
Multi-party Private Web Search

with Untrusted Partners

Cristina Romero-Tris, Jordi Castellà-Roca, and Alexandre Viejo

Universitat Rovira i Virgili, UNESCO Chair in Data Privacy
Departament d’Enginyeria Informàtica i Matemàtiques

Av. Päısos Catalans 26, E-43007 Tarragona, Spain
{cristina.romero,jordi.castella,alexandre.viejo}@urv.cat

Abstract. Web search engines are tools employed to find specific infor-
mation in the Internet. However, they also represent a threat for the
privacy of their users. This happens because the web search engines
store and analyze the personal information that the users reveal in their
queries. In order to avoid this privacy threat, it is necessary to provide
mechanisms that protect the users of these tools.

In this paper, we propose a multi-party protocol that protects the
privacy of the user not only in front of the web search engine, but also
in front of dishonest internal users. Our scheme outperforms similar pro-
posals in terms of computation and communication.

Keywords: privacy, web search engines, private information retrieval.

1 Introduction

Search on the Internet is a frequent activity for many users throughout the world.
Web search engines (WSEs) are tools which allow information retrieval from this
huge repository of data. There are many WSEs in the market, such as Google,
Bing, Yahoo, etc.

When a user wants to search a term in a WSE, she types the keywords and
submits her query. Then, the WSE applies information retrieval techniques to
select and rank the results. After that, the user evaluates the list of pages and
gets the information.

Along with this process, the WSE builds a profile of this user based on her
queries. For example, in its Privacy Center [1], Google states that its servers
automatically record requests made by users. These “server logs” include user’s
query, IP address, browser type, browser language, date and time of the request
and a reference to one or more cookies that may uniquely identify the user’s
browser.

Google uses cookies for several purposes such as identifying the users in or-
der to improve their search results and track their trends, and also storing their
preferences. Google also uses the cookies in its advertising services to help com-
panies serve and manage the promotion of their products across the web. This
is called AdSense and it represents a large source of income for Google.

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 261–280, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

262 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

Besides the financial gain for WSEs, profiling is a threat for the privacy of
the user. The different logs stored by a WSE contain sensitive data that can be
combined to disclose information of a certain individual. In order to do that,
it is necessary to find the identity of the user. One way of doing it is to use
the IP address and the cookies stored in the logs. Thus, queries that come from
the same IP address or from a browser with a certain cookie are used to build
the same profile. Note that users cannot rely on deleting the cookies and on
the use of different IP addresses. The renewal policy of dynamic IP addresses
depends on the network operator. Furthermore, some users might require static
IP addresses.

In addition to IP addresses and cookies, people can reveal their personal
identity in their queries. In fact, [2] indicates that 94.82% of users have searched
their own name at least once. Moreover, many other queries such as the place
where they live, their job, or even the car they drive, can also be a method of
tracing users and revealing their identity.

Once a user is identified, the WSE can link her identity with the queries
she made. According to [2], around 85% of users have searched for information
that they would not want their parents or their employers to know about. For
example, queries about health, sexual orientation, politics, religion, etc. can be
considered extremely sensitive information for the owners. Hence, the queries of
a user should be protected and never revealed to third parties.

Some incidents in the past have shown that WSEs are not capable of pro-
tecting the privacy of the users. For example, in 2006 AOL released a file with
twenty million searches generated by its users [3]. This incident had serious
consequences since personally identifiable information was present in many of
the queries. Another example of privacy risks with WSEs is the subpoena that
Google suffered in 2006 [4]. On that occasion, the Justice Department of U.S.A.
tried to compel Google to provide millions of Internet search records.

Such events indicate that users should not trust the companies behind the
WSEs. Therefore, it is necessary to propose alternatives that prevent the WSEs
from knowing the sensitive information of the users.

2 Previous Work

The problem of private web search has been widely discussed in previous litera-
ture. In this section, the main contributions to this subject are described.

The problem introduced in this paper is similar to the Private Information
Retrieval (PIR) problem [5]. However, PIR protocols are not suitable for WSEs
because they assume that the server which holds the database collaborates with
the user. In the WSE scenario this assumption cannot be made because WSEs
have no motivation to protect the privacy of the users since it would limit its
profiling objectives.

Another solution to maintain the privacy of the users is to use a proxy. There
are several companies (e.g. Scroogle [6], anonymizer.com [7]) that offer a service
in which the clients can redirect the traffic to their servers. As a result, requests

Multi-party Private Web Search with Untrusted Partners 263

seem to be originated by these servers and have no reference to the IP address
of the client. Nevertheless, this is not the best solution to protect the privacy of
the users because profiling could be done at the proxy, hence, instead of trusting
the WSE, users have to trust the proxy.

Onion routing is a technique to establish anonymous channels that preserve
the privacy of the users. An example of this is the Tor anonymity network which
is described in [8]. The authors in [9] propose to use the anonymous channels
to submit queries to the WSE. The main drawback of this scheme is that the
encryption and decryption process at the onion routers make the search process
too slow. According to [9], the cost of submitting one query to Google is about
10 seconds on average. This means that users would spend 25 times longer doing
each query. This query delay is very high for a tool that is expected to be used
quite frequently.

