
Time-Traveling Forensic Analysis of VM-Based

High-Interaction Honeypots

Deepa Srinivasan and Xuxian Jiang

Department of Computer Science
North Carolina State University

dsriniv@ncsu.edu, jiang@cs.ncsu.edu

Abstract. Honeypots have proven to be an effective tool to capture
computer intrusions (or malware infections) and analyze their exploita-
tion techniques. However, forensic analysis of compromised honeypots
is largely an ad-hoc and manual process. In this paper, we propose
Timescope, a system that applies and extends recent advances in deter-
ministic record and replay to high-interaction honeypots for extensible,
fine-grained forensic analysis. In particular, we propose and implement a
number of systematic analysis modules in Timescope, including contam-
ination graph generator, transient evidence recoverer, shellcode extractor
and break-in reconstructor, to facilitate honeypot forensics. These anal-
ysis modules can “travel back in time” to investigate various aspects
of computer intrusions or malware infections during different execution
time windows. We have developed Timescope based on the open-source
QEMU virtual machine monitor and the evaluation with a number of real
malware infections shows the practicality and effectiveness of Timescope.

Keywords: Honeypots, Virtualization, Forensic Analysis.

1 Introduction

Honeypots have been used as an effective tool to capture and analyze computer
intrusions and malware infections [29, 35]. For example, by running a commod-
ity system, a high-interaction honeypot is typically designed to host vulnerable
services (that can be remotely exploited), and in the meantime also contains
additional monitoring software [4] to record intruders’ behavior. By allowing in-
truders to completely take over the system and monitoring their behavior, we
can better understand the motivations and techniques behind the intrusion. This
is helpful as it will raise the awareness of network situation and lead to better
design and development of next-generation intrusion detection systems (IDSs)
and anti-malware software.

Forensic analysis of honeypots, though critical for the success of honeypot
deployment, is still largely an ad-hoc, time-consuming process and ultimately
affected by the type of data collected from honeypots. To better utilize honey-
pots and facilitate their forensic analysis, we argue that there is a need for a

M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 209–226, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

210 D. Srinivasan and X. Jiang

“time-traveling” capability in existing honeypots. By doing so, a security ana-
lyst will be given an opportunity to apply a new analysis method that may not
be available during the time when the honeypot was deployed. Moreover, by re-
peatedly “traveling back in time”, multiple phases of analysis can be performed,
either in parallel or sequentially. In the sequential case, one replay session can
also be based on results from previous replay runs.

To “rewind” a honeypot’s execution, an intuitive network-level approach would
be to replay the captured network traffic targeting the honeypot system (since
the honeypot is remotely compromised). However, due to inherent sources of
non-determinism in modern systems and software, by simply replaying the cap-
tured network packets, we may not be able to obtain the same execution of the
honeypot system. From another perspective, a number of system-level deter-
ministic record and replay (R&R) approaches have been proposed for a variety
of purposes, including fault tolerance [10], application debugging [1] and secu-
rity analysis [13,16]. Recording and replaying a VM is well-suited for honeypots
since we can capture and reproduce the entire system’s execution. However,
most prior VM R&R systems are not suitable for high-interaction honeypots
because either they do not support commodity OSes or require extensive OS-
level customization, or they heavily rely on proprietary virtual machine monitors
(VMMs) [1, 13]. Moreover, there is a lack of honeypot-specific forensic analysis
modules that can take advantage of VM R&R capability.

In this paper, we present Timescope – a time-traveling high-interaction hon-
eypot system designed for extensible, fine-grained forensic analysis. Leveraging
previous insights from VM-level R&R systems, we have developed an open-source
tool, hoping to engage the security community and benefit related research efforts
that may require similar features.1 In addition, we have extended our system by
developing a number of honeypot-specific analysis modules: contamination graph
generator (I), transient evidence recoverer (II), shellcode extractor (II), and break-
in reconstructor (IV). These modules are applied only during honeypot execution
replay sessions and placed externally so that the replay itself is not perturbed.
By allowing the analysis modules to “travel back in time”, it addresses key ques-
tions in honeypot forensic investigations, such as: “what are the contaminations
or damages caused by an intrusion?”; “what intermediate evidence (e.g., files
and directories), if any, has been erased by the attacker?”; “how is the attack
launched?”. We have implemented Timescope and these analysis modules based
on the open-source QEMU VMM [8] and enabled multi-faceted, inter-related
malware forensic analysis during multiple replay sessions. Our evaluation with
a number of attack scenarios, including real-world worm programs and kernel
rootkits, shows the practicality and effectiveness of Timescope to repeatedly
and comprehensively analyze past intrusions. The experiments are enabled by
repeatedly rewinding the honeypot’s execution, not based on the log from one
single run.

