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Abstract. Content-based Publish-Subscribe (CBPS) is a widely used
communication paradigm where publishers “publish” messages and a set
of subscribers receive these messages based on their interests through
filtering and routing by an intermediate set of brokers. CBPS has proven
to be suitable for many-to-many communication offering flexibility and
efficiency in communications between a dynamic set of publishers and
subscribers. We are interested in using CBPS in healthcare settings to
disseminate health-related information (drug interactions, diagnostic in-
formation on diseases) to large numbers of subscribers in a confidentiality-
preserving manner. Confidentiality in CBPS requires that the message
be hidden from brokers whereas the brokers need the message to compute
routing decisions. Previous approaches to achieve these conflicting goals
suffer from significant shortcomings—misrouting, lesser expressivity of
subscriber interests, high execution time, and high message overhead.
Our solution, titled v -CAPS, achieves the competing goals while avoid-
ing the previous problems. In v -CAPS, the trusted publishers extract the
routing information based on the message and the brokers keep minimal
information needed to perform local routing. The routing information
is cryptographically secured so that curious brokers or other subscribers
cannot learn about the recipients. Our experiments show that v -CAPS
has comparable end-to-end message latency to a baseline insecure CBPS
system with unencrypted routing vectors. However, the cost of hiding
the routing vectors from the brokers is significantly higher.

Keywords: content-based publish subscribe, privacy, anonymity, mes-
sage latency.

1 Introduction

With the growing demand for adaptive and intelligent communication networks,
content-based publish subscribe (CBPS) has gained significant attention in the
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research community over the last decade. Publish-subscribe in general is a com-
munication technique whereby publishers “publish” messages and a set of sub-
scribers receive these messages. This is more efficient than a publisher sending
multiple point-to-point messages to each subscriber. Publish-subscribe offers a
degree of decoupling between the publishers and the subscribers—a network of
brokers together route the messages from a publisher to the correct set of sub-
scribers. In traditional publish-subscribe systems, the subscribers express their
interest in certain topics of messages and each message is published on one or
more topics. Thus, conceptually, routing of messages to the subscribers is simple.

CBPS systems, which followed the development of traditional publish-
subscribe systems, offer greater flexibility to the subscribers to express their
interests. In CBPS systems, the subscriber defines a filter (a logical expression)
on the content of a message, such as, a diabetic patient may be interested in avail-
ability of a drug named ‘Glucotrol’ where the store zip code is either ‘47901’ or
‘47902’ and unit price is less than ‘$1’. Only messages matching the filter will
be delivered to our hypothetical patient. Here the brokers execute more sophis-
ticated algorithms for matching messages with constraints on attribute values
in the filter (such as sub-string, equality, inequality). Typically, a hierarchy of
brokers arranged in layers perform progressive filtering of the messages till they
reach the correct set of subscribers. CBPS systems have seen significant research
activity over the years resulting in excellent algorithms for filter matching, filter
propagation through the broker network, and minimization of delivery latency
[2], [4], [5], [6], [10]. These systems have also had mature industrial deployments
[1], [2].

However, CBPS systems rely heavily on the integrity of brokers. Wang et al.
[19] have shown that achieving message confidentiality, integrity, and auditabil-
ity in the presence of malicious brokers is a challenging assignment. Consider
the following scenario: Our hypothetical patient Jane is infected with HIV. She
wants to subscribe for drug availability and preventive care newsletters for her
disease from an online health information exchange that uses CBPS for content
delivery. Due to the sensitivity of her disease, Jane doesn’t want the brokers to
learn about her subscription. Similarly, Dr. Watson, a publisher in the health in-
formation exchange, doesn’t want to divulge contents of his messages to the bro-
kers. But normal functioning of CBPS requires that the brokers should inspect
both pieces of information (notifications and subscriptions) to route messages.
We term the ensuing paradoxical problem—that of computing routing decisions
based on encrypted notification and subscriptions—the secure routing problem
(PA). To further illustrate the complexity of this problem, let us assume that
we have “magically” found a solution to PA. However, to encrypt a notification,
the publisher must know the precise set of subscribers that receive a notification
and share a group key with them. This violates the publisher-subscriber decou-
pling property of CBPS. Furthermore, the set of subscribers is a function of the
notification and may change with every message. We term this problem—that of
dynamic group discovery and key exchange among publishers and subscribers—
dynamic subscriber group management problem (PB). An anonymity-preserving
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solution, like Tor [9], works well for single source to single destination, but not
in the case when multiple patients need to subscribe to the same information,
unbeknownst to others.

In this paper, we present v -CAPS, a routing protocol guaranteeing
Confidentiality of messages and Anonymity of subscribers in the presence of
untrusted brokers in content-based Publish-Subscribe networks. In essence, our
protocol solves the problem PA mentioned in the previous paragraph. Our cur-
rent work assumes a solution exists for the problem PB so that for each notifica-
tion, a key can be shared with a dynamically determined group of subscribers.
Candidate solutions are available in [13]. A simplistic, but workable, solution will
be to have a single key shared by each publisher with all the subscribers. Our
brokers are curious in that they wish to inspect the messages and the recipients
of messages, but are otherwise well-behaved in that they perform their routing
decisions correctly. One can argue that the adversary model we consider is more
insidious of the two—clear denial of service due to dropping the messages can be
detected more easily. This class of privacy-preserving CBPS systems has been
motivated by others in the literature [12], [15], [16].