Another alternative is the use of a query obfuscation protocol such as GooPIR
[10] or TrackMeNot [11]. These protocols generate a stream of automated queries
where the real queries are blended into. As a result, the WSE is not able to create
a correct profile. GooPIR uses a Thesaurus to obtain the words which are mixed
with the real queries. Consequently, the fake queries are single words, while full
sentences are not addressed. TrackMeNot is a plugin for Mozilla Firefox that
generates dynamic queries using RSS feedback. These queries can be words or
sentences, and they are periodically submitted to the WSE.

These obfuscation protocols have a major disadvantage: machine-generated
queries do not have the same features as the human-generated queries. The
works presented in [12] and [13] argue that it is possible to distinguish real
queries from automated queries. For example, [13] develops a classifier which is
very accurate in identifying TrackMeNot queries, with a mean of misclassification
around 0.02%.

Another approach is to use a multi-party protocol, which is not affected by
the misclassification issue of the single-party ones. Besides, they are generally
faster than the schemes based on anonymous channels. In this kind of protocols,
a group of users is created. Then, a user asks another component of the group
to submit her query and send back the result.

In [14], the authors propose a multi-party protocol named Useless User Profile
(UUP). The basic idea beneath this system is that a central node puts users
into dynamic groups where they securely exchange their queries. As a result,
each user submits a partner’s query and not her own and, hence, she obtains a
distorted profile. This protocol achieves a query delay of 5.2 seconds. This time
significantly outperforms previous proposals. However, the UUP protocol has a
major disadvantage. It is not secure in presence of malicious internal users. This
means that a dishonest user can learn the queries of the rest of members of the
group.

The authors of [15] use an scenario which is similar to the one proposed in
[14]. However, they argue that the level of security of [14] is not sufficient. Hence,
they modify the UUP protocol in order to be resilient against some attacks. Nev-
ertheless, the drawback of their proposal is that it uses expensive cryptographic

264 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

tools (i.e. double encryptions) that introduce an unaffordable query delay. In
fact, the authors remark that executing their protocol is twice as expensive as
in [14].

Finally, another similar approach is presented in [16] and [17]. The idea of both
proposals is to minimize the role that the central node plays in the protocol. On
one hand, [16] proposes to use a preestablished network with the topology of a
complete graph. On the other hand, [17] proposes to employ already developed
social networks (e.g. Facebook).

The main drawback of both proposals is that the groups are static (same
members in every execution of the protocol). This means that their protocols
are more vulnerable in front of an internal attack (e.g. the attacks proposed in
[15]).

2.1 Contribution and Plan of This Paper

In this paper, we present a new multi-party protocol that protects the privacy
of the users against web search engines and against dishonest internal users.
Regarding similar approaches, we propose a protocol which increases the level
of security of [14], and requires less computation and communication than [15].

Section 3 introduces the background and tools that the protocol uses. Section
4 describes the scenario and the privacy requirements. The protocol is detailed
on Section 5. Section 6 and 7 analyze its privacy and performance respectively.
Finally, Section 8 concludes the paper and reports some future work.

3 Background and Notation

3.1 n-out-of-n Threshold ElGamal Encryption

In cryptographic multi-party protocols, some operations must be computed
jointly by different users. In an n-out-of-n threshold ElGamal encryption (see
[18] for more details), n users have a distributed public key y and the correspond-
ing secret key α is divided into n shares αi, where no single party knows the
entire secret. Using this protocol, a certain message m can be encrypted using
the public key y and the decryption can be performed only if all n users col-
laborate in the decryption process. Key generation, encryption and decryption
process are next described.

Key Generation. First, a large random prime p is generated, where p = 2q+1
and q is a prime number too. Also, a generator g of the multiplicative group Z

∗
q

is chosen.
Then, each user generates a random private key αi ∈ Z

∗
q and publishes yi =

gαi . The common public key is computed as y =
∏n

i=1 yi = gα, where α =
α1 + . . .+ αn.

Multi-party Private Web Search with Untrusted Partners 265

Message Encryption. Message encryption can be performed using the stan-
dard ElGamal encryption function [19]. Given a message m and a public key y,
a random value r is generated and the ciphertext is computed as follows:

Ey(m, r) = c = (c1, c2) = (gr,m · yr)

Message Decryption. Given a message encrypted with the public key y,
Ey(m, r) = (c1, c2), user Ui can decrypt that value as follows:

Each user j �= i publishes c1αj . Then, Ui can recover message m in the
following way:

m =
c2

c1αi(
∏

j �=i c1
αj)

This decryption can be verified by each participant by performing a proof of
equality of discrete logarithms [20].

3.2 ElGamal Re-masking

The re-masking operation performs some computations over an encrypted value.
In this way, its cleartext does not change but the re-masked message is not
linkable to the same message before re-masking.

Given an ElGamal ciphertext Ey(m, r), it can be re-masked by computing
[21]:

Ey(m, r) · Ey(1, r
′)

For r′ ∈ Z
∗
q randomly chosen and where · stands for the component-wise scalar

product (ElGamal ciphertext can be viewed as a vector with two components).
The resulting ciphertext corresponds to the same cleartext m.

3.3 Optimized Arbitrary Size (OAS) Benes

A Benes permutation network (PN) [22] is a directed graph with N inputs and
N outputs, denoted as PN (N). It is able to realize every possible permutation
of N elements.