1 The source code, to be released in September 2011, will be available in one of the
co-authors’ websites.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 211

2 System Design

To better analyze compromised honeypots, our goal is to design an extensible
investigation framework that is tailored for honeypot forensics. Specifically, the
framework is intended to greatly facilitate an analyst to effectively reveal various
aspects of honeypot intrusions. In the following, we examine two main require-
ments for our investigation framework.

– Transparency. Our analysis framework must work with a commodity OS
without requiring any changes to the OS itself. This is needed because a
high-interaction honeypot will run environments that are representative of
production workloads. Also, due to the potential presence of multiple vul-
nerabilities in various services running in the honeypot and the need for
monitoring attackers’ behavior after the break-in, the framework should al-
low for the capture of the execution of the entire honeypot system, instead
of a selected few applications.

– Extensibility and Flexibility. The framework needs to be extensible to sup-
port various analysis modules, each examining a particular aspect of an in-
trusion. In other words, it can flexibly yield itself for instrumentation during
replays to enable in-depth forensic analysis. Further, any analysis module
that is supported in this framework should not perturb the deterministic
execution in a replay session.

Certainly, our design should also meet the basic honeypot requirement in provid-
ing a “true” computer system to attackers and reliably recording the honeypot
execution for later replay. For example, to maintain the reliability of logging, we
need to avoid deploying any visible logging components inside the honeypot as
they can be potentially compromised once the honeypot is taken over. And the
collected log should not be placed within the honeypot. Also, the presence of the
framework and various analysis modules should not be exposed to an attacker.

In this paper, we assume that after compromising a honeypot, the attacker can
obtain the highest privilege level inside the honeypot. We envision the scenario
that an attacker exploits a vulnerability in a honeypot-hosted network daemon
(or a client-side software such as the web browser) and then gains control of the
system. After that, the attacker might deploy a rootkit to hide the intrusion.
Due to the leverage of the virtualization layer for honeypot hosting, we assume
a trusted VMM that provides necessary VM isolation (see Section 5).

2.1 Timescope Framework

The overall architecture of our system is shown in Figure 1. In essence, it in-
volves the fundamental VM record and replay support. Note that such support
can be applied at different levels in a running computer system such as for
individual processes or the entire machine. Due to the need for transparently
supporting honeypots on commodity hardware, we implement it at the system
virtualization layer such that the execution of an entire honeypot VM can be cap-
tured and replayed. Among various virtualization techniques available (such as

212 D. Srinivasan and X. Jiang

Log

Virtual Machine Monitor (VMM) Recording

Honeypot

User Applications

Guest Kernel

User Applications

Guest Kernel

VMM

User Applications

Guest Kernel

VMM

User Applications

Guest Kernel

VMM

result result result

analysis 2 analysis nanalysis 1

VM Record

VM Replay (session 1) VM Replay (session 2) VM Replay (session n)

Fig. 1. Timescope enables time-traveling forensic analysis of honeypots

para-virtualization, hardware virtualization etc.), we choose software-based full
virtualization and leverage dynamic binary translation (implemented in VMware
[6], VirtualBox [5], and QEMU [8]) which offers great flexibility for implementa-
tion of analysis modules. While it introduces high overhead over native system
performance, this is acceptable for honeypot purposes.

Timescope operates in two different modes: VM record logs the honeypot’s
execution and periodically takes a number of snapshots (or checkpoints that
contain processor, hardware devices and memory states); VM replay starts from
a chosen snapshot, then re-executes or rolls forward using the collected log to
deterministically reproduce the execution. Note that most events in the system
are deterministic (e.g. memory loads/stores and arithmetic operations). As such,
they do not need to be logged. Instead, the system will just re-execute these
events in the same way during replay as it did during VM record.

