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Abstract. An optimistic fair exchange (OFE) protocol is an effective
tool helping two parties exchange their digital items in an equitable way
with assistance of a trusted third party, called arbitrator, who is only
required if needed. In previous studies, fair exchange is usually carried
out between individual parties. When fair exchange is carried out be-
tween two members from distinct groups, anonymity of the signer in a
group could be necessary for achieving better privacy. In this paper, we
consider optimistic fair exchange of ring signatures (OFERS), i.e. two
members from two different groups can exchange their ring signatures in
a fair way with ambiguous signers. Each user in these groups has its own
public-private key pair and is able to sign a message on behalf of its own
group anonymously. We first define the security model of OFERS in the
multi-user setting under adaptive chosen message, chosen-key and chosen
public-key attacks. Then, based on verifiably encrypted ring signatures
(VERS) we construct a concrete scheme by combining the technologies of
ring signatures, public-key encryption and proof of knowledge. Finally,
we show that our OFERS solution is provably secure in our security
model, and preserving signer-ambiguity of ring signatures. To the best
of our knowledge, this is the first (formal) work on this topic.

Keywords: optimistic fair exchange, ring signatures, privacy, verifiably
encrypted signatures (VES).

1 Introduction

The concept of optimistic fair exchange (OFE) was first proposed by Asokan
et al. [1]. By executing an OFE protocol, two parties in networks are able to
fairly exchange their digital signatures with some help from an off-line trusted
third party (TTP). An OFE protocol usually has at least the properties: fair-
ness, non-repudiation and optimism. Fairness ensures that, if an honest party
does not get a valid signature of the other party at the end of a fair exchange
protocol, the other party cannot get that either. That is, either both two par-
ties get each other’s valid signature, or neither of them gets anything valuable.
Non-repudiation guarantees that any party in a fair exchange protocol cannot
repudiate or refute a valid signature after the protocol executed successfully. To
reduce the load of the TTP, Asokan et al. proposed optimistic fair exchange [1].
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In an OFE protocol, there is an off-line TTP, called arbitrator, who acts as a
judge to settle the dispute between two parties and should only be involved when
the protocol does not run correctly (e.g. some parties cheating or communication
channel interrupted). The rare involvement of a TTP makes the fair exchange
protocol more efficient and secure.

An conventional way to build optimistic fair exchange protocols is verifiably
encrypted signature (VES), which was formally defined by Boneh et al. [2]. A
VES is an ordinary signature encrypted using the public key of a TTP, together
with a verifiable proof showing the validity of the encryption. Suppose Alice and
Bob exchange their signatures on a message. Due to mutual distrust, neither
of them wants to send his or her signature first. To solve this dilemma, Alice
can send a VES generated under a TTP’s public key to Bob first. Then, Bob is
able to verify the validity of the VES together with a proof showing that Alice’s
signature encrypted in the VES can be recovered by the TTP, but cannot obtain
the original signature from Alice unless Bob sends his own signature to Alice.
After that, if Alice refuses to reveal Bob her signature, Bob can ask the TTP to
decrypt Alice’s VES and obtain her original signature.

In some cases, the anonymity of participants in fair exchange might be im-
portant in order to protect participants’ privacy. For example, in the developed
commercial society, the personal preferences of negotiators in business contract
signing usually influence the terms of the final agreement. If a trading company
A has the old contract signing records of an employee as a negotiator in another
company B which is a potential trade cooperator of A, A can use these records
to generalize the negotiator’s trading habits, by which the company A might
get advantages in the future contract negotiation with the company B. Hence
it is desirable that the employees who have the right to independently sign a
contract on behalf of their own company can sign contracts anonymously, which
will prevent other companies from knowing the signer’s trading habits. To this
end, ring signatures invented by Rivest et al. [3] are the good primitive to pro-
vide the property signer-ambiguity, which was formally defined by Abe et al. [8].
Informally, in a ring signature scheme, the public keys of a group of users are
collected spontaneously to form a public-key list. When a signer signs a message
on behalf of such a ring, he uses the public-key list and adds his own private
key as a glue value to issue a ring signature. A verifier cannot tell who the real
signer is, because the ring signature is validated using all the public keys of the
ring without revealing any information about who produced it.

In this paper, we study optimistic fair exchange of ring signatures (OFERS), in
which users in each ring can fairly exchange their ring signatures with ambiguous
signers for the other ring. To the best of our knowledge, this is the first work on
the topic to present a formal security model of OFERS and a concrete solution
with provable security. After introducing some preliminaries in Section 2, we first
rigorously define the security model of OFERS in the multi-user setting under
adaptive chosen message, chosen-key and chosen public-key attacks (Section 3).
This is done by updating the formal models of OFE [5,6] in the scenario of ring
signatures. Secondly, we present a concrete OFERS scheme (Section 4), which
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is constructed from verifiably encrypted ring signatures (VERS) based on Abe
et al.’s scheme [8] under a TTP’s public key, together with a proof of knowledge
showing the validity of the original ring signature’s encryption. Theoretically,
any CCA2-secure [7] public-key encryption scheme can be used as such a proof
of knowledge always exists (but may be not efficient). To provide practicality
and high efficiency, Camenisch and Shoup’s CCA2-secure encryption scheme [19]
is particularly selected in the proposed scheme. Then, we formally show that the
proposed OFERS solution is provably secure in our security model (Section 5).
As the VES technique is employed, a notable feature of our scheme is that any
holder (not necessarily the signer) of a valid ring signature can verifiably encrypt
the ring signature to get a VERS without using any secret information from the
signer. Due to this feature, our scheme not only preserves signer-ambiguity [8]
of ring signatures, but also allows a signer to delegate a proxy (e.g. his/her
secretary) to run OFERS after he/she produced a ring signature in advance.
Finally, we discuss some extensions of our results and point out future work
(Section 6).