A Benes PN is composed by a set of 2 x 2 switches. These switches have a
binary control signal b ∈ {0, 1} which determines the internal state and, hence,
the output. The two possible states of a 2 x 2 switch are depicted in Figure 1(a).

The problem with a Benes PN is that the size of the network must be a power
of 2. In order to have an Arbitrary Sized (AS) Benes network [23], it is necessary
to introduce a 3 x 3 network like Figure 1(b) shows. Using 2 x 2 switches and 3
x 3 networks recursively it is possible to construct a network of any size.

Optimized Arbitrary Size (OAS) Benes [24] is an extension of AS Benes that
reduces the number of necessary switches in the network. The way of constructing
the OAS-Benes depends on the parameter N :

266 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

(a) States of a 2 x 2 switch (b) 3 x 3 network

Fig. 1. Basic elements of an OAS-Benes

– If N is even, the OAS-Benes PN (N) is built recursively from two even OAS-
Benes of N

2 -dimension called sub-networks. The sub-networks are not di-
rectly connected to the inputs and outputs. Instead of that, they are con-
nected to N − 1 input-output switches, as Figure 2(a) shows.

– If N is odd, the OAS-Benes PN (N) is composed by an upper
⌊
N
2

⌋
even OAS-

Benes, and a lower
⌈
N
2

⌉
odd OAS-Benes. The sub-networks are not directly

connected to the inputs and outputs. In this case, the first N − 1 inputs are
connected to

⌊
N
2

⌋
switches, and the first N − 1 outputs are connected to

⌊
N
2

⌋
switches. Figure 2(b) illustrates this construction.

(a) for even N (b) for odd N

Fig. 2. Construction of OAS-Benes

According to the way that an OAS-Benes is constructed, it is possible to ac-
count the minimum number of switches required to satisfy a permutation of N
elements. The formula to calculate the minimum number of switches is:

S(N) =

⎧
⎨

⎩

(N − 1) + 2 ∗ S(N2) if N is even

2 ∗ ⌊N
2

⌋
+ S(

⌈
N
2

⌉
) + S(

⌊
N
2

⌋
) if N is odd

Where S(1) = 0, S(2) = 1, S(3) = 3

Multi-party OAS-Benes. OAS-Benes can be used to perform a joint permu-
tation. This means that the switches of the OAS-Benes can be distributed among
a group of n users trying to realize a permutation of N inputs. However, this
must be done is such a way that no user knows the overall permutation between
the inputs and the outputs.

According to [24], a secure permutation (where no user knows the overall
permutation) requires minimally t OAS-Benes PN (N), where t depends on the

Multi-party Private Web Search with Untrusted Partners 267

minimum number of honest users that the system requires. The t OAS-Benes
PN (N) are fairly divided in n adjacent stages. Then, stage i (for i ∈ 1, . . . , n) is
assigned to user i. Since the construction of the OAS-Benes is mechanical, the
users can build it without any cooperation between them or from another entity.

In order to obtain a secure permutation, the condition that must be satisfied
is that the honest users control, at least, S (N) switches. We denote as λ the
minimum number of honest users that the system requires. For example, consider
a scenario with n = 6 users, N = 8 inputs and, at least, λ = 3 honest users.
The number of switches of one OAS-Benes PN (8) is S (8) = 17. According to
[24], the λ = 3 honest users must control 17 or more switches. This means that
every user must control

⌈
17
3

⌉
= 6 switches. Therefore, the scheme needs at least

(6 switches per user × 6 users) = 36 switches that will be fairly divided among
the n users. Consequently, the system requires t =

⌈
36
17

⌉
= 3 OAS-Benes PN (8).

We propose the next formula in order to calculate the number of OAS-Benes
required in a scheme with n users, N inputs, and λ honest users.

t =

⎡

⎢
⎢
⎢

n ·
⌈
S(N)
λ

⌉

S (N)

⎤

⎥
⎥
⎥

3.4 Plaintext Equivalence Proof (PEP)

PEP [25] is an honest-verifier zero-knowledge proof protocol based on a variant
of the Schnorr signature algorithm [26]. The purpose of this protocol is to prove
that two different ciphertexts are the encryption of the same message.

Two ElGamal ciphertexts (c1a, c2a) = (gra ,ma ·yra) and (c1b, c2b) = (grb ,mb ·
yrb) for some ra, rb ∈ Z

∗
q are plaintext equivalent if ma = mb. Let:

• α = ra − rb
• k = H(y || g || c1a || c2a || c1b || c2b), where H (·) is a cryptographic hash
function, and || is the concatenation operator.

• G = g · yk
• Y = c1a

c1b
· (c2ac2b

)k = (g · yk)α

Fig. 3. PEP protocol

In order to prove that (c1a, c2a) ≡ (c1b, c2b), the prover must demonstrate knowl-
edge of α by executing the protocol of Figure 3.

268 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

3.5 Disjunctive PEP (DISPEP)

DISPEP [25] is an extension of the PEP protocol. In this case, a user proves that
one of two different ciphertexts is a re-masked version of another ciphertext.