Several researchers have tried to address PA by using cryptographic tech-
niques like computation on encrypted data [15], commutative encryption [16],
or homomorphic encryption [12]. However, all of these approaches have their
shortcomings—false positives or misrouting [15], lesser expressivity of subscriber
interests or filters [12], [15], [16], high execution time [12], [15], and high mes-
sage overhead [12], [15]. We make the important observation that routing in
content-based publish-subscribe networks does not necessarily require inspec-
tion of the whole message. Instead, if a trusted publisher extracts the routing
information from a message before encrypting it, then the problem reduces to
hiding this information from malicious brokers. In our solution approach, the
publisher looks at the commonality of interests among subscribers and encodes
the routing information in the form of a routing vector (hence, the letter “v”
in the name of our protocol). The routing vector (RV) is added to the header
of a message and it allows brokers to compute their receiver lists. We present
two versions of our protocol—one where the RV is left unencrypted (termed the
RV protocol), and the second where the RV is further encrypted to achieve both
confidentiality and anonymity (termed Secure RV or SRV protocol). Our sim-
ple approach eliminates the need for complex cryptographic operations, thereby,
making it possible to incorporate the full generality of filters in baseline CBPS
systems, with low computational overhead on the brokers. Our experimental
results show that RV performs nearly as fast as a baseline CBPS in terms of
latency. Achieving perfect anonymity (which we do through the SRV protocol),
however, is significantly more costly and practical only for medium-sized net-
works. Unlike earlier approaches, the choice of encryption schemes is flexible in
v -CAPS and continuing advances in faster content matching will render v -CAPS
more efficient. For all practical purposes, v -CAPS does not have false positives
(subject to the non-collision guarantees of cryptographic hash functions). The
concessions that v -CAPS makes are added execution overhead at the publisher
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and some loss of decoupling between publishers and subscribers. However, the
partial loss of decoupling has added advantage of auditability and enforcement
of access control on subscriber interests.

The rest of the paper is organized as follows. Since a major portion of our
protocol is described based on terminology used in Siena [4], a baseline CBPS
system (i.e., without any privacy guarantee), we present the necessary back-
ground in Section 2. In Section 3, we highlight security goals, threat model, and
assumptions in the proposed scheme. Section 4 presents the design of v -CAPS,
guaranteeing message confidentiality. An enhanced protocol for incorporating
subscriber anonymity is illustrated next. The protocol description is followed by
an experimental evaluation of v -CAPS on a wide-area deployment. Finally, we
discuss some unsolved design issues and conclude the paper.

2 Background

Content-Based Publish-Subscribe (CBPS) is an asynchronous communication
paradigm where a message is routed based on its content instead of a fixed
destination address. Typically, three types of nodes form the backbone of a
CBPS network. These are – publishers, the entities that send a message into the
network; subscribers, the entities that express their intention to receive messages
with certain content; and brokers, the intermediate nodes that route messages
from the publishers to the subscribers. Typically there are multiple levels of
brokers between the publishers and the subscribers. CBPS has been shown to
be an effective communication stratum under various scenarios — publishers
and subscribers are linked transiently, fine-grained expression of interest can be
made by subscribers, and some publishers and subscribers are ephemeral. It has
been shown that CBPS is capable of delivering messages with low latency and
of scaling to a large number of publishers and subscribers [2], [5]. The messages
generated by publishers are termed as notifications. A notification consists of a
collection of attributes and their values. Each element in this collection is a three-
tuple <attributeName, attributeValue, attributeType>. E.g. a sample notification
regarding available appointment schedule for Dr. Watson may look as follows:

wardName cardiology string

wardId 2131 integer

docName Dr. Watson string

totalSlots 20 integer

apptSlots list of slots list datetime

timeStamp 01/05/2011 09:00AM datetime

The notification indicates that Dr. Watson in cardiology ward has 20 available
appointment slots for the week (list for which is also given in the notification).
The collection of attribute names and their data types define the schema of a
notification.
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A subscriber in a CBPS network may request for messages with certain
attribute values. The interest of a subscriber is represented by a set of con-
straints over the attributes. Each attribute constraint is defined as a four tuple
<attributeName, operator, value, attributeType>, where operator can be any
boolean operator like =, ! =, >, <, etc. or string operators like prefix, suffix,
substring etc. For clarity of representation, we shall, however, denote attribute
constraints as logical expressions in subsequent discussions and assume that the
attribute type will be clear from the context. For example, an attribute constraint
for the notification shown above may be wardName="cardiology". A filter over
a notification schema is defined as a conjunction of one or more attribute con-
straints, e.g., (wardName="cardiology")∧(docName="Dr. Watson") is a filter
for receiving appointment slots for Dr. Watson in Cardiology ward. A subscriber
may subscribe with one or more filters which are propagated from the subscriber
to the publishers through the set of brokers. The notifications, on the other hand,
are routed from the publishers to the matching subscribers through progressive
filtering at different levels of brokers. We say that a notification matches a fil-
ter if all its attribute constraints are satisfied by the notification. Clearly, the
filter (wardName="cardiology")∧(docName="Dr. Watson") matches the noti-
fication shown above.

Commonality between filters in the CBPS network is computed by a cover-
ing relationship as in [4]. We define that a filter F1 covers a filter F2, denoted
F2 ≺ F1 iff all the notifications that match F2 also match F1. For example,
if F1 = (wardName="cardiology") and F2 = (wardName="cardiology") ∧
(docName="Dr. Watson"), then F2 ≺ F1. Loosely speaking, filter F2 is less per-
missive, i.e. stricter, than filter F1. Notice that, in the general case, notification
sets of two filters may not overlap. Hence, the covering relation imposes a partial
order on the set of filters. For efficient propagation of subscriptions and notifica-
tions, each broker in the CBPS network maintains two data structures—a filter
poset and the subscriber list for each filter. The filter poset is the partially or-
dered set of filters received by a broker from its lower level brokers or subscribers,
whereas, the subscriber list stores the set of subscribers for each filter.

2.1 Filter Posets

The filter posets, which denote partial ordering between filters at a broker, are
represented as a collection of directed trees. In the tree an edge is drawn from
filter F1 to F2 (F1 → F2), iff F2 ≺ F1. The root of a tree is termed as the
root filter. Essentially, root filters are the set of filters that are not covered by
any other filter. These trees may have overlap between themselves (i.e. they
share some branches). However, the overall collection of trees form a directed
acyclic graph (DAG). For notification forwarding decisions, each of the filters
in the filter posets is associated with a set of recipients. A recipient may be
either a subscriber or a next hop broker. For example, consider the simple net-
work shown in Fig. 1. Here P is the publisher, B1, B2, B3 are the brokers
and S1, S2, S3, S4 are the subscribers with filters F1, F2, F3, F4 respectively.
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Fig. 1. An Example CBPS Network

We assume the covering
relationship between fil-
ters to be F2 ≺ F1 ≺
F3 while F4 is indepen-
dent w.r.t. other filters.
The filter poset and the
recipient list at each of
the brokers in the net-
work are displayed along-
side each broker in Fig. 1.