2 Preliminaries

In this section, we introduce the technologies used in our OFERS scheme.

2.1 Ring Signature of All Discrete-Log Case

Abe et al. proposed an abstract scheme of a ring signature and several concrete
examples in [8]. For the sake of simplicity, we choose the ring signature scheme of
all discrete-log case in [8] as our signature scheme. And Abe et al. have proved
that this ring signature scheme is unconditionally signer-ambiguous and exis-
tential unforgeability against adaptive chosen message and chosen public-key
attacks. The details of the scheme are shown below:

Let pi, qi be large primes, 〈gi〉 denote a prime subgroup of Z∗
pi

generated by gi
whose order is qi. Let yi = gxi

i mod pi, where xi is the secret key and (yi, pi, qi, gi)
is the public key. Hi : {0, 1}∗ → Zqi denotes a collision-resistant hash function.
L is a list of (yi, pi, qi, gi), where i = 0, ..., n− 1 and n = |L|. A signer with the
secret key xk generates a ring signature on a message m under L as follows:

1. Randomly select α ∈ Zqk and compute ck+1 = Hk+1(L,m, gαk mod pk).
2. For i = k + 1, ..., n − 1, 0, ..., k − 1, randomly select si ∈ Zqi and compute

ci+1 = Hi+1(L,m, gsii ycii mod pi), and then sk = α− xkck mod qk.
3. Send the verifier (c0, s0, s1, ..., sn−1) as the resulting ring signature on the

message m under the public-key list L.

For i = 0, ..., n − 1, the verifier computes ei = gsii ycii mod pi, and then ci+1 =
Hi+1(L,m, ei) if i �= n − 1. The verifier accepts the ring signature if c0 =
H0(L,m, en−1), otherwise rejects.



230 L. Qu, G. Wang, and Y. Mu

2.2 Zero-knowledge Proof

In [9], Ateniese introduced an underlying proof of the equality of discrete log-
arithms, which is used for constructing verifiably encrypted signatures. In [11],
Camenisch and Michels proposed a concrete scheme to prove the equality of dis-
crete logarithms from different groups under the strong RSA assumption [12,13].
In this paper, we modify Camenisch and Michels’ proof as our zero-knowledge
proof so as to build a verifiably encrypted signature scheme based on Abe et al.
[8]’s ring signature introduced above. Camenisch and Michels’ proof is denoted

by PK{(α, β) : y1 G1= gα1 ∧ y2
G2= gα2 ∧ ỹ

Z
∗
n= hβ

1h
α
2 ∧ (−2l < α < 2l)}. The details

of the proof are shown below:
n is the product of two sufficiently large safe primes and must be large enough

to avoid factoring. h1 and h2 are two random elements with large order from
Zn. Let G1 and G2 be two distinct groups of orders q1 and q2 such that 2l+1 <
min(q1, q2), where l is an integer, and g1 and g2 are the generators of G1 and

G2 respectively. Let y1
G1= gx1 and y2

G2= gx2 , ε > 1 is a security parameter which
controls the tightness of the statistical zero-knowledgeness. If −2(l−2)/ε < x <
2(l−2)/ε, the prover can convince the verifier that logy1

g1 = logy2
g2 in Z by the

following steps:

1. The prover randomly chooses r ∈ Zn and computes ỹ = hr
1h

x
2 mod n, then

randomly selects r1 ∈ {−2l−2, ..., 2l−2} and r2 ∈ {−(n2k)ε, ..., (n2k)ε}, where
k is the length of bits of the verifier’s challenge, and computes the commit-
ments: t1 = gr11 , t2 = gr12 , and t3 = hr2

1 hr1
2 . After that, the prover sends

(t1, t2, t3) to the verifier.
2. The verifier returns a random challenge c ∈ {0, 1}k.
3. The prover computes the responses s1 = r1 − cx and s2 = r2 − cr in Z, then

sends (s1, s2) to the verifier.
4. The verifier accepts the proof if and only if −2l−1 < s1 < 2l−1, t1 = gs11 yc1,

t2 = gs12 yc2 and t3 = hs2
1 hs1

2 ỹc hold.

Note that the proof above is based on the strong RSA assumption. The prover
should not know the factoring of n. Hence n, h1, h2 might be generated by the
verifier or a trusted third party. Before executing the proof, the prover should
check whether n is the product of two safe primes (see [14] for details) and
whether h1 and h2 have large order (see [15] for details). To convert this in-
teractive proof into a signature form on a message m, the prover can use a
suitable hash function h(·), which is agreed by the verifier, to compute the hash
value of all the public information instead of the verifier’s challenge c ( e.g.
c = h(m||ỹ||y1||y2||g1||g2||t1||t2||t3) ).