Let (c1a, c2a) = (gra ,ma · yra) and (c1b, c2b) = (grb ,mb · yrb) be two different
ElGamal ciphertexts. Then, one of them is a re-masking of another ciphertext
(c1, c2) = (gr,m·yr) for some ra, rb, r ∈ Z

∗
q ifma = m or mb = m. For i ∈ {a, b},

let:

• βi = r − ri
• ki = H(y || g || c1 || c2 || c1i || c2i)
• Gi = g · yki

• Yi =
c1
c1i

· (c2
c2i

)ki = (g · yki)βi

In order to prove whether ma = m or mb = m, the prover must demonstrate
knowledge of βi by executing the protocol of Figure 4. Without loss of generality,
in Figure 4, we assume that the prover is showing ma = m.

Fig. 4. DISPEP protocol

4 System Model

4.1 Entities

The protocol is executed in a scenario with three entities:

– Users. Individuals who submit queries to the WSE. We assume that in our
scenario there are honest and dishonest users. The motivation of the honest
users is to protect their own privacy. The motivation of the dishonest users
is to learn the queries of the honest users.

– Central node. It is the entity that organizes the users into groups. Its main
objective is to distribute the information that users need in order to contact
the other members of the group.

– Web search engine. It is the server that holds the database. As previously
mentioned, WSEs have no motivation to protect the privacy of their users.

Multi-party Private Web Search with Untrusted Partners 269

4.2 Protocol Overview

The idea of the protocol is to create a group of users who collaborate in order
to make searchs in a WSE. Instead of submitting her own query, a user U asks
another member of the group to submit it and send the results back. At the
same time, U submits the query of another user of the group. As a result, the
WSE cannot create a reliable profile of any particular individual.

The protocol requires that neither the WSE nor the users of the group learn
which query belongs to each user. In order to do this, the users execute a multi-
party protocol that works as follows: a central node creates a group of n users.
Then, the required OAS-Benes networks are fairly distributed among the n users.
After that, each user encrypts and broadcasts her query. The list of encrypted
queries is passed from each user to the next. In her turn, each user re-masks
and permutates the list of ciphertexts at every switch that she was assigned.
Furthermore, for every switch she uses PEP and DISPEP protocols to prove to
the rest of users that the outputs are re-ordered and re-masked versions of the
inputs.

The final result is that the users obtain a list of ciphertexts that cannot be
linked to the original list. Then, each user decrypts one different query, submits
it to the WSE and broadcast the result.

4.3 Privacy Requirements

In order to guarantee the privacy of the users, the scheme must fulfill the fol-
lowing requirements:

– The users cannot link any query with the user who generated it.
– The central node cannot link any query with the user who generated it.
– The WSE is not able to construct a reliable profile of any user.

5 Protocol Description

The protocol is composed by four phases that the users execute sequentially.

5.1 Group Setup

Every user who wants to submit a query to the WSE, contacts the central node.
When the central node has received n requests, it creates a group {U1, . . . , Un}.
Then, the n users are notified that they belong to the same group. The users
receive a message with the size of the group (n) and the position that every com-
ponent has been randomly assigned (i = 1, . . . , n). Each position is associated
with the IP address and the port where the user is listening. This information al-
lows the users to establish a communication channel between them. The central
node is no longer needed.

270 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

5.2 Permutation Network Distribution

As stated in section 3.3, t OAS-Benes networks are necessary to perform a secure
permutation. The number of inputs of the networks equals the number of users
N = n, which is also the same as the number of queries. Regarding the number
of honest users, the parameter is always fixed at λ = 2. The reason for this choice
requires a privacy analysis and, hence, is later detailed in Section 7.1.

Knowing the parameters n, N , and λ, the users calculate the value of t using
the formula defined on Section 3.3. The construction of the t OAS-Benes PN (n)

is mechanical. This means that users do not need to exchange any information.
As long as they know the parameters t and n, they know the arrangement of the
switches in the t OAS-Benes PN (n). Therefore, they can fairly divide them in n
adjacent stages.

According to the positions assigned in the previous phase, user Ui is respon-
sible for the switches that correspond to the i-th stage. Each stage is formed by
d switches, where d = t

n · S(n) on average.
We denote as sil the l-th switch of the i-th user for i = 1, . . . , n and l = 1, . . . , d.

We also define a function Φ (i, l) that, given an output of a switch, returns the
input of the next switch that must follow. The result is given according to the
arrangement of the switches in the PNs. Figure 5 illustrates the operation of this
function.

Fig. 5. Correlation between the outputs of a switch and the inputs of the next

5.3 Group Key Generation

1. Users {U1, . . . , Un} agree on a large prime p where p = 2q + 1 and q is a
prime too. Next, they pick an element g ∈ Z

∗
q of order q.

2. In order to generate the group key, each user Ui performs the following steps:
(a) Generates a random number ai ∈ Z

∗
q .