The distinction be-
tween filter posets in v -
CAPS and in baseline
CBPS (Siena) lies in the
content of each filter node. While each filter node in Siena contains a plaintext
filter, filter nodes in v -CAPS store encrypted filters along with a unique filter
ID. Additionally, each publisher in our protocol also stores the list of its filters
and their covering relations in the form of filter posets. However, the publisher
does not save recipient list for each filter. It is the responsibility of the brokers
to maintain subscriber lists. The advantage of this design choice is that a pub-
lisher need not remember the topology of the network. It only remembers filters
corresponding to the notifications it publishes. To avoid ambiguity, in further
discussions of v -CAPS, we call the DAG representation of partially ordered list
of filters at the publisher as the Publisher Filter Poset (PFPoset)and those at
the brokers as Broker Filter Posets (BFPoset).

3 v-CAPS Basics

Our solution for confidentiality and anonymity preserving routing in CBPS net-
works, entitled v -CAPS, solves the secure routing problem (PA) by introducing
modified separation of duties for participating nodes (publishers, subscribers,
brokers) and adding a level of indirection in filter matching. The protocol is
built upon a typical publish-subscribe infrastructure, handles the full generality
of baseline CBPS subscriptions, and does not require the presence of trusted
third parties. The confidentiality and privacy goals of the proposed system are
as follows:

1. Notification Confidentiality: No one except the publisher of a notification
and its authorized subscribers can view the message content.

2. Subscription Confidentiality : No one except the subscriber and the publisher
to whom it subscribes can know the content of a filter.

3. Subscriber Anonymity : A subscriber receiving notification N does not know
other recipients (subscribers) of N .

4. Filter Anonymity : During routing, a broker can learn about matching be-
tween a notification and only those filters that are in its BFPoset. This en-
sures that the brokers have a very limited knowledge of which other brokers
or subscribers receive a notification.
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To satisfy the above security goals, we introduce two routing protocols named
Routing Vector (RV) protocol and Secure Routing Vector (SRV) protocol. RV
guarantees security goals (1) and (2). However, a resourceful attacker may be
able to subvert goals (3) and (4) in RV. SRV, on the other hand, achieves all
the security goals (1)–(4). We begin our protocol description in Section 4 by
explaining RV and then highlight how we extend it to SRV in Section 5.

3.1 Threat Model and other Assumptions

We assume that the publishers and subscribers trust each other, but the sub-
scribers do not trust each other. The brokers in the network may be malicious.
We confine ourselves to an “honest but curious” model of the brokers. We assume
that the brokers may try to learn the contents of a notification or subscription.
It may also try to infer the mapping between a publisher and a subscriber. But
the brokers follow the routing protocol correctly, i.e. it always forwards the no-
tifications to the legitimate recipients as computed by the proposed scheme. We
note that non-delivery of messages by malicious brokers can be easily detected
by occasional rendezvous between publishers and subscribers. Appropriate legal
actions may be taken to discourage such brokers. Similarly, notifications deliv-
ered by a malicious broker to illegitimate subscribers are unusable without the
group key(s). However, “curiosity” of brokers leading to traffic analysis, etc. is
challenging to detect and thwart. The threat model is, therefore, both practical
and challenging. Earlier secure-CBPS schemes [11], [12], [15] are also built on
this adversary model.

We assume that brokers in the CBPS network pre-compute a spanning tree
connecting all the brokers and publishers. During subscription propagation, a
filter is forwarded along the reverse edges of this spanning tree toward specific
publishers. In case of a hierarchical broker network, the overlay network is equiv-
alent to the spanning tree. Details of building a distributed spanning tree may
be found in earlier work by Dalal and Metcalfe [8] and we omit the details in
our protocol description.

3.2 Design Principles in v-CAPS

Our solution is motivated by two key observations.First, matching a notification
against filters is several orders of magnitude faster in plaintext than matching
on encrypted data [15], [12]. Therefore, it is desirable to compute filter matching
against notifications in plaintext, rather than doing this at the brokers. Second,
the brokers in baseline CBPS compute recipient lists of a notification based
on a match that each broker computes. If the matching decision is added to a
notification as a header, the untrusted brokers no longer need to inspect contents
of notifications or filters to compute recipient lists.
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4 v-CAPS Primitives

4.1 Subscribe

The subscription protocol allows subscribers to propagate their interests through-
out the pub-sub network and to establish appropriate routes for receiving noti-
fications. In our scheme, subscription consists of two stages. The first stage in-
volves communication between the subscriber and the publisher and the second
stage involves communication between the subscriber and the brokers. Details
of the two stages are given below.

Stage I: Contact Publisher When a subscriber (S) joins the pub-sub network,
it first registers itself with its preferred publisher(s) (P ) through an auxiliary
channel. Publisher verifies the identity of the subscriber and provides it with an
authorization token. When the subscriber wants to receive notifications matching
a given filter, it contacts the publisher with its authorization token and the filter
(F ). On receipt of F , the publisher computes as follows:
1. Does F exist in its PFPoset?

NO: (i) Assign a unique filter ID, IDF to F ; ii) Add F to its PFPoset; (iii)

Compute its parents (Fparent) and children (Fchild) sets

YES: (i) Lookup IDF ; (ii) Compute Fparent and Fchild

2. Compute subscription token Tsub as:

Tsub := <parents>Fparent</parents><children>Fchild</children>

<filter>IDF |Eks(F )</filter>

3. Send Tsub to the subscriber through an auxiliary point-to-point channel.

Note that E is any standard encryption function and ks is the secret key used
by a publisher to encrypt subscriptions and is known only to the publisher. The
presence of Eks(F ) in the subscription request is not necessary for our content-
based routing scheme. However, we store a copy of the encrypted filters at the
brokers for the purpose of failure-recovery of the publisher.