More specifically, if we abstract the entire guest as a simple VM process, its
execution is influenced by the input it receives from external entities (such as
I/O devices) and the response (including the run-time environment) from the un-
derlying hypervisor (such as asynchronous I/O, timers, and virtual interrupts).
Note that emulating guest VMs as processes will still introduce non-determinism
in the VM itself and this should be addressed as shown in Section 3. To interact
with external entities, it eventually uses the services also provided by the hyper-
visor (either through certain I/O operations or hypercalls). As a result, during a
VM record phase, we can just collect these influence factors or non-deterministic
inputs in a log file. During the VM replay phase, we can re-execute the same
sequence of instructions with the same input from the collected log and repro-
duce its execution, including the detailed attack sequence in the honeypot’s past
execution. Certainly, when the non-deterministic inputs are collected, we also

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 213

need to record the related timestamps, which is not based on wall clock time
but on the virtual time lapsed since the honeypot started its initial execution.
We point out that the output to external devices or peripherals will not affect
VM replay and hence need not be saved. In fact, the output can be reconstructed
as a by-product during the VM replay. This has the benefit of reducing the log
volume – which is especially the case when the honeypot happens to run some
I/O-intensive workloads.

2.2 Analysis Modules

With the development of companion analysis modules in Timescope, an analyst
can travel back in time and investigate an attack when it is happening. Anal-
ysis sessions can be started from different snapshots to perform specific data
collection within different time windows or use results from previous analysis
sessions. In the remainder of this section, we describe four representative anal-
ysis modules that can be flexibly plugged into the framework during a replay
session. One example attack scenario is that of a vulnerable service (e.g., the
Apache web server) running in a honeypot that is compromised. After the com-
promise, the attacker escalates his privilege to root and installs a kernel rootkit.
We assume the intrusion is observed by an administrator who notices some sus-
picious activity of the honeypot and denotes this detection point by DP. Then,
we launch analysis sessions with these modules sequentially, each running in its
own replay session.

Contamination graph generator (module I). The goal of this analysis module
is to help obtain a high-level view of attackers’ behavior by developing a con-
tamination graph. As pointed out in [24], this graph allows us to identify which
process was potentially exploited that led to the detection point. For this, the
necessary logs can be collected by instrumenting the VMM’s dynamic translation
layer to intercept and log all system calls made by all processes running inside
the honeypot. Note that these system calls are captured in the replay session,
not the record session! Along with each system call, we also record the virtual
CPU time to identify when the call was intercepted and the address of the in-
struction that is causing the system call. This analysis module helps address the
question: “What time window in a honeypot’s execution is interesting for fur-
ther analysis?” Note the narrow-down of the time window for detailed analysis
is helpful to perform targeted forensic analysis. As a result, with the generated
contamination graph, we can identify a starting (ST) and ending (EN) points
and the execution within [ST, EN] warrants further investigation.

Transient evidence recoverer (module II). Given a time window, this analysis
module aims to recover attack evidence that may be erased during the intrusion.
For example, during an intrusion, it is likely that the attack may create tempo-
rary files (that contain intermediate computation results) or manipulate some
system state for various malicious purposes (e.g., opening a backdoor). As part
of the investigation process, it is extremely helpful to uncover all files that may
be erased or manipulated and inspect the recovered content to better understand
the attacker’s motivations.

214 D. Srinivasan and X. Jiang

Shellcode extractor (module III). In certain attack scenarios, there is also a
need to identify and extract the injected shellcode in memory. Note the shellcode
is typically transient and will not be saved in the disk. Yet, it is the first attack
code executed after successfully exploiting the vulnerability in the honeypot. In
this analysis module, we aim to keep track of the untrusted network input and
identify the set of data that is being executed as code. And this set of data is
considered as the shellcode. It is also possible that a DP might be generated due
to the shellcode execution, (e.g., an abnormal entry of logging a /bin//sh pro-
cess creation from the Apache web server). In our implementation, we leverage
existing efforts on dynamic taint analysis [28] and more details will be presented
in Section 3.2. Further, during a secondary run, this analysis module scans each
incoming network message that is read by the exploited process to identify the
timestamp when the shellcode is injected as well as the very moment the shell-
code is about to execute. This allows us to precisely locate the time window of the
code injection attack and aids in further analysis to reconstruct and understand
the vulnerability that was exploited.

Break-in reconstructor (module IV). The goal of this module is to perform
fine-grained analysis to understand how the execution of malicious, injected code
hijacks control flow and tampers with any system resources or objects in process
and kernel memory. Specifically, in the case of kernel rootkits, when the injected
malicious code executes, this module generates a log of all memory reads and
writes along with the memory contents. This collected log can then be analyzed
offline, in combination with the binary of the kernel being compromised, to de-
velop a profile of the injected code’s execution. With this module, we can “zoom
in” to monitor and analyze the execution of the injected attack code and apply
in-depth fine-grained analysis techniques. Thus, Timescope re-creates temporary
memory states and enables selective application of heavyweight techniques such
as execution profiling and improves their efficiency.