(b) Calculates her own share yi = gai mod p.
(c) Broadcasts a commitment to her share hi = H (yi), where H is a one-way

function.
(d) Broadcasts yi to the other members of the group.
(e) Checks that hj = H (yj) for j = (1, . . . , n).
(f) Calculates the group key using the received shares:

y =
∏

1≤j≤n yj = ga1 · ga2 · . . . · gan

Multi-party Private Web Search with Untrusted Partners 271

5.4 Anonymous Query Retrieval

For i = 1, . . . , n, each user Ui performs the following operations:

1. Ui generates a random value ri and uses the group key y to encrypt her
query mi:

Ey(mi, ri) = (c1i, c2i) = c0i

2. Ui sends c
0
i to the other members Uj , for ∀j �= i.

3. For every switch sil (l = (1, . . . , d)) with two inputs denoted as c2l−1
i−1 and

c2li−1 received from Ui−1 (note that the inputs for the switches of U1 are the
initial ciphertexts {c01, . . . , c0n}):
(a) Ui re-masks the cryptograms c2l−1

i−1 and c2li−1. She obtains a re-encrypted

version e2l−1
i−1 and e2li−1 using the re-masking algorithm defined in sec-

tion 3.2.
(b) Ui randomly chooses bi,l ∈ {0, 1} to determine the state of the switch

sil as in Figure 1(a). According to this state, she obtains a re-ordered

version of the ciphertexts e
π(2l−1)
i−1 and e

π(2l)
i−1 .

(c) Ui broadcasts {cΦ(i,2l−1), cΦ(i,2l)} = {eπ(2l−1)
i−1 , e

π(2l)
i−1 }

(d) Assuming:
c2l−1
i−1 = Ey(m1, r1), c2li−1 = Ey(m2, r2)

e
π(2l−1)
i−1 = Ey(m

′
1, r

′
1), e

π(2l)
i−1 = Ey(m

′
2, r

′
2)

Ui must demonstrate that e
π(2l−1)
i−1 and e

π(2l)
i−1 are re-masked and re-

ordered versions of c2l−1
i−1 and c2li−1. This is equivalent to proving the

two following statements:
I. (m2 = m′

2) ∨ (m2 = m′
1).

This can be proved using the DISPEP protocol of Section 3.5.
II. m1 ·m2 = m′

1 ·m′
2.

Ui computes c = Ey(m1 ·m2, r1 + r2) and c′ = Ey(m
′
1 ·m′

2, r
′
1 + r′2),

and uses the PEP protocol (Section 3.4) to prove that c and c′ are
plaintext equivalent.

All the other users Uj (∀j �= i) verify the proofs.
4. Let us denote {c1, . . . , cn} the resulting list of re-masked and re-ordered

ciphertexts. At this point, each user Ui owns those n values. Then, user Ui

decrypts the value ci that corresponds to a query mi generated by one of
the group members. Note that due to the re-masking and permutation steps,
probably mi does not correspond to mi (the query that has been generated
by Ui).
Decryption of a certain ci requires that all n users participate by sending
their corresponding shares to user Ui. According to that, Ui receives (c1i)

αj

from Uj , for j = (1, . . . , n) and j �= i. Then, Ui computes her own share
(c1i)

αi . Finally, Ui retrieves m
i by computing:

mi =
c2i

c1αi

i (
∏

j �=i c1
αj

i)

272 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

6 Privacy Analysis

This section analyzes the behaviour of the protocol regarding the privacy require-
ments that appear on Section 4.3. Basically, these requirements demand that,
at the end of the protocol, no query can be linked to the user who generated it.

The system is analyzed in the presence of the three dishonest entities that may
participate in the protocol: dishonest user, dishonest central node and dishonest
web search engine.

6.1 Dishonest User

The ElGamal cryptosystem is sematically secure under the Decisional Diffie-
Hellman assumption. This means that a dishonest user cannot know if two dif-
ferent ciphertexts will result into the same cleartext after decryption.

Therefore, every time that a ciphertext ci crosses a switch, it is re-masked and
permutated, and the attacker can only link the result to ci by random guessing,
with probability of success 1/2. This probability exponentially decreases for every
switch that the ciphertext crosses.

In the case of an attacker that only knows the inputs and the final outputs of
the protocol, the intermediate re-maskings and permutations prevent her from
finding the links between them. Hence, given a particular user, the probability
of correctly linking her with a decrypted query is 1/n.

Let us consider the case where a dishonest user successfully learns the query
of another component of the group. This means that she is able to link one
input of the permutation networks with one of the outputs. This attack may be
conducted if one of the following conditions is fulfilled.

1. The dishonest user knows the secret group key. In this case, the attacker can
decrypt the queries at any step of the protocol.

2. The dishonest user ignores the key but knows the overall permutation. In this
case, the attacker waits until the ciphertexts are decrypted. Then, she can
link every query with the original ciphertexts and, hence, with their sources.

Regarding the first condition, the attacker can only recover the secret key if
she compromises the n − 1 other members of the group. The generation of the
group key is distributed among the participants using the n-out-of-n threshold
ElGamal key generation explained on Section 3.1. One of the characteristics of
this scheme is that, if there is even a single honest user, the secret key cannot
be reconstructed.

Another alternative in order to learn the secret key is to maliciously alter
the key generation phase. In this phase, each user generates her share yi = gai ,
then she broadcasts a commitment to that share using a cryptographic function
H (yi), and then she sends yi in a new message. A dishonest user may change
her choice of share after receiving the shares of the other participants, before
sending her own. This dishonest user calculates her share y′j = gaj/

∏n−1
i=1 yi =

gaj−a1−···−an−1 and broadcasts it. As a result, the group key is computed as
y = gaj and, hence, the dishonest user knows the secret group key.