Stage II: Propagate Subscription In this stage, the subscription token is prop-
agated upstream through the broker network such that each broker updates its
filter posets. After receiving Tsub from the publisher, the subscriber contacts
the broker (Bs) it is connected to with Tsub. During subscription propagation,
upon receipt of Tsub from a downstream node xi, every broker Bi performs the
following:
1. Does IDF exist in its BFPoset?

NO: (i) Let, local parent list, Lparent = nodes(BFPoset) ∩ Fparent, and local

children list, Lchild = nodes(BFPoset)∩Fchild; (ii) Add IDF to BFPoset; (iii) Update

parents and children edges of IDF ; (iv) Add xi to recipient list of IDF

(v) If (Lparent = φ)

Replace xi in Tsub with Bi; Forward Tsub along the reverse edges of

the spanning tree.

YES: (i) Add xi to recipient list of IDF

If the condition (Lparent = φ) in step (v) above is not satisfied, it means Bi

has already propagated a more general filter than F and Tsub is not forwarded.
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On the other hand, satisfying this condition implies F is the root of some filter
chain at Bi and it needs to be forwarded along the reverse edges of the spanning
tree. Note that the addition of F at some broker may lead to compaction of
filters, which we explain with the following example.

(a) Before joining of S6 (b) After joining of S6

Fig. 2. Subscription Forwarding: Before and After Joining of S6

Consider the network in Fig. 2(a) consisting of a publisher (P ), eight brokers
(B1–B8), and six subscribers (S1–S6) with the given spanning tree. The filters
for S1 to S5 are F1–F5 respectively. Now S6 wants to subscribe with the filter F2.
The covering relation among the filters is assumed to be (F4 ≺ F2), (F5 ≺ F2),
and (F2 ≺ F3) (readers may use the filter graph beside P in Fig. 2(a) as a quick
reference). By transitivity (F4 ≺ F3), (F5 ≺ F3). The filter posets at each of the
brokers and the publisher before joining of S6 are shown in Fig. 2(a). When P
receives the request it computes F2pred = {3} and F2succ = {4, 5} and includes
these in a token TS6 that it provides to S6. When B8 receives TS6 it finds that
it has no filter that belongs to F2pred but F5 is in F2succ . So it adds F2 as a root
filter and marks F5 as its child. S6 is added to the newly created recipient list
of F2. TS6 is now propagated to B3. Since F2pred = {3} and F3 is already in B3,
TS6 is not propagated any further. However, F2 is inserted into the BFPoset at
B3. Both F5 and F2 at B3 have B8 as the recipient and (F5 ≺ F2). This invokes
a compaction of BFPoset of B3. First, B8 is removed from the recipient list of F5

leaving it with no recipients. Therefore, F5 is also removed from the filter poset
at B3. With this the routing path for S6 is established. The final filter posets
are shown in Fig. 2(b).

4.2 Publish

The publish protocol is initiated at the publisher. The publisher is responsible
for extracting the routing information from a notification before sending it into
the network. Hence, the publishers in v -CAPS first match a notification against
the filters in PFPoset. The algorithm that we use for plaintext filter matching
at publishers is the Siena Fast Forwarding (SFF) algorithm [5]. The function
Msff (N,PFPoset) = Fmatch takes the plaintext notificationN and PFPoset as



290 A.K. Maji and S. Bagchi

its inputs and produces a list of matching filter IDs (Fmatch). Fmatch is now added
as a header to the notification and is termed RV. In the next step, the publisher
with the help of group manager, computes the group key KN for a notification N
and encrypts the notification. The notification sent into the network by publisher
looks as:

Ne =<RV>Fmatch</RV><Payload>EKN (N)</Payload>

The publisher now forwards Ne to broker B1. The fact that the brokers do not
have to do matching of filters against encrypted notifications allows us to avoid
enormous performance penalties of computation on encrypted content. It may be
argued that our scheme adds significant overhead on the publisher due to filter
matching (as compared to baseline CBPS). But this is a practical approach con-
sidering publishers can be run on machines with sufficient computation power.
Carzaniga et al. [5] have shown that even for a million subscriptions, plaintext
filter matching typically takes time in the order of 10 ms on a desktop computer
with 512MB of RAM. Our experiments also bear out this fact. Additionally, if fil-
ter matching is performed at each broker, this may lead to significant redundant
computation as the brokers contain overlapping sets of filters.

4.3 Match

The Match() operation in v -CAPS is performed by brokers during notification
delivery and its objective is to determine the list of receivers to forward the noti-
fication to. This operation is simplified by the fact that the publisher has already
computed the RV and included it in the notification. The Match() operation at
a broker Bi is done with the following simple steps:

Let receivers RBi = φ

for each IDF in RV

if (IDF ∈ BFPoset) RBi = RBi ∪ receivers(IDF )

end for

Bi now forwards the encrypted notification to all the nodes in RBi . The
brokers do not alter any part of the notification Ne and forwards an identical
copy to all the recipients. Thus, for correct routing, a broker does not need to
know either the content of a message or filters. Instead, routing may be performed
using filter IDs generated by the publisher.

5 Secure Routing Vector (SRV) Protocol

The RV protocol presented in Section 4 achieves notification and subscription
confidentiality (security goals 1 and 2) with the help of filter indirection and en-
cryption. However, it does not guarantee security goals 3 (subscriber anonymity)
and 4 (filter anonymity). Let us consider the following scenarios that may arise
in the example in Figure 2(b):

1. S2, a curious subscriber in our CBPS network, learns by external means
that S6 also receives notifications matching filter F2. After receiving Ne from B5,
S2 can easily identify S6 as the other recipient of Ne. This violates subscriber
anonymity.
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2. B2, a malicious broker learns by external means that B3 subscribed to
filter F3. When, it receives Ne with RV={1, 2, 3}, it can easily identify B3 as
a recipient of Ne. Notice that filter F3 is not even in the BFPoset of B2. This
violates filter anonymity.