2.3 Encryption Scheme

In [9], Ateniese proposed a method to construct verifiably encrypted signatures
by encrypting an ordinary signature using some specific public-key cryptosys-
tems and giving a proof showing the validity of the signature’s encryption. In
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such cryptosystems (e.g. Naccache-Stern [16], Okamoto-Uchiyama [17] and Pail-
lier [18] public-key cryptosystems), computing a discrete logarithm using the
secret key is an easy task, but without the secret key, it is still hard. However,
all these public-key cryptosystems above do not satisfy the high level security
which protects against adaptive chosen-ciphertext attacks (CCA2). In [19], Ca-
menisch and Shoup proposed an adaptation of Paillier cryptosystem, which is
proven secure against adaptive chosen ciphertext attacks under the decisional
composite residuosity assumption [18]. To achieve the high level security, we
use Camenisch and Shoup’s scheme as our encryption scheme, which is briefly
described as follows:

1. Randomly select two Sophie Germain primes p′ and q′, where p′ �= q′, and
compute safe primes p = 2p′ + 1, q = 2q′ + 1 and n = pq. Then randomly
select x1, x2, x3 ∈R [n2/4] 1 and g′ ∈ Z

∗
n2 , and compute g = (g′)2n, y1 = gx1

1 ,
y2 = gx2

2 , y3 = gx3

3 . Let h = (1 + n mod n2) ∈ Z
∗
n2 , abs: Z∗

n2 → Z
∗
n2 map

(a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and to
(a mod n2) otherwise. Obviously for any v ∈ Z

∗
n2 , v2 = (abs(v))2 holds. H

is a collision-resistant hash function. A label L is some public information
added to the ciphertext (e.g. user’s identity or expiration time). The public
key is (n, g, y1, y2, y3), and the private key is (x1, x2, x3).

2. To encrypt a message m ∈ [n] with a label L ∈ {0, 1}∗, randomly select

r ∈R [n/4] and compute u = gr, e = yr1h
m and v = abs((y2y

H(u,e,L)
3 )r). The

triple (u, e, v) is the resulting ciphertext.

3. To decrypt a ciphertext (u, e, v), first check whether abs(v) = v and
u2(x2+H(u,e,L)x3) = v2. If fail, output reject, otherwise compute m̂ =
(e/ux1)2t, where t = 2−1 mod n. If m̂ is of the form hm for some m ∈ [n],
then output m, otherwise output reject.

Recall the ring signature scheme presented in Section 2.1. Suppose the signer
generates a ring signature (c0, s0, s1, ..., sn−1). In the verification of this signa-
ture, the verifier needs to compute ei = gsii ycii , where i = 0, 1, ..., n− 1. In order
to convert the ring signature into a verifiably encrypted ring signature (VERS),
the signer sends the verifier wi = gsii instead of si and encrypts si using a TTP’s
public key. The verifier can do the verification by computing ei = wiy

ci
i instead,

but si is ‘hidden’ in wi since in this ring signature scheme computing a discrete
logarithm is hard, which means the verifier has not got the full ring signature
yet. Beside that, the signer needs to give a zero-knowledge proof for convincing
the verifier that the encrypted si is just the si hidden in wi. Note that encrypting
only one value in (s0, s1, ..., sn−1) can also ensure the initial ring signature hid-
den partially, which means the verifier still cannot draw the full ring signature
from the partially encrypted ring signature even though he gets the most parts
of the initial ring signature. Encrypting one value makes the cost of generating
a VERS does not depend on the size of the public-key list, which improves the
efficiency of the generation of a VERS.

1 For a positive integer a, [a] denotes the set {0, 1, ..., a− 1}.
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To produce a verifiably encrypted ring signature, suppose the signer ran-
domly chooses su, where 0 � u � n − 1, from (s0, s1, ..., sn−1) as the hid-
den value, and encrypts su using Camenisch and Shoup’s encryption scheme
above. Let (n, g, y1, y2, y3, h) be the public key of a TTP. H is a collision-resistant
hash function, and L is the public label. The signer computes su’s ciphertext

u = gt, e = y1
thsu , v = abs((y2y

H(u,e,L)
3 )t), where t ∈R [n/4]. After that, by

modifying the zero-knowledge proof introduced in Section 2.2, the signer gives
a non-interactive proof: PK{(su, t, r) : w = gsuu ∧ u2 = g2t ∧ e2 = y1

2th2su ∧
v2 = (y2y

H(u,e,L)
3 )2t∧ ŵ = hr

1h
su
2 ∧−2l < su < 2l} to convince the verifier that the

TTP can extract su using its secret key and recover the original ring signature
completely. Note that anyone beside the signer has the capability to convert a
valid ring signature into a VERS without knowing any secret information from
the signer. The property signer-ambiguity [8] is well preserved since the hidden
value can be arbitrarily chosen in (s0, ..., sn−1) and no secret of the signer is
needed for producing a VERS based on a given ring signature. In our verifiably
encrypted ring signature scheme, for the sake of simplicity, we specify sn−1 as
the hidden value encrypted using a TTP’s public key no matter who the signer
is. The details are shown in Section 4.

3 Security Definitions

In [5], Dodis et al. presented a formal security model of optimistic fair exchange
under adaptive chosen message attacks in a multi-user setting, in which the
optimistic fair exchange protocol can be executed between different signers and
different verifiers. That is, multiple pairs of users can run the two-party fair
exchange protocol without compromising security. In adaptive chosen message
attacks [20], an adversary can access the signing oracle by asking for signatures
on arbitrary messages. In ring signatures, there are multiple users belonging to
each public-key list. So the multi-user setting is necessary for fair exchange of
ring signatures. Furthermore, Huang et al. [6] extended Dodis et al.’s model by
considering chosen-key model, i.e. an adversary may win a computational game
if it is allowed to employ some public keys without knowing the corresponding
private keys. By providing this extra flexibility, the chosen-key model is stronger
than the certified-key model (shown in [6]). In addition, we also consider chosen
public-key attacks in the setting of ring signatures, which is proposed by Abe
et al. [8]. In chosen public-key attacks, any adversary who wants to forge a
ring signature is only allowed to use arbitrary subsets of the initially considered
public-key list to access the signing oracle, but cannot append new public keys to
the initial public-key list. Therefore, in our security definitions specified below,
all the four factors above are addressed in the setting of OFERS as a whole.