Multi-party Private Web Search with Untrusted Partners 273

In order for this attack to be successful and remain undetected, the dishonest
user must be able to find collisions in the hash function. This means that she must
find a value y′j for which her previous commitment is still valid (i.e., H (yi) =
H (y′i)). Nowadays, the probability of finding a collision in a reasonable amount
of time using a cryptographic hash function such as SHA-2, is almost negligible.

Regarding the second condition, the use of OAS-Benes PNs guarantees that
the permutation remains random and private. The requirement that must be
satisfied is that there must be at least one permutation network controlled by
honest users. This means that the proposed scheme needs a quantity of PNs that
depends on the minimum number of honest users required to run the protocol.
More specifically, the quantity of PNs that the scheme needs is the number that
satisfies the following condition: in any possible distribution of stages among the
users, the amount of switches controlled by the t honest users equals, at least,
the number of switches composing one OAS-Benes PN. If this requirement is
fulfilled, according to [24], the permutation is secure and remains secret to all
the participants. Then, it is not possible to backtrace a permutation to find the
original input.

6.2 Dishonest Central Node

The central node creates the groups of users. This entity only participates in
the initial phase of the protocol, before the users exchange any message. Since it
ignores any further communication between the users, the central node cannot
link any query to the source.

However, consider the case where a central node is in control of at least n− 1
machines. Then, this entity could group a single honest user with n− 1 users in
its control. In this case, even if the protocol is thoroughly followed, the privacy
of the honest user is lost. This happens because, at the end of the protocol, the
queries are revealed and the central node can identify which query belongs to
the honest user. In a similar situation, an attacker could send many requests to
the central node such that it is likely that she controls a large fraction of the
group.

In order to prevent these attacks, the authors of [15] propose a solution that
can be straightforwardly applied to our protocol. Their solution consists in a
joint coin tossing scheme that uniformly distributes the parties controlled by
the central node among all the groups executing the protocol. However, their
proposal has two obstacles that may affect its practical deployment:

1. The number of parties controlled by the central node must be small in com-
parison with the number of users ready to execute the protocol at a certain
time. In [15], the authors consider the case of millions of users running the
protocol, while the dishonest central node only controls a few thousands of
them.

2. Executing the joint coin tossing scheme is expensive. Therefore, [15] pro-
poses to reuse the groups in several consecutive executions of the protocol.
However, the users of the same group may not want to submit another query

274 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

at the same time. On the other hand, sharing a group several times with the
same user increases the probability of learning one of her queries.

6.3 Dishonest Web Search Engine

The objective of the WSE is to gather the queries of the users in order to build
their profiles. In the proposed protocol, the WSE only participates in the last
phase. The WSE receives the queries from all the members of the group and
returns the results.

The WSE can link each query with the user who submitted it and include
that information on her profile. Since a user Ui does not submit her own query
but the query of another participant, her profile is distorted. Hence, after several
executions of the protocol, the profile of Ui that the WSE owns is useless.

7 Performance Analysis

The objective of this section is to analyze the performance of our proposal and to
compare the results with other similar proposals. Our proposal is compared with
two similar approaches: the scheme proposed by [14] and the scheme presented
in [15]. Since the work presented in [15] does not include simulations nor a query
delay estimation in a real environment, we decided to analyze the protocols
theoretically. For this purpose, we analyze the protocol regarding the required
computation time and the number of messages that need to be exchanged.

7.1 Parameter Selection

Prior to the comparisons, three parameters of the system must be defined: the
size of the group (n), the key length, and the number of OAS-Benes (t).

Size of the Group and Key Length. In the proposed protocol, the privacy
of the users in front of the WSE increases with the size of the group. This means
that the bigger size of the group, the more privacy the members obtain.

However, in practice, the size of the group is bounded by the time that users
must wait in order to create the group. In order to minimize the query delay,
the creation of the group must be quick. According to [14], Google answers 1157
queries per second. The queries can be modeled using a Poisson distribution.
This allows to calculate the probability of forming a group of n users in a certain
amount of time. After several tests with n = 3, n = 4, n = 5 and n = 10, the
authors of [14] conclude that n = 3 is the most realistic group size. As stated
in [14], the probability of forming a group of n = 3 users in a hundredth of a
second is close to 1.

For this reason, in the subsequent performance analysis we present the results
obtained for n = 3 users. For a more complete comparison, we also show the
results for a group size of n = 4 and n = 5 users.

Multi-party Private Web Search with Untrusted Partners 275

Regarding the key length, according to [14] and [27], a 1024-bit key length is
considered computationally safe. In addition, the work presented in [28] argues
that a query is formed on average by 2.3 words and 15.5 characters. Assuming
that a single Unicode character uses 2 bytes, a query would require 31 bytes on
average. A key of 1024 bits can encrypt up to 128 bytes. This indicates that a
system that employs a 1024-bit key length can accept queries with approximately
64 characters, a significantly higher value than the average query size.

Minimum Number of OAS-Benes PNs. The minimum number of OAS-
Benes PNs, denoted as (t), is calculated according to the formula defined on
Section 3.3. This formula depends on the size of the group (n), the number of
inputs (N) and the minimum number of honest users (λ).

The selection of the size of the group (n) is explained above. The number of
inputs equals the size of the group (N = n), because the inputs are the queries
that every user generates. Nevertheless, the minimum number of honest users
requires a further analyis.