From the examples above, let us now formulate the requirements of the SRV
protocol. First, the RV should be encrypted in such a manner that, even if
two notifications (N1, N2) both contain filter F2 in the RV, it should generate
different ciphertexts. This would help preserve subscriber anonymity. Second,
the RV should be encrypted in such a manner that, a broker can only com-
pute {BFPoset ∩ RVenc}. But it cannot learn which other filter IDs are in the
encrypted RVenc. This ensures filter anonymity. We adapt a prior solution on
matching keywords in encrypted documents [18] to meet the last two require-
ments. The resultant solution is the SRV protocol. Before illustrating details of
SRV, let us present a brief overview of the cryptographic technique in [18].

5.1 Background

Problem Statement: Assume, Alice has a set of secret documents D1, D2,
.., Dk, where document Di contains mi words and every word is n bytes long.
She encrypts these documents as Z1, Z2, .., Zk and stores them on an untrusted
file server Bob. Later, she wants to retrieve the documents containing an n-byte
word w∗. However, Alice is reluctant to disclose either w∗ or the encryption keys
of Z1, .., Zk to Bob. So, Alice sends a query containing an encrypted keyword
x∗ = Ekey(w

∗) to Bob. How can Bob find the precise set of encrypted documents
Z = {Zi|Di contains w

∗} matching this query?
Solution: For clarity of representation, we abstract the encryption and match
algorithms as a collection of functions. Interested readers may find the details of
this algorithm in [18].

Let, Di = {w1.w2....wmi} (. denotes concatenation) is a plaintext document
containing words w1, w2, .., wmi ; w

∗ is a search word; and keys is a collec-
tion of secrets held by Alice (to be explained later). The secure search problem
mentioned above can be solved by the following three functions:

– E (Di, keys) is an encryption function that converts Di to Zi where Zi =
{c1.c2....cmi} and cj is a ciphertext for word wj . E () can be used with differ-
ent pseudorandom sequences to produce different encrypted versions of Di

for multiple encryptions.
– F (w∗, keys) is a cryptographic function that creates a search token Q∗ =

{x∗, k∗} from w∗. Here, x∗ is referred to as the encrypted search word, and
k∗ is referred to as the search key for w∗.

– M (Zi, Q
∗) is a match function which returns true iff w∗ appears in Di

(using the above definition of Q∗ which contains x∗, the encrypted keyword
of w∗).

Internally, E (), F (), and M () use a standard encryption function (e.g. AES), a
cryptographic hash function (e.g. SHA1), and a pseudorandom number generator
as their building blocks.
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Secrets Used: The algorithm uses three secrets, i.e., keys = {kw, k′, kseed}. kw
is a secret key for AES, k′ is a key for the cryptographic hash function, and kseed
is the seed for the pseudorandom number generator. All these secrets are stored
by Alice and none of these is disclosed to Bob.

5.2 SRV Overview

In SRV, our trusted publishers are equivalent to Alice and the brokers to Bob.
Let us first assign each of the filter nodes in PFPoset with a n-byte ID. Each
notification Ni now contains ni matching filter IDs in RV. Each RV can be
considered as a document Di that is ni words long. We wish to restrict our
brokers so that they can learn whether a filter IDF appears in RV iff IDF is in
BFPoset. This can be achieved by encrypting RV using E and sharing the search
token for filter IDF with legitimate brokers. These search tokens are distributed
during subscription stage of SRV. During notification forwarding, M is used
to check the presence of filter IDF in the encrypted RV. As in Section 5.1,
publishers store the secret keys kw, k

′, and kseed. Let us now illustrate how we
extend each of the primitives in RV for confidentiality and anonymity preserving
routing. For brevity, we only highlight the additional steps needed in SRV.

5.3 Subscribe

Stage I: Contact Publisher After step 1 in RV, the publisher computes as
follows (here the subscriber has subscribed with filter IDF , which has parents
in the PFPoset Fparent and children Fchild):

2. Compute F ′
parent = E (Fparent, keys) and F ′

child = E (Fchild, keys)

3. Compute query token for filter IDF as:

QIDF = F (IDF , keys) = {xIDF , kIDF }
4. Compute subscription token T ′

sub as:

T ′
sub := <parents>F ′

parent</parents><children>F
′
child</children>

<filter>xIDF |kIDF |Eks(F )</filter>

5. Send T ′
sub to the subscriber.

Note that the parents and children lists are encrypted to disallow the brokers
from learning filter IDs that are not in their BFPoset. Since, subscribe is a one-
time cost, the overhead of computing F ′

parent and F ′
child is not a performance

bottleneck, however, it is essential for achieving security goals 3 and 4.
Stage II: Propagate Subscription BFPoset filter nodes in SRV contain QIDF =
{xIDF , kIDF } instead of IDF in RV protocol. Upon receipt of T ′

sub from node
ni, every broker Bi computes as follows:

1. Does xIDF exist in BFPoset?

NO: i) Compute local parent list

L′
parent = {xIDFi

|M (F ′
parent, QIDFi

) = true}
ii) Compute local children list

L′
child = {xIDFi

|M (F ′
child, QIDFi

) = true}
iii) Add {xIDF , kIDF } to BFPoset

iv) Update parent and children edges using L′
parent and L′

child

v) Follow step (iv) onwards as in RV (refer Section 4.1)
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Note that the steps (i) and (ii) are necessary here since F ′
parent and F ′

child are
encrypted.

5.4 Publish

To send a notification N into the network, a publisher first computes the match-
ing filters Fmatch = Msff (N,PFPoset) as in RV. It then encrypts RV using E
as:

SRV = F ′
match = E (Fmatch, keys)

The added overhead at the publisher, in comparison with RV, is the computation
of E (Fmatch, keys). Our experimental results suggest that this overhead is only
a small fraction of the end-to-end latency.