Definition 1. (Syntax) Optimistic fair exchange of ring signatures

(OFERS) consists of seven probabilistic polynomial-time algorithms.



Optimistic Fair Exchange of Ring Signatures 233

– SetupTTP: On input a security parameter Param, the arbitrator executes
the algorithm to generate a public-private key pair (APK, ASK) and some
auxiliary information if necessary.

– SetupUser: On input Param and (optionally) the arbitrator’s public key
with the auxiliary information, the algorithm outputs public-private key pairs
(PKi, SKi) for every user in the ring. The public keys form a public-key
list L.

– RSig(m, L, SKs): A signer Us in the ring executes the algorithm by in-
putting a message m, a public-keys list L including PKs and its correspond-
ing private key SKs, then outputs a ring signature σ.

– RVer(m, L, σ): On input a message m, a ring signature σ on m under a
public-key list L, a verifier executes the algorithm to output either 1 or 0,
which means accept or reject respectively.

– PRSig(m, L, σ, APK): On input a message m, a signer’s public-key list
L, a ring signature σ on m under L, and the arbitrator’s public key APK,
the algorithm outputs a verifiably partial ring signature θ.

– PRVer(m, L, θ, APK): On input a message m, a signer’s public-key list
L, a verifiably partial ring signature θ on m under L, and the arbitrator’s
public key APK, the verifier executes the algorithm to output either 1 or 0,
which means accept or reject respectively.

– Res(m, L, θ, ASK): The resolution algorithm is executed by the arbitrator
if the verifier does not receive the full ring signature σ from the signer ring,
but has got the corresponding verifiably partial ring signature θ. On input a
message m, a signer’s public-key list L and a verifiably partial ring signature
θ on m under L, if θ is valid and the verifier has fulfilled its obligation to
the signer, the arbitrator extracts the full ring signature σ from θ using its
private key ASK and reveals it to the verifier, otherwise rejects.

Since there are three roles (signer, verifier, arbitrator) in OFERS, we should
consider how each role may violate different aspects of security, i.e. different se-
curity properties. Here we require the arbitrator should not be able to cheat some
participant by colluding with the other participant in the protocol since such a
collusive adversarial arbitrator can break the fair exchange trivially. Moreover,
the property signer-ambiguity should also be addressed as it is the heritage of
ring signatures.

Security Against Signers: For the fairness to verifiers, it is required that ex-
cept negligible probability, any probabilistic polynomial-time (PPT) adversarial
signer A should be not able to generate a verifiably partial ring signature, which
can be accepted by verifiers, but cannot be recovered to a valid full ring signa-
ture by an honest arbitrator. The property is formally defined by the following
game:

SetupTTP(Param) −→ (ASK,APK)
(m,L∗, θ)←− AORes(APK)

σ ←− Res(m,L∗, θ, ASK)
Success of A = [PRVer(m,L∗, θ, APK)=1 ∧ RVer(m,L∗, σ)=0]
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where ORes denotes a resolution oracle, which takes as input a verifiably partial
ring signature on a message m under a public-key list L, and outputs a full ring
signature σ on m under L. In this game, the adversary A is allowed to arbitrarily
(i.e. not necessarily following the key generation algorithm) generate public keys
to form a list L∗. For each public key in L∗, A may not know the corresponding
private key. The chosen-key model is therefore accommodated here.

Definition 2 (Security Against Signers). Optimistic fair exchange of ring sig-
natures is said to be secure against signers if there is no PPT adversarial
signer A who wins the game above with non-negligible probability.

Security Against Verifiers: The property of security against verifiers requires
that, without help from the signer or the arbitrator, any PPT adversarial verifier
B should not be able to extract a full ring signature from the corresponding
verifiably partial ring signature with non-negligible probability. The property is
formally defined by the following game:

SetupTTP(Param) −→ (ASK,APK)
SetupUser(Param) −→ (SKi, PKi)

(m,L′, σ)←− BOPRSig ,ORes(APK,L)
Success of B = [RVer(m,L′, σ)=1 ∧ (m,L′, ·) /∈ Query(B, ORes)]

where L′ is an arbitrary subset of the initial public-key list L consisting of all
the PKi, the oracle ORes has been defined in the previous game, and the partial
ring signature signing oracle OPRSig , given as input a message m and a public
key list L′′, outputs a verifiably partial ring signature on m under L′′ using
the arbitrator’s public key APK. The Query(B, ORes) is the set of valid queries
which B asks to ORes. In this game, B can ask the arbitrator for resolving any
verifiably partial ring signature with respect to any sublist of L. Note that here
chosen-public key attacks are considered, as the adversary B is only required to
output a valid ring signature under L′ which is a subset of L but not necessarily
L. Moreover, L′ does not contain any public key generated by B. Otherwise, B
can win the game above trivially.

Definition 3 (Security Against Verifiers). Optimistic fair exchange of ring sig-
natures is said to be secure against verifiers if there is no PPT adversarial
verifier B who wins the game above with non-negligible probability.