Finally, we note that forensic analysis is essentially an iterative process. Based
on results from previous phases, it is often the case that one may want to re-run
another analysis but with a different time window of the honeypot’s execution.
Timescope greatly facilitates such analysis with its extensible framework.

3 Implementation

We have implemented Timescope based on the open-source QEMU version 0.12.3
[8]. As mentioned earlier, due to the lack of a suitable open-source record and
replay implementation, we have to implement it from scratch. On top of that, we
further implement four honeypot-specific analysis modules. The dynamic binary
translation architecture in QEMU and its readily available source code make
it convenient for our implementation. Our development environment is a 32-bit
x86 Ubuntu 9.10 running Linux kernel 2.6.31-20.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 215

3.1 QEMU Record and Replay

In QEMU, a VM runs based on the emulated computer hardware and I/O de-
vices. Also for each running VM, there is a corresponding user-level process on
the host system. At its core, QEMU translates guest instructions in batches (ba-
sic blocks) and the resultant host instructions are known as translation blocks
(TBs). The translated TBs are then executed from a “main loop”. For optimized
execution, it employs a technique known as “direct block chaining” [8], where
TBs that have been previously translated can be re-used. When a device emula-
tor module in QEMU requires the attention of the CPU, it asynchronously calls
a function to signal that an interrupt is pending to be serviced. This causes the
main execution loop to exit and service the I/O. QEMU also uses a host timer
(by default, the real-time clock) to break periodically from the main loop and
perform actions such as refreshing user displays and updating virtual time.

This design brings an interesting observation in our implementation: if we en-
able R&R for the QEMU process, we can achieve the R&R for the emulated VM.
We believe this design choice is different from previous VM-based R&R frame-
works [13, 16, 30]. However, from another perspective, QEMU itself is a regular
but complex user-level program whose design introduces non-determinism in the
execution of a guest OS. This violates our requirement for a deterministic R&R!
Specifically, its execution is influenced by external sources of non-determinism
such as host OS timer facilities, device interrupts and asynchronous I/O.

To make the QEMU execution deterministic, we need to capture all external
inputs. For this, we use a technique known as function interposition. We notice
that the interface to access these external inputs is the glibc library, which is
loaded dynamically and all glibc symbols are resolved at run-time. As a result,
we can provide a wrapper for all functions that will be used by QEMU to in-
tercept these dependent glibc calls. During the VM record run, these function
calls first invoke the corresponding function in glibc and then record the values
of its output parameters and return value. During the VM replay run, the wrap-
per functions simply return the previously recorded output parameters and the
return value from the R&R log.

There is also a subtle issue related to time in QEMU. In particular, QEMU
issues the “rdtsc” instruction to read the timestamp counter from the host hard-
ware. For our purpose, we replace the code to this instruction with an equivalent
wrapper function. QEMU’s default behavior is optimized for performance - the
virtual CPU’s instructions are executed in a highly optimized loop and excep-
tions (such as device interrupts) are processed asynchronously. This causes non-
deterministic guest OS behavior. Instead for our implementation, we configure
QEMU such that one instruction will be executed in a fixed period of virtual
time. Moreover, I/O interrupts are checked and serviced only at the end of a
TB’s execution. With that, there is no need to rely on the host timer, which is
a major source of non-determinism in the original QEMU system.

By addressing the QEMU-inherent non-determinism and logging the exter-
nal input, our implementation enables deterministic VM record and replay. Also
from our implementation experience, there are additional details that are worth

216 D. Srinivasan and X. Jiang

mentioning. For example, to support R&R checkpoints, we use the built-in VM
snapshot feature in QEMU, but modify it to save and retrieve VM state images
to and from a separate file on the host filesystem. Also, our current implementa-
tion disables the asynchronous I/O support in QEMU which leads to additional
performance penalty (Section 4), but makes our implementation easier since it
only requires a single thread of execution to be recorded and replayed. Note
that this limitation is not inherent in our approach and can be effectively elimi-
nated [7]. Finally, during a replay session, all output from the virtual honeypot
to the serial port is allowed to pass through, so that an analyst can “view” the
honeypot’s execution progress.

3.2 Analysis Modules

To demonstrate Timescope’s time-traveling analysis capabilities, we have im-
plemented four analysis modules. These modules all operate outside the virtual
machine honeypot. Further, they all execute in replay sessions thus enabling
time-traveling forensic analysis. The modules we developed examine different
aspects of an intrusion, including contamination graph generation, transient ev-
idence recovery, shellcode extraction, and break-in reconstruction.