5.5 Match

Similar to RV, the objective of Match() is to compute the recipient list for a
notification Ne. However, encrypting the routing vector makes this operation
significantly more complex compared to the RV protocol. Upon receipt of a
notification Ne with SRV = F ′

match, the broker first needs to compute the local
match list L′

match, where
L′

match = {xIDFi
|xIDFi

∈ BFPoset and M (F ′
match, QIDFi

) = true}
Hidden under the abstraction of M , this is the most expensive part of our SRV
protocol. The simple approach to compute L′

match would be to search for every
filter in the BFPoset in every filter in the SRV. However, this would require a
computation time of m×n matching operations, where m = number of filter IDs
in F ′

match and n = number of filter nodes in BFPoset. We reduce this cost by
applying the following heuristics: (i) If a root filter with ID ri does not match any
entry in the SRV, i.e. M (F ′

match, Qri) = false, then the broker does not do a
search in the sub-tree of BFPoset rooted at ri. This is based upon the observation
that, if a message matches a certain filter F , then it must also match a root filter
R above F . However, the performance gain of this optimization is dependent on
the mix of filters in the network. If the covering between filters is high, then this
heuristic would help. But, for a broker with lots of isolated filters (hence with a
large number of root filters), this does not give significant improvement.
(ii) During computation of SRV match, if the broker observes that all its child
brokers are already in the current receiver list, then it need not computeMatch()
any further as all its child brokers must get that notification. This helps in
reducing the SRV match times of the higher level brokers in a hierarchical broker
network, which tend to have many filters and most often forward a message along
all its downstream edges.

Once L′
match is computed by a broker Bi, the recipient list can be generated

trivially. The controlled searching property of [18] ensures that a broker can
only learn about the presence of its own filters in SRV and hence we are able
to guarantee filter anonymity. Moreover, the encryption algorithm also ensures
that if N1 and N2 both match filter F , the cipher IDs of IDF in SRV1, and
SRV2 are different. This helps us in protecting subscriber anonymity.
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6 Experimental Results

We evaluated the performance of our protocols against baseline CBPS (Siena)
with respect to end-to-end latency and computation time for notifications in a
wide-area deployment. We implemented all the three protocols Baseline, RV,
and SRV and deployed them on PlanetLab [14]—a worldwide computer systems
testbed. Our experiments involve sending upto 100,000 subscription messages
from the subscribers over a wide-area network, which, to the best of our knowl-
edge, are the largest scale experiments on CBPS.

6.1 Experimental Setup

In our experiments, we created a hierarchical broker network with 4 levels (re-
fer Fig. 3(a)). Each of the brokers in the top three levels were considered to
have a fanout of 3, whereas, the leaf brokers were randomly connected to the
subscribers. This constituted a broker network with 40 nodes. Each broker was
hosted on a separate machine at Purdue University, 28 of which belonged to two
clusters in our research group and the rest on public desktops in one of Purdue
University laboratories. The reason for this choice of machines over PlanetLab
machines is to reduce the sources of variability. We placed the less demanding
subscriber processes on PlanetLab nodes.

(a) Layout of Nodes (b) Notification Popularity Distribution

Fig. 3. Experimental Setup and Workload Properties

At present, we generate notifications from a single publisher, with an interval
of 3–5 seconds between successive notifications. The number of publishers can be
easily increased with independent BFPoset data structures for each. The pub-
lisher was hosted on a desktop computer with 2GB RAM and 2.13GHz dual-core
CPU running Ubuntu Linux 10.04. The subscribers were hosted on PlanetLab
machines situated at widely varying geographical locations. We ran our exper-
iments with upto 1000 subscribers hosted on 50 PlanetLab machines (i.e. 20
subscriber processes per machine). Each subscriber subscribed with 1–200 filters
with a uniform random distribution, generating 100,000 subscriptions in our
largest workload. In total, the experiments involved coordination between 1132
processes running on 91 machines over the Internet. All processes were run as
user processes with default priority.
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Workload Details. Since, there is no publicly available real-life workload for
CBPS systems, we used ssbg, a component of the Siena software suite [3], to
generate our workload. Attribute names for filters and notifications were chosen
from a dictionary of 200 words. Each filter contained between 1 and 4 attribute
constraints, while each notification contained between 1 and 9 attributes. For
simplicity, all the attributes were defined to be of Integer type and their val-
ues were uniformly distributed in the range of [1 − 100]. Note that different
subscribers may have overlapping subscriptions. We, henceforth, use the term
subscriptions to define a set of filters from one subscriber, which may contain
duplicate filters aggregated across all subscribers, and filters to define a set of
unique filters. Using ssbg, we generated a total of five workloads with 100, 500,
1000, 5000, and 10000 filters respectively. Each subscriber now subscribed with a
random subset of the filters, with uniform distribution in [1−200]. This generated
the final workloads having 1000, 5000, 10000, 50000, and 100000 subscriptions
respectively. Each workload contained 200 notifications. Due to the large number
of subscriptions, this generated a significant number of notifications received by
the subscribers (between 5459 and 125418 notifications at the subscriber end for
the smallest and largest workloads respectively). Fig. 3(b) shows the popularity
distribution of each notification. Based on the popularity distribution of notifi-
cations we classified them into three categories, namely, popular, moderate, and
esoteric, where popular matches the most number of subscriptions and so on.

Latency Measurement. Latency, a simple concept in computer networks, is
difficult to measure in wide-area networks. This is primarily due to coarse-grained
clock synchronization accuracy over the Internet. In PlanetLab, we found that a
large number of nodes had clock drifts in the range of seconds or even minutes.
This compelled us to devise an alternative strategy for measuring end-to-end la-
tency. In our experiments, prior to sending notifications, all the subscribers estab-
lish a dedicated connection to an acknowledgement server (ackServer) running on
the publisher machine. After receiving a notification, the subscribers immediately
forward anACKwith the notification ID and timestamp of notification. On receiv-
ing an ACK, the ackServer computes the total time spent by looking at the ACK
timestamp. For future discussions, we define this closed-loop latency (from noti-
fication generation to receipt of ACK) as our end-to-end latency. To estimate the
network RTT of PlanetLab nodes, the ackServer also periodically sends a times-
tamped packet to these nodes every 30 seconds which is reflected back by the sub-
scriber nodes. We do not deduct RTT/2 from end-to-end latency as the network
links were found to be asymmetric. Despite this, due to fluctuations of network la-
tencies to and from PlanetLab nodes, we had to do some filtering of noisy points,
where the estimated noise was greater than 5 ms.