Security Against the Arbitrator: For the fairness to signers, the property of
security against the arbitrator requires that except negligible probability, any
PPT adversarial arbitrator C should not be able to produce a full ring signature
without demanding the signer to generate a verifiably partial ring signatures.
The property is formally defined by the following game:

SetupUser(Param) −→ (PKi, SKi)
(ASK∗, APK)←− C(L)

(m,L′, σ)←− COPRSig(ASK∗, APK,L)
Success of C = [RVer(m,L′, σ)=1 ∧ (m,L′) /∈ Query(C, OPRSig)]
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where the oracles ORes, OPRSig , the public-key lists L′ and L have been de-
scribed in the previous games, and ASK∗ is the state information of C, which
may not correspond to the arbitrator’s public key APK. Query(C, OPRSig) is the
set of valid queries which C asks to OPRSig . We remark that this game considers
both chosen-key and chosen public-key attacks in the multi-user setting, as the
adversary C (a malicious arbitrator) does not need to know the corresponding
private key of the public key APK and can choose any sublist L′ of the initial
public-key list to forge a ring signature.

Definition 4 (Security Against the Arbitrator). Optimistic fair exchange of ring
signatures is said to be secure against the arbitrator if there is no PPT
adversarial arbitrator C who wins the game above with non-negligible probability.
In [8], Abe et al. specified the security definition of signer-ambiguity. In our
OFERS scheme, the signer should be still ambiguous in its own ring. By updat-
ing Abe et al.’s definition in the setting of OFERS, we formally define signer-
ambiguity as follows:

Definition 5 (Signer Ambiguity). Let L = {PKi} be an initial public-key list,
where each PKi is generated by running SetupUser → (PKi, SKi), and APK
be the arbitrator’s public key generated by running SetupTTP → (APK,ASK).
An OFERS protocol is called perfectly signer-ambiguous, if for any message
m, any public-key list L, any public key APK of the arbitrator, any valid full
ring signature σ ← RSign(m,L, SKs), and an associated verifiably partial ring
signature θ ← PRSig(m,L, σ,APK), where SKs is the signer’s private key,
given (m,L, θ, σ, APK), any unbound adversary D outputs index i such that
SKs = SKi with probability exactly 1

|L| , where |L| denotes the size of L.

Remark 1. Comparing with Abe et al.’s perfect signer-ambiguity [8] for ring
signatures, we also provide the verifiably partial ring signature θ of a full ring
signature σ to the adversary D, which allows D acquiring more information to
break signer-ambiguity. In fact, this is necessary because the signer-ambiguity in
ring signatures does not always guarantee the same property for OFERS (refer
to the counterexample discussion in Section 5). As the unbound adversary D
can derive all private keys from L, the above definition essentially means that
for fixed (m,L,APK), the distributions of θ and σ generated by using any
private key SKi are identical. In addition, Definition 5 specifies perfect signer-
ambiguity, and it can be easily extended to define statistical and computational
signer-ambiguity, two weaker versions of ambiguity.

4 The Scheme

In our OFERS scheme, we use verifiably encrypted ring signatures (VERS) to
construct verifiably partial ring signatures. In this section, we first present how
to produce a VERS, and then give an optimistic fair exchange protocol of ring
signatures. The generation and verification of ring signatures are similar to Abe
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et al.’s ring signature in all discrete-log case (see Section 2.1) except some limi-
tation of selecting α and si. For the sake of simplicity, in our VERS scheme, we
always encrypt the last si, i.e. sn−1, as the hidden value. Obviously this does not
affect the scheme’s security since any si in (s0, ..., sn−1) can be the hidden value
no matter who the signer is. Then we use Camenisch and Shoup’s CCA2-secure
encryption scheme and give a proof:

PK{(sn−1, t, r) : w = g
sn−1

n−1 ∧ u2 = g2t ∧ e2 = y1
2th2sn−1 ∧ v2 = (y2y

H(u,e,L)
3 )2t∧

ŵ = hr
1h

sn−1

2 ∧ −2l < sn−1 < 2l}
for convincing the verifier the validity of the encryption (see Section 2.3).

4.1 Verifiably Encrypted Ring Signature

The generation of a VERS consists of two steps. One is producing a conven-
tional ring signature consisting of three algorithms denoted by RS = (RKG,
Sig, Ver), the other is encrypting the ring signature consisting of three algo-
rithms denoted by EN = (Gen, Enc, Dec) with a zero-knowledge showing the
validity of the ring signature’s encryption. Suppose there are two rings called
RI and RJ . Ui and Uj denote the users in these two rings respectively. A signer
Uk in the ring RI sends a VERS on a message m to a verifier in the ring RJ .
LI and LJ denote the public-key list of the ring RI and RJ , and nI = |LI | and
nJ = |LJ | denote the size of LI and LJ respectively.

SetupTTP: On input the security parameter Param, the arbitrator executes
the key generation algorithm to output the public key (n, g, y1, y2, y3, h) and the
private key (x1, x2, x3) under Camenisch and Shoup’s encryption scheme [19]. qA
denotes the order of g, and l is an integer such that 2l+1 < qA. Meanwhile, the ar-
bitrator generates h1, h2 and n, which are used in the zero-knowledge proof intro-
duced in Section 2.2 (the modulus n must be large enough to avoid factoring but
does not need to depend on Param) and publishes (n, g, y1, y2, y3, h, h1, h2, n, l).

SetupUser: The setup of users is similar to the ring signature scheme in Section
2.1. For the user Ui, let yi = gxi

i mod pi, where the order of gi is qi > 2l+1.
xi is the secret key and (yi, pi, qi, gi) is the public key. Hi : {0, 1}∗ → Zqi is a
collision-resistant hash function.