Our scheme must be able to provide privacy in the worst possible conditions.
That is, when the number of dishonest users is large in comparison with the
number of honest users. However, the smaller the parameter λ is, the more
OAS-Benes PNs are required and the higher the query delay grows. Hence, the
value of λ must minimize the query delay wihout sacrificing the privacy of the
users.

The minimum value for the number of honest users is λ = 1. However, this
value does not guarantee the privacy of the users. As stated in Section 6.2,
in a scenario with a single honest user and n − 1 dihonest users, even if the
permutation is perfectly secure, the privacy of the honest user is lost. Note that
a coalition of n − 1 dishonest users can easily identify which of the n queries
belongs to the honest user.

The next possible minimum value is λ = 2. This value defines the worst case
scenario in which our scheme can provide privacy. In this case, the n−2 dishonest
users have a probability of 0.5 of learning the query of the honest users.

In summary, we fix the parameter λ = 2 as the minimum number of honest
users that our protocol requires.

7.2 Analysis of the Computation Time

Next, we analyze the computation time needed in the execution of [14], [15] and
our proposal. More specifically, we focus on the amount of modular exponentia-
tions that every user must perform in each execution of the protocol.

There are some parts of the protocol of [15] that employ a double encryption.
This means that some modular exponentiations are performed modulus a 2048-
bit integer value, instead of using a 1024-bit modulus like [14] and our proposal
do. In order to compare the time required by a 1024-bit and a 2048-bit mod-
ular exponentiation, we executed a simulation that performed both operations.

276 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

The simulation revealed that, in the same conditions, a 1024-bit modular ex-
ponentiation takes 22 ms on average, while a 2048-bit modular exponentiation
takes 172 ms on average.

Table 1 shows the theoretical computation time needed by modular expo-
nentiations in each protocol. The τ1024 denotes the time required to make one
1024-bit modular exponentiation. The τ2048 denotes the time required to make
one 2048-bit modular exponentiation.

Table 1. Modular exponentiations average time for one user

Castellà et al. [14] (3n+ 3) · τ1024
Lindell et al. [15] 6n · τ1024 + 5n · τ2048 − τ1024 + 2 · τ2048
Our Proposal

(
n+ 3 + 25·t·S(n)

n

)
· τ1024

Figure 6 shows the calculated times for a group size of 3, 4 and 5 users. The
results indicate that [14] obtains the lowest computation time. This happens
because [14] does not use any mechanism to protect the participants against
dishonest users. Since [15] uses double encryptions and our proposal uses zero-
knowledge proofs, the computation times are higher. However, the results indi-
cate that, regarding the modular exponentiations cost, our proposal outperforms
the protocol of [15]. For example, for n = 3 users, our proposal requires approx-
imately one second more of computation time than [14], while [15] needs 3 more
seconds than [14].

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5

T
im

e
in

 m
s

Number of users

Castella et al.
Lindell et al.

Our proposal

Fig. 6. Comparison of modular exponentiations times per user

Multi-party Private Web Search with Untrusted Partners 277

7.3 Analysis of the Number of Messages

In order to analyze the performance of the protocol, another relevant parameter
is the usage of the network. Table 7.3 reflects the number of messages that every
user sends in each execution of the protocol.

Table 2. Average number of messages sent by each user

Castellà et al. [14] 3n− 1− 2
n

Lindell et al. [15] 4n− 2− 2
n

Our Proposal 4n− 4

Figure 7 represents the number of messages sent when 3, 4 or 5 users jointly
execute the protocol. Although the number of messages is similar in the three
proposals, the results indicate that the number of messages sent in [14] is lower
than in [15] and in our proposal. The results also indicate that our proposal
requires less message deliveries than [15].

 6

 8

 10

 12

 14

 16

 18

3 4 5

M
es

sa
ge

s
se

nt
 o

ve
r

th
e

ne
tw

or
k

Number of users

Castella et al.
Lindell et al.

Our proposal

Fig. 7. Comparison of messages sent in each protocol per user

7.4 Additional Remarks

There is another difference between the protocol of [15] and our proposal that
affects the performance. In [15], in order to detect a dishonest user, the par-
ticipants must wait until the last phase of the protocol (i.e., when the last

278 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

user broadcasts the results). At this point, if they detect any irregularity, the
honest users discard the obtained results and begin a new execution with a new
group.

On the other hand, our proposal is able to detect a misbehaviour earlier.
For example, if the first user is dishonest, her misbehaviour can be detected
immediately after she sends her zero-knowledge proofs. After the detection, the
rest of users logout and start a new execution.

In conclusion, in the presence of one or more dishonest users, the users waste
more time running the protocol of [15] than if they execute our proposal.

8 Conclusions and Future Work

Users frequently reveal personal information in the queries that they submit to
WSEs. WSEs store this information and use it to improve the search results and
for targeted advertising. In order to avoid this situation, this paper proposes a
protocol that protects the privacy of the users from web search profiling.

The proposed protocol has been analyzed in terms of privacy and performance.
The privacy analysis shows that the users are protected in front of the WSE and
of dishonest internal users. Regarding the performance, the protocol ouperforms
similar proposals with the same level of privacy.

The future work will focus on two different lines. The first line is the imple-
mentation of the proposed protocol and deployment in a real scenario. Making
simulations in this scenario will allow to estimate the real query delay and com-
pare its performance results with similar proposals. The second line of future
work will focus on the search of a peer-to-peer solution that does not require the
use of a central node in order to create the groups.