Other Implementation Details. The length of filter ID was chosen to be 16
bytes as this is also the block size of AES.We used an implementation of Siena
Fast Forwarding algorithm [5], as the plaintext filter matching engine in all three
protocols. For cryptographic operations we used the CryptoPP library [7] and
built our networking code using C++ Sockets Library [17].
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6.2 Evaluating Recurring Costs

In v -CAPS, we try to achieve low computational cost for routing while guaran-
teeing confidentiality and anonymity. In this subsection, we present results for
per notification cost.

(a) Baseline

(b) RV

(c) SRV

Fig. 4. End-to-end Latency of Notification
Forwarding for Different Protocols with
100,000 Subscriptions

End-to-end Latency. One of the
crucial metrics for CBPS systems is to
deliver notifications to the subscribers
as fast as possible. In figures 4(a)–
4(c), we present the end-to-end la-
tency (as defined in 6.1) of different
types of notifications for each of the
protocols. The results are obtained
from our experiments on the largest
workload, i.e., 100,000 subscriptions.
The X-axis represents various nodes
on PlanetLab sorted according to
their network RTT, while the Y-axis
shows end-to-end latency in millisec-
onds. It can be seen from figures 4(a)
and 4(b) that end-to-end latencies for
baseline and RV are very similar. In
baseline, end-to-end latency for all the
nodes is within 5 ms of network RTT,
whereas, in RV, this is within 10 ms
of network RTT. There is no signifi-
cant difference in end-to-end latencies
with varying popularity type of notifi-
cation. In baseline, all the three pop-
ularity types overlap on the same line
and in RV, popular notifications have
marginally higher latency than mod-
erate and esoteric.

End-to-end latency in SRV, is how-
ever significantly higher than net-
work RTT. This happens due to large
matching time at the brokers. Latency
also varies widely across popularity
of notifications—popular notifications
being the highest, followed by moder-
ate and esoteric. The primary reason
for this is the length of SRV for these categories. One of the key findings from our
results is that achieving anonymity is significantly costlier than confidentiality
alone. Our current implementation of RV has only marginally higher end-to-end
latency than baseline. RV can be further improved by compressing the header
and thereby reducing networking overhead due to increased size.
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Computation Time. In figures 5(a)–5(c), we show the total computational
cost of notifications with increasing workload size. The computational cost in-
cludes both cost at the publisher (for generating RV) and at the brokers (for
matching). In each plot, we compare the performance of three protocols. The
large magnitude of SRV cost necessitated use of a secondary Y-axis. We vary
workload sizes along the X-axis, while the Y-axis represents time in ms. The
bars for baseline and RV follow similar pattern across all popularity types. Even
with the largest workload, the difference in computational time between RV and
baseline is only 3 ms.

(a) Esoteric

(b) Moderate

(c) Popular

Fig. 5. Computational Cost for Notifica-
tions with Increasing Number of Subscrip-
tions. Note the use of two separate Y-axes
due to widely varying values–the left axis
for baseline and RV and the right axis for
SRV.

For SRV, computation time in-
creases with increasing workload size
as expected. However, the difference
in computation time across popularity
types is much more prominent (∼1500
ms for popular, ∼560 ms for moderate,
and ∼220 ms for esoteric in our largest
workload). This is because the num-
ber of matching filters is significantly
different in the three categories (pop-
ular > moderate > esoteric) and the
cost of processing at a broker for each
filter is high in SRV. Contrary to a
possible criticism, the cost at the pub-
lisher is quite low. Though this con-
stituted the largest fraction of over-
all computation time in RV, it is only
marginally higher than the computa-
tion time in baseline (within 1.5 ms)
even for 100,000 subscriptions. For
SRV, the cost at the publisher (∼4 ms
for 100,000) is three orders of mag-
nitude lower than the cost at brokers
(∼1500 ms for popular at 100,000).

6.3 Evaluating One-time Costs

In this section, we evaluate the cost of
registering a new subscription at pub-
lishers and brokers. At the publisher,
cost of a new subscription amounts
to adding the filter in PFPoset, re-
organizing PFPoset edges, and com-
puting encrypted parent and children
lists. At brokers, this is the cost of
evaluating local parent and children
lists, reorganizing BFPoset edges, and
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in some cases, propagating the subscription up the broker hierarchy. Notice that
since subscriptions from different subscribers may contain duplication of the
same filter(s), majority of the subscriptions involve only a lookup operation at
publisher and brokers incurring very small overhead (in the order of a hundredth
of a millisecond). In figures 6(a) and 6(b), we consider cost of adding new filters
only. The X-axis in both the figures represent number of filters already existing
at a broker or a publisher. We grouped this into buckets of size 200, i.e. when
number of existing filters is (0, 200], (200, 400], etc. The point 400 represents
the range (200, 400] and so on. The Y-axis represents computation time for
adding a new filter in milliseconds. For brokers, the number of filters at a broker
was upto 3400 while at the publisher it was 9400 for workload size of 100,000
subscriptions.

It can be seen from Fig. 6(a) that the cost of adding a new filter at a broker is
much higher in SRV (∼230ms for the largest workload). This is insignificant in RV
(< 1ms), since, subscription propagation in RV involves only lookup operations.
For baseline the cost was ∼25ms for our largest workload. The RV cost is lower
because the publisher has already done the processing to figure out which will
be the parent and children filter nodes in the BFPoset, while in the baseline, the
broker has to compute this. The slow subscription processing in SRV may not
be a severe bottleneck because this is a one-time cost incurred only when a filter
is entered for the first time and over time, most subscriptions result in duplicate
filters.