RSign: The signer Uk in the ring RI signs a message m by executing the algo-
rithm below:

1. Randomly select α ∈ Zqk , and compute ck+1 = Hk+1(LI ,m, gαk mod pk).
2. For i = k + 1, . . . , nI − 1, 0, 1, . . . , k − 1, randomly select si ∈ (−2(l−2)/ε,

2(l−2)/ε), and compute ci+1 = Hi+1(LI ,m, gsii ycii mod pi).
3. Compute sk = α − xkck mod qk, where sk ∈ (−2(l−2)/ε, 2(l−2)/ε). If sk /∈

(−2(l−2)/ε, 2(l−2)/ε), properly reselect α and run the Step 1 to 3 again
until sk lies in the right interval. The resulting ring signature is σI =
(c0, s0, . . . , snI−1).
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RVer: For i = 0, . . . , nI − 1, the verifier computes ei = gsii ycii mod pi, then com-
pute ci+1 = Hi+1(LI ,m, ei) if i �= nI − 1. If c0 = H0(LI ,m, enI−1), the verifier
accepts σI as a valid ring signature, reject otherwise.

PRSig: The algorithm is used for converting a full ring signature σI to a verifi-
ably encrypted ring signature θI . Let ĥ : {0, 1}∗ → {0, 1}η be a collision-resistant
hash function and the public label L = m||LI .

1. Compute w = g
snI−1

nI−1 and encrypt snI−1 by computing

u = gt, e = yt1h
snI−1 , v = abs(y2y

H(u,e,L)
3 )t

under Camenisch and Shoup’s encryption scheme.
2. Randomly select r ∈ Zn, r1 ∈ (−2l−2, 2l−2), r2 ∈ (−(n2η)ε, (n2η)ε) and

r3 ∈ (−(n2η)ε, (n2η)ε), compute ŵ = hr
1h

snI−1

2 mod n and t1 = gr1nI−1, t2 =

hr2
1 hr1

2 , u′ = g
r3 , e′ = y1

r3hr1 and v′ = (y2y
H(u,e,L)
3 )

r3
in their own groups.

3. Compute ĉ = ĥ(LI ,m,w, ŵ, u, e, v, gnI−1, g, h1, h2, t1, t2, u
′2, e′2, v′2) and v1 =

r1 − ĉsnI−1, v2 = r2 − ĉr, v3 = r3 − ĉt in Z. The resulting VERS is θI =
(c0, s0, ..., snI−2, w, u, e, v, ŵ, ĉ, t1, t2, u

′, e′, v′, v1, v2, v3).

PRVer: The verifier first computes ĉ′ = ĥ(LI ,m,w, ŵ, u, e, v, gnI−1, g, h1, h2,

gv1nI−1w
ĉ, hv2

1 hv1
2 ŵĉ, g2v3u2ĉ, y1

2v3h2v1e2ĉ, (y2y
H(u,e,L)
3 )2v3v2ĉ), and checks whether

ĉ′ = ĉ and −2l−1 < v1 < 2l−1. If any condition does not hold, outputs the
VERS θI is invalid, otherwise computes ei = gsii ycii for i = 0, . . . , nI − 2 and
enI−1 = wy

cnI−1

nI−1 , and then computes ci+1 = Hi+1(LI ,m, ei) if i �= nI − 1. If c0
= H0(LI ,m, enI−1), the verifier accepts θI , reject otherwise.

Res: After the verifier shows a proof that he has fillfulled his obligation to
the signer, the arbitrator decrypts the ciphertext (u, e, v) using its secret key
(x1, x2, x3) to extract snI−1, and reveals the full ring signature σI to the verifier.

4.2 Optimistic Fair Exchange of Ring Signatures

By applying the verifiably encrypted ring signature scheme above, an optimistic
fair exchange protocol of ring signatures can easily be set up. Suppose two users
Ui and Uj in the rings RI and RJ respectively exchange their ring signatures on
a message m. The optimistic fair exchange protocol proceeds as follows:

1. Ui computes his ring signature σI=RSign(m,LI, SKi), and converts this
ring signature into a VERS θI=PRSig(m,LI , σI , APK) using the arbitra-
tor’s public key APK, then sends θI to RJ .

2. Uj checks whether PRVer(m,LI , θI , APK)= 1. If no, Uj quits, otherwise
Uj computes his ring signature σJ and sends it to RI .

3. Ui checks whether RVer(m,LJ , σJ )=1, if no, Ui stops the protocol, other-
wise Ui sends σI to RJ .
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4. Uj checks whether RVer(m,LI , σI)=1, if yes, Uj accepts this ring signature.
If σI is invalid or Uj receives nothing from RI , Uj sends the arbitrator θI and
σJ to apply for resolution. The arbitrator first checks whether σJ is valid,
if yes, the arbitrator runs the algorithm Res(m,LI , θI , ASK) to recover σI ,
then sends σI to RJ and σJ to RI . If σJ is invalid, the arbitrator will send
a signal to both RI and RJ to inform Ui and Uj that the protocol has been
terminated.

Note that after Step 1, Uj can decide to carry on the protocol at any time he
wants, which might give Uj some advantages. To solve this problem, before the
protocol runs, Ui and Uj can set up a time point at which the protocol must be
completed.

5 Security Proof

In this session, we prove that our OFE protocol for ring signatures is secure in
the multi-user setting under adaptive chosen message, chosen-key and chosen
public-key attacks. Let RS = (RKG, RSig, RVer) denote Abe et al.’s ring
signature scheme, EN=(Gen, Enc, Dec) denote Camenisch-Shoup public-key
encryption scheme, and π be a non-interactive zero-knowledge proof showing the
proper encryption of a full ring signature. We have the following theorem:

Theorem 1: The proposed optimistic fair exchange of ring signatures is secure,
i.e. satisfies Definitions 2-5, if the underlying RS is secure with signer-ambiguity
and existential unforgeability against adaptive chosen message and chosen public-
key attacks, EN is secure against adaptive chosen ciphertext attacks (CCA2),
and π is a simulation-sound non-interactive zero-knowledge proof.

