from the EstimatedRTT
approximates zero. This assumption was proven to be true in many experiments carried
out on real traffic. But in some cases, the deviation rises for short periods of time. In
those moments, the attacker gets an opportunity for a successful attack since many
too fast packets fall after the window starting point of : EstimatedRTT −DevRTT ×
FactorWindow bound and are therefore considered normal.

This situation occurs after a very slow packet is received. The too slow packet creates
a temporary increment of the deviation and lowers the starting point, as seen in Figures
10 and 11. The starting point returns to normal parameters after a few packets, when
the influence of the too slow packet weakens. The temporary lowering of the starting
point creates an opportunity for a attacker to attack the DNS server.

The way to prevent this weakness is to eliminate the too slow packets from the cal-
culation of the deviation, thereby preventing the temporary lowering of the starting
point. However, the DFP algorithm must take into consideration the possibility of rapid
changes in the network characteristics or topology. Thus, DFP distinguishes between
seldom too slow packets to a real tendency and the too slow packets are considered
accordingly. An attacker cannot reduce the algorithm starting point by sending slow
responses. The original response is likely to arrive before any spoofed slow response
and therefore either the spoofed response is just dropped (if it arrives after the window
ending point) or both the original and spoofed responses are dropped (if the spoofed
response arrives within the window). In either case, the spoofed response is not consid-
ered when calculating the distribution parameters. Another option the attacker has is to
flood a specific authoritative server in order to force slow responses from that server. As
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Fig. 10. Low Starting Point
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Fig. 11. Negative Starting Point

a result, the window starting point in the local name server is reduced and the attacker
can send a spoofed response without being delayed. The DFP engine does not handle
these kinds of combined attacks.

5.5 Imitation of the DFP Profile

An eavesdropping attacker may adopt the DFP algorithm and imitate the same profiles.
Afterwards, the attacker can apply fine control on the issuing time of forged DNS re-
sponses to make them reach the server after the starting point. In order to successfully
poison the cache, the attacker’s response needs to arrive before the real response. The
RTTs are distributed normally, therefore, if x is the arrival time of the attacker response
and tget response is the arrival time of the real response, the probability of a successful
attack (after standardizing x) is

∫ tget response

Wstart point

1√
2π

e
1
2 x2

dx .

We can see, there are two factors that influence the odds of a successful attack, the win-
dow starting point and the arrival time of the real response. We have no control over the
arrival time of the real response, but we can decrease the FactorWindow to narrow the
window of opportunity of the attacker. This scenario demonstrates the tradeoff between
memory and accuracy.

6 Experimental Results

The results are measured by two factors, memory consumption and accuracy. Usually,
there is a tradeoff between these two factors. In our case this tradeoff is insignificant.

6.1 Memory Consumptions

The main consideration in choosing the best configuration for the DFP algorithms is
to prevent attacks. In order to prevent attacks, the starting point should be as tight as
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possible to the estimated RTT. However a tight starting point might create many false
alarms (as explained above). In this section we present how different starting point
values affect the memory consumption. We examined three configurations. In the first
one, α= 0.125, β= 0.25; in the second, α= 0.2, β= 0.4; and in the third configuration,
α = 0.875, β = 0.75. Figure 12 presents the percentage of packets that are considered
too fast in each of the configurations.
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Fig. 12. Percentage of Fast Packets
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Fig. 13. Memory Consumption

The DNS payload has a limit of 512 bytes (for IPv4). Our experiments show that
an average response is about 155 bytes long. The DFP algorithm must allocate those
bytes in memory for each delayed packet, usually for about few hundred ms, until the
response is either released or dropped. The memory consumption depends on the in-
bound rate of the local DNS server. The university DNS server can only handle a few
dozen responses in parallel. Since this server might not represent the general case, Fig-
ure 13 estimates how many KB the DFP algorithm consumes assuming it handles 1000
responses in parallel. As we can see, even for the most wasteful configuration, the mem-
ory consumption is no more than 65KB on average and 215KB in the worst case. Thus,
memory consumption is not a limiting factor even for busier servers.

The presented algorithm was implemented and tested on real traffic collected from
our university DNS Server. The traffic was sniffed and saved in pcap files that were
later used for different configurations testing and analysis. The traffic was filtered to
contain only DNS responses with an authoritative flag on. For each of the samples, the
algorithm calculates the EstimatedRTT, the DevRTT, and with a given FactorWindow,
it deduces which packets are considered to be too fast.

6.2 Attacks Detection

In order to test the DFP algorithm we planted a few random duplicate response packets
with random arrival times in the tested traffic. The spoofed responses arrived before the
real responses. The DFP algorithm with the above configuration was able to classify
all of the attacks as too fast packets and therefore delayed them until the real result
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arrived. We believe that there were no real attempts to attack our university local DNS
server while the samples were captured, since no duplicate packets were found beside
the faked packets planted by us. Unfortunately, we cannot compare our results to other
solutions since all other solutions fail to protect the DNS server from cache poisoning
attack on our strict model.

7 Conclusions

This paper presents the DFP algorithm against DNS cache poisoning attacks. The al-
gorithm assumes an eavesdropping attacker that can see the request and therefore can
easily create and send a spoofed response. Our algorithm measures statistics per author-
itative server and type of query in order to build a profile about the RTT distribution for
these two parameters. Since, in order to get into the cache, a spoofed response has to
arrive before the correct one, the RTT of those responses is shorter than it usually is and
therefore, out of the constructed profile. We showed that the algorithm is scalable and
its memory consumption can fit in a standard cache.

The weak spot of the DFP engine is its vulnerability to a DoS attack (in the case
where the attacker repeatedly sends spoofed responses). In our future work, we will
integrate the DFP engine with a mechanism that detects these repetitive spoofed re-
sponses and instead of just dropping duplicate responses, it will save a copy of each
unique response and choose the correct one according to various considerations.
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