Disclaimer and Acknowledgments

The authors are with the UNESCO Chair in Data Privacy, but they are solely
responsible for the views expressed in this paper, which do not necessarily reflect
the position of UNESCO nor commit that organization. This work was partly
supported by the Spanish Ministry of Science and Innovation through projects
TSI2007-65406-C03-01 “E-AEGIS”, CONSOLIDER CSD2007-00004 “ARES”
and PT-430000-2010-31 “Audit Transparency Voting Process”, and by the Gov-
ernment of Catalonia under grant 2009 SGR 1135.

References

1. Google Privacy Center (2011), http://www.google.com/privacy
2. Conti, G., Sobiesk, E.: An honest man has nothing to fear: user perceptions on

web-based information disclosure. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, pp. 112–121 (2007)

http://www.google.com/privacy

Multi-party Private Web Search with Untrusted Partners 279

3. Barbaro, M., Zeller, T.: A Face is Exposed for AOL Searcher No. 4417749. New
York Times (August 2006)

4. Hafner, K., Richtel, M.: Google Resists U.S. Subpoena of Search Data. New York
Times (January 2006)

5. Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Information
Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

6. Scroogle (2011), http://scroogle.org
7. Anonymizer (2011), http://www.anonymizer.com
8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion

router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
p. 21 (2004)

9. Saint-Jean, F., Johnson, A., Boneh, D., Feigenbaum, J.: Private Web Search. In:
Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society – WPES
2007, pp. 84–90 (2007)

10. Domingo-Ferrer, J., Solanas, A., Castellà-Roca, J.: h(k)-private information re-
trieval from privacy-uncooperative queryable databases. Journal of Online Infor-
mation Review 33(4), 720–744 (2009)

11. TrackMeNot (2011), http://mrl.nyu.edu/dhowe/trackmenot
12. Chow, R., Golle, P.: Faking contextual data for fun, profit, and privacy. In: Pro-

ceedings of the 8th ACM Workshop on Privacy in the Electronic Society – WPES
2009, pp. 105–108 (2009)

13. Peddinti, S.T., Saxena, N.: On the Privacy of Web Search Based on Query Obfus-
cation: A Case Study of TrackMeNot. In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 19–37. Springer, Heidelberg (2010)

14. Castellà-Roca, J., Viejo, A., Herrera-Joancomart́ı, J.: Preserving user’s privacy in
web search engines. Computer Communications 32(13-14), 1541–1551 (2009)

15. Lindell, Y., Waisbard, E.: Private Web Search with Malicious Adversaries. In:
Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 220–235.
Springer, Heidelberg (2010)

16. Reiter, M., Rubin, A.: Crowds: anonymity for Web transactions. ACM Transactions
on Information and System Security 1(1), 66–92 (1998)

17. Viejo, A., Castellà-Roca, J.: Using social networks to distort users’ profiles gener-
ated by web search engines. Computer Networks 54(9), 1343–1357 (2010)

18. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

19. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

20. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

21. Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999)

22. Waksman, A.: A Permutation Network. Journal of the ACM 15(1), 159–163 (1968)
23. Opferman, D., Tsao-Wu, N.: On A class of Rearrangeable Switching Networks. Bell

Systems Technical Journal 50(5), 1579–1618 (1971)
24. Soo, W.H., Samsudin, A., Goh, A.: Efficient Mental Card Shuffling via Optimised

Arbitrary-Sized Benes Permutation Network. In: Chan, A.H., Gligor, V.D. (eds.)
ISC 2002. LNCS, vol. 2433, pp. 446–458. Springer, Heidelberg (2002)

http://scroogle.org
http://www.anonymizer.com
http://mrl.nyu.edu/dhowe/trackmenot

280 C. Romero-Tris, J. Castellà-Roca, and A. Viejo

25. Jakobsson, M., Juels, A.: Millimix: mixing in small batches. DIMACS Technical
report 99-33 (1999)

26. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy 4, 161–174 (1991)

27. Recommendation for Key Management, Special Publication 800–57 Part 1, NIST
(2007)

28. Kamvar, M., Baluja, S.: A large scale study of wireless search behavior: Google
mobile search. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 701–709 (2006)

	Multi-party Private Web Searchwith Untrusted Partners
	Introduction
	Previous Work
	Contribution and Plan of This Paper

	Background and Notation
	n-out-of-n Threshold ElGamal Encryption
	Key Generation.
	Message Encryption.
	Message Decryption.

	ElGamal Re-masking
	Optimized Arbitrary Size (OAS) Benes
	Multi-party OAS-Benes.

	Plaintext Equivalence Proof (PEP)
	Disjunctive PEP (DISPEP)

	System Model
	Entities
	Protocol Overview
	Privacy Requirements

	Protocol Description
	Group Setup
	Permutation Network Distribution
	Group Key Generation
	Anonymous Query Retrieval

	Privacy Analysis
	Dishonest User
	Dishonest Central Node
	Dishonest Web Search Engine

	Performance Analysis
	Parameter Selection
	Size of the Group and Key Length.
	Minimum Number of OAS-Benes PNs.

	Analysis of the Computation Time
	Analysis of the Number of Messages
	Additional Remarks

	Conclusions and Future Work
	References