Proof. Security against signers: In our OFERS protocol, a valid verifiably
encrypted ring signature θ = (c0, s0, s1, · · · , sn−2, w, u, e, v, ŵ, ĉ, t1, t2, u

′, e′, v′, v1,
v2, v3) consists of three parts. The first part (c0, s0, s1, · · · , sn−2, w) is a ‘ring
signature’, where sn−1 is hidden in w = g

sn−1

n−1 . The second part (u, e, v) is the
ciphertext of encrypting sn−1 under the arbitrator’s public key, where u = gt,

e=yt1h
sn−1 and v=abs(y2y

H(u,e,L)
3 )t for some t. The third part (ŵ, ĉ, t1, t2, u

′, e′, v′,
v1, v2, v3) provides a non-interactive zero-knowledge proof:

π = PK{(sn−1, t, r) : w = g
sn−1

n−1 ∧u2 = g2t∧ e2 = y1
2th2sn−1 ∧ v2 = (y2y

H(u,e,L)
3 )2t

∧ ŵ = hr
1h

sn−1

2 ∧−2l < sn−1 < 2l},
which shows that the encrypted sn−1 is the same value hidden in w. Suppose an
adversary A breaks the security against signers in our OFERS protocol by forg-
ing a VERS θ = (c0, s0, s1, · · · , sn−2, w, u, e, v, ŵ, ĉ, t1, t2, u

′, e′, v′, v1, v2, v3) w.r.t
a public-key list L∗ generated by himself, where w = g

sn−1

n−1 but e = yt1h
s′n−1 for
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s′n−1�=sn−1. For each public key in L∗,Amay not know the corresponding private
key. According to Definition 2, A wins the game of security against signers if and
only if the corresponding full ring signature of θ is σ=(c0, s0, s1, ..., sn−2, sn−1)
and (u, e, v) is decrypted to get s′n−1, where s′n−1 �=sn−1. However, this is infea-
sible due to the soundness of the zero-knowledge proof π. Hence our OFERS
protocol is secure against signers if π is a non-interactive zero-knowledge proof
(NIZK).

Security against verifiers: Suppose an adversarial verifier B breaks the
security against verifiers in the proposed OFERS protocol. We now construct a
distinguisher B̄, who can successfully distinguish the encryption of two messages
with the same length of its choice from a challenger in the CCA2 game for
Camenisch-Shoup encryption scheme with non-negligible probability. Note that
B̄ is allowed to access the decryption oracle ODec of the encryption scheme.
According to Definition 3, B wins the game of security against verifiers if B
produces a valid ring signature σ on a message m under a public-key list L′

without asking the resolution oracle ORes any query (m,L′, θ). As (m,L′, σ) is
a successful forgery of B, the situation that B did not ask any corresponding
VERS θ of σ via the partial ring signature signing oracle OPRSig is negligible
due to security against the arbitrator proved below. Hence we require that B
gets θ from OPRSig here. Now we show how to construct B̄ in detail.

For the given target Camenisch-Shoup encryption scheme EN=(Gen, Enc,
Dec) with the public key APK, the distinguisher B̄ repeatedly executes Abe et
al.’s key generation algorithm,RKG→ {PKi, SKi}, to form a public-key list L.
Then B̄ sends (APK,L) to B as the input of the OFERS protocol. Let k be the
total number of the queries that B issues to OPRSig . After arbitrarily selecting
j from {1, 2, ..., k}, B̄ simulates OPRSig ’s response to each query (mi, Li) issued
by B, where i = 1, 2, ..., k, Li ⊆ L and ni = |Li|, as follows:

1. If i �= j, B̄ signs the message mi w.r.t Li using the private key SK0 to
generate a ring signature σi = RSig(mi, Li, SK0) = (ci0 , si0 , ..., sini−1) and

returns a VERS θi = (ci0 , si0 , ..., sini−2 , wi, εi, πi), where wi = g
sini−1

ini−1
and

εi = EncAPK(sini−1) under Camenisch-Shoup encryption scheme, and πi

is a NIZK proof showing that εi encrypts the same value hidden in wi, i.e.
sini−1 .

2. If i = j, B̄ computes σi = RSig(mi, Li, SK0) = (ci0 , si0 , ..., sini−1) and
chooses a proper ŝini−1 in the same interval of sini−1 but sini−1 �= ŝini−1 .

Then B̄ sets ṡ1 = sini−1 and ṡ0 = ŝini−1 and sends ṡ1 and ṡ0 to its
CCA2 challenger. The challenger returns a ciphertext εb, which equals
either EncAPK(sini−1) or EncAPK(ŝini−1). After that, B̄ returns θi =

(ci0 , si0 , ..., sini−2 , wi, εi, πi), where wi = g
sini−1

ini−1
, εi = εb, and πi is a simu-

lated NIZK proof showing that εi encrypts the same value hidden in wi.

The distinguisher B̄ simulates the resolution oracle ORes’s response to B’s queries
(mi, Li, θi) using the decryption oracle ODec as follows:
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1. If πi is valid and Li �= Lj , B̄ asks ODec to extract the plaintext sini−1 from
εi and returns the ring signature σi = (ci0 , si0 , ..., sini−1) on mi under Li.

2. If πi is valid and Li = Lj, B̄ checks whether mi = mj . If yes, B̄ aborts the
simulation and sends a random bit to its CCA2 challenger. Otherwise, B̄ asks
ODec to extract the plaintext sini−1 from εi and returns the ring signature
σi = (ci0 , si0 , ..., sini−1) on mi under Li.