(a) Cost at Brokers (b) Cost at Publisher

Fig. 6. Cost for Adding a New Filter at Brokers and Publishers

Fig. 6(b) shows the cost of adding a new filter in RV and SRV with increasing
number of filters in PFPoset. The cost in SRV(RV) reaches upto 100(120) ms
for 9200 filters. To reduce this cost, the publisher may also pre-load a set of
known subscriptions in its PFPoset. The costs for RV and SRV are comparable
because the same processing happens at the publisher; the slight differences (in
fact SRV is faster) is explained by the different orders in which filters arrive at
the publishers and the fact that different mix of existing filters affect processing
time.
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6.4 Message Overhead

During notification forwarding, we measured the length of RV(SRV) in each no-
tification, where RV length is defined as the number of filterIDs in RV. This
gives us an estimate on the message overhead of v -CAPS over baseline CBPS.
Our experimental results are presented in Fig. 7. Since both RV and SRV proto-
col have identical header lengths, we show only one plot for both of them. The
X-axis here represents various workload sizes. Since our experiments involved
synthetic payloads for each notification, comparing the header with the payload
as a measure of overhead will be misleading. We, therefore, normalized the to-
tal header size (Num notifications×RV or SRV Length×16 bytes) by the total
number of subscribers receiving each notification. This represents the average
number of additional bytes spent per subscriber for a given class of notification.
This cost is displayed by the line plots in Fig. 7. It is encouraging to find that
the cost per subscriber is less than 4 bytes in all cases. One may argue that for
a small notification with lots of non-overlapping subscriptions (i.e. with a long
RV) message overhead is substantial. This cost is indispensable since filter IDs in
v -CAPS are equivalent to virtual “destination addresses.” A possible improve-
ment would be to add filter coverage information in the header (RV), so that,
during notification propagation, the brokers only forward relevant portions of
the RV to lower level brokers.

7 Related Work

Fig. 7. Message Overhead for Routing in
RV(SRV) with Increasing Workload Size

Over the past decade and a half,
publish-subscribe has been extensively
studied as an efficient model of com-
munication. Security in CBPS sys-
tems have been achieved under differ-
ent settings—different network topolo-
gies, varying degrees of trust between
the communicating entities, and vary-
ing flexibility of subscription predi-
cates. Another significant problem—
that of key management in such a dy-
namic environment has been studied in [13]. Majority of these approaches have
the goal of securing CBPS against the vulnerability of malicious brokers. They
balance this source of vulnerability against the common CBPS design in which
brokers need to examine the content of messages to make routing decisions. In
[15], the authors adapted the schemes presented in [18] and other techniques on
computation on encrypted data. They build a confidentiality-preserving CBPS
system that supports equality, inequality, and range matches for numeric at-
tributes, and keyword searches for strings. The experimental results show that for
1,000 subscriptions, compared to the corresponding insecure operations, equal-
ity is 6 times more expensive, inequality is 1.7-3.0 times more expensive, and
range matching is 6 times more expensive. Apart from the computation cost,
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this scheme suffers from three other significant drawbacks—restrictive filters on
subscriber interests, high communication overhead (the encrypted message is 15
times the size of the plaintext message), and false positives for filter matching. On
the other hand, [12] addresses privacy in CBPS by applying Paillier homomor-
phic encryption for equality, and inequality matches on numeric attributes. This
scheme performs filter matching with two primitives—1) blinding the attribute
value for subscriptions and notifications at the publisher, and 2) matching the
blinded values in filters and notifications. The authors have not presented any
implementation of their protocol in a publish-subscribe system. However, stan-
dalone experimental results for the cryptographic operations show that blinding
one attribute value at the publisher takes 10-15 ms for a key length of 1024 bits
and matching between one blinded attribute value and one blinded constraint
takes 100μs. Apart from these, complexity of key management and large message
size are other drawbacks of this solution. Another research work, presented by
Molva et al., try to achieve confidential routing in CBPS using multiple layer
commutative encryption (MLCE). The protocol computes matching between a
filter and a notification by comparing their encrypted strings. As a result, this
solution is limited to equality matches. Moreover, for a k-layer commutative en-
cryption, a broker would be required to know the sender or recipient of a message
at distance k from itself. Similarly, while propagating the messages downstream,
a broker would be required to encrypt it separately with each of the recipients’
(at distance k) keys. Ion et al. [11] used Attribute-based Encryption (ABE) and
multi-user Searchable Data Encryption (SDE) to achieve confidentiality of no-
tifications and filters without losing any decoupling property of CBPS. Their
scheme, however, needs the presence of a trusted authority which our solution
does not. Due to absence of experimental results in [11] we cannot compare the
performance of this scheme with ours.

8 Discussion and Future Work

Our design and implementation of v -CAPS shows that it is possible to support
privacy in CBPS. In other words, it is possible to handle the balance between the
need to route by the brokers, and that the brokers are not trusted and may be
curious. We achieve this without sacrificing the generality of filters in baseline
CBPS. Further, we achieve this with acceptable overhead (in terms of time)
over the baseline CBPS, if one is willing to accept a slight risk of the broker
getting to know which other brokers will see a message, which may happen with
the unencrypted routing vectors. However, if we want to eliminate this risk, we
have to perform matching of encrypted filters with encrypted routing vectors,
which is significantly more costly—for 10,000 filters, the end-to-end latency is
just under 1.5 sec. However, we believe that there are two promising directions
to resolve this problem. First, the matching algorithm at the broker can be
easily parallelized—each entry in the secure routing vector (SRV) is matched
in parallel. Thus, brokers running on multi-core machines can leverage this.
Second, the publishers can send a hierarchical SRV, which will allow the broker
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to perform the simple optimization that if a routing vector does not match a
filter, it will not match any filter in the sub-tree rooted at that filter.

Our work has not addressed the issue of fault tolerance, either at the brokers
or at the publishers. A practical system needs to handle crash failures of both en-
tities. Fault tolerance for broker failures is orthogonal to the privacy requirement
of CBPS and we believe v -CAPS can be easily applied to a baseline CBPS that
has redundancy to deal with broker failures. To handle publisher failures, the
system needs to be able to recreate the publisher filter poset. This information
is conceptually contained in the union of the filter posets at all the brokers. The
challenge will be in gathering them in an efficient manner. The leaf brokers can
potentially violate the anonymity requirement of the subscribers because they
are directly forwarding messages to the subscribers. Hence, to achieve subscriber
anonymity from leaf brokers, it will be required to interpose an anonymizing net-
work between these entities. This anonymizing network will have no notion of
the filters of the subscribers.
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