3. If πi is invalid, B̄ returns B a random value.

If εb = EncAPK(ŝini−1) (i.e. b = 0), θi looks valid but, in fact, σi =
(ci0 , si0 , ..., ŝini−1) is not a valid ring signature because of ŝini−1 �= sini−1 . The
probability of B forging a valid ring signature on mj is therefore negligible. If
εb = EncAPK(sini−1) (i.e. b = 1), εj is an valid encryption of sini−1 which is
a part of a valid ring signature on mj . The attack environment required by B
is perfectly simulated. Suppose (m,L′, σ) is the forgery of B, if m = mj and
L′ = Lj , B̄ outputs 1 and wins the CCA2 game by indicating that ṡ1 = sini−1 is

the plaintext of εb, otherwise B̄ sends a random bit to the CCA2 challenger. Con-
sequently, if B wins the game of security against verifiers with a non-negligible
probability, B̄’s advantage against its CCA2 challenger is also non-negligible.
Hence our OFERS protocol is secure against verifiers if the underlying encryp-
tion scheme EN is CCA2-secure.

Security against the arbitrator: Suppose an adversarial arbitrator C
breaks the security against the arbitrator in the proposed OFERS protocol.
We construct a forger C̄ for Abe et al.’s ring signature scheme RS = (RKG,
RSig, RVer) with access to a signing oracle ORSig .

For the initial public-key list L given to the forger C̄, the adversarial arbitrator
C takes L as input and then outputs (ASK∗, APK), where APK is set as the
arbitrator’s public key for Camenisch-Shoup encryption scheme, and ASK∗ is
the state information which may not correspond to APK. (ASK∗, APK,L)
is the input of the OFERS protocol. After that, C begins to ask queries to
the partial ring signature signing oracle OPRSig , for which the responses can
be perfectly simulated by C̄ using ORSig : For any message mi and any sublist
L′′ ⊆ L, C̄ asks its signing oracle ORSig to get a ring signature σi, then encrypts
σi under APK to get a VERS θi and generates the NIZK proof πi. Finally,
C outputs the forgery (m′, σ′) such that RVer(m′, L′, σ′) = 1 and (m′, L′) /∈
Query(C, OPRSig), which means C̄ never asks ORSig to response a valid ring
signature on m′ w.r.t L′. In our OFERS protocol, σ′ is just the conventional ring
signature on m′ w.r.t L′, so C̄ has succeeded for obtaining σ′ as the forgery of the
message m′ without asking the signing oracle ORSig . It is contradictory to the
existential unforgeability of Abe et al.’s ring signature scheme against adaptive
chosen message and chosen public-key attacks. Hence our OFERS protocol must
be secure against the arbitrator.

Signer ambiguity: Suppose that our OFERS protocol does not meet signer
ambiguity, which means that there is an unbound adversary D can tell which
private key SKs was used to produce a given tuple (m,L, θ, σ, APK) with the
probability not equal to 1/|L|. Then, from D we now construct an adversary D̄



Optimistic Fair Exchange of Ring Signatures 241

that breaks signer ambiguity of Abe et al.’s ring signature scheme, which thus
leads to a contradiction. For a given initial public-key list L in Abe et al.’s scheme
we run the key generation algorithm of Chamenisch-Shoup encryption scheme
to get the arbitrator’s key pair (ASK,APK). For a target (m,L, σ,APK), D̄
runs PRSig algorithm to get θ, i.e. θ ← PRSig(m,L, σ,APK). By forwarding
(m,L, θ, σ, APK) to D, D̄ just outputs the index returned by D as its guess
which private key was used to issue (m,L, σ,APK). It is easy to see that D̄
breaks the signer-ambiguity of Abe et al.’s ring signature scheme with the exact
same probability as D breaks the signer-ambiguity of our OFERS protocol. 
�
Remark 2. In the proofs above, we do not give the specific details about the
underlying (Abe et al.’s) ring signature scheme and (Camenisch and Shoup’s)
encryption scheme, as our construction (specified in Section 4) can be extended
to a generic scheme, i.e. based on any secure ring signature scheme and en-
cryption scheme, the associated proofs can be obtained by simply adapting the
proofs above. In addition, from our proofs we can see that a secure ring signa-
ture scheme with signer-ambiguity does not necessarily guarantee an OFERS
protocol preserving the same property. The counterexample is very simple: just
modify our OFERS protocol such that the VERS θ includes a public key PKi

which indicates that the private key SKi was used to issue the corresponding
ring signature σ. For this scheme, it is not difficult to see that the proofs for
the first three properties still hold, but not for signer-ambiguity since, with the
reminder PKi, the adversary can tell with the probability 1 that SKi was used
to issue a tuple (m,L, θ, σ, APK). Further discussions on these two issues will
be given in the full version of the paper.

6 Conclusion

In this paper, for achieving better privacy in optimistic fair exchange, we present
the first solution of optimistic fair exchange of ring signatures (OFERS) by first
formally defining its security model in the multi-user setting under adaptive cho-
sen message, chosen-key, and chosen public-key attacks. We have also proposed
a concrete scheme of verifiably encrypted ring signature (VERS) and used it to
build an optimistic fair exchange protocol. The proposed scheme is proved to
be secure against signers, verifiers and the arbitrator and satisfy the property
signer-ambiguity under our security definitions. As future work, it is interesting
to design efficient OFERS protocols for different types of signatures, such as Abe
et al.’s RSA-based ring signatures or mixed-type ring signatures [8], and achieve
other more security properties in OFERS, e.g. abuse-freeness.
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