Contamination graph generator This analysis module typically runs immedi-
ately after a suspicious detection point (DP) has been identified. In particular, we
replay the VM execution and apply virtual machine introspection techniques [20]
to collect all system calls invoked by all processes running inside the honeypot.
At a high level, whenever the honeypot executes an int 0x80/sysenter instruc-
tion, it indicates that a system call is being requested by a process within the
honeypot. By examining the honeypot’s virtual registers, the system call and
corresponding arguments can be identified and reported. This process may fur-
ther involve examination of the honeypot’s memory and interpretation of the
name of the running process that invoked the system call and other system call
arguments. We point out that the interception and interpretation of guest system
calls at the VMM level has been implemented in a few other systems [15,20]. It is
interesting to note that all these techniques operate in a live system. Timescope
instead travels back in time and operates in a replayed “live” system.

Transient evidence recoverer As described in Section 2.2, given a starting
time (ST) and ending time (EN), this analysis module aims to capture all file
write activities, copy these files (including the modified content) out, and save
them on the host filesystem. By doing so, one can tell the list of files that
have been modified or removed by a particular process and all deleted files can
still be recovered for later analysis. For this, we first keep track of the open
file descriptors within the time window between ST and EN. In particular, our
implementation extends the system call interception in the first analysis module:
Whenever a sys open() system call is being invoked within the time window, we
retrieve the file name and when the corresponding call returns, we obtain the
file descriptor. We also track sys close() during this time window to discard
file descriptors that are no longer valid. The list of file names and descriptors is
maintained on a per-process basis. When a sys write() is intercepted, the size and

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 217

address of the buffer being written is retrieved from the EDX and ECX registers
of the virtual CPU respectively. The entire buffer is then retrieved from the VM
physical memory and stored to a corresponding file (referred to as recovered file)
in a specified directory on the host file system. The name of the recovered file
contains the process name that is writing to it and the file descriptor. If this file
was opened within the specified time window, we store the name of the file along
with the data. Thus, by looking at a recovered file, one can tell the name of the
file in the honeypot that is being modified, the corresponding file descriptor and
the data that was written. If the file was opened before the ST time window,
our current implementation will search through the system call log generated in
the first analysis module. Therefore, we are able to selectively create past states
of the honeypot’s execution.

Shellcode extractor Shellcode is typically the first attack code executed in an
intrusion. However, the shellcode itself is not saved in the disk and hence will not
be captured by previous analysis modules. In our implementation, we leverage
dynamic taint analysis techniques [28,33] to extract the attack code from mem-
ory. Specifically, all incoming network packets (via the virtual NE2000 device in
our current implementation) are tagged as tainted. And the taint information
will be propagated based on the instructions that operate on the tainted input.
Further, by instrumenting the call, jmp, and ret, we can monitor the illegal use of
the tainted data. In particular, if any of the targets in call, jmp or ret are tainted,
we know the attack code is about to execute. And the execution of tainted data
will be collected as the shellcode for analysis. In our implementation, we ex-
tract the malicious code by collecting a trace of tainted instructions that are
executed by QEMU. Using the addresses of these instructions and the running
process (as per the CR3 register), we further record related context information
about the shellcode, such as the name of the compromised process. Once the
shellcode has been identified, this module can be re-run in a secondary analysis
session to identify at which point in the exploited process’ execution, this data
was injected and understand how the data triggers the vulnerability. For remote
code injection attacks, we monitor the returns from the sys read() calls made by
the exploited process and compare the buffer that is read into memory. When
a match is found, the corresponding timestamp value and contents of the buffer
are stored to a file on the host OS. This needs to be executed only up to the
point when the first shellcode instruction is ready to execute.

Break-in reconstructor Once the injected malicious code has been identified
and extracted, this module generates an instruction execution trace. The trace
will be considered a working exploit against the vulnerability that leads to the
honeypot break-in. In our implementation, we further perform execution profil-
ing of the identified malicious code. For example, in our experiments with kernel
rootkits (Section 4.2), we leverage it and apply the combat tracking technique
described in PoKeR [34] to profile rootkit execution within a given time window
([ST, EN]). In particular, for a subset of instructions identified thus, all memory
reads and writes and their contents, are recorded in a log on the host OS. Then,
with the combat tracking technique, the kernel rootkit’s execution profile can

218 D. Srinivasan and X. Jiang

be obtained to reveal how kernel objects and control flow have been tampered
with. Note that while the experiment is conducted in the context of kernel-level
code injection, it can be readily extended to user-level code injection as well.

4 Evaluation

This section presents experimental results from our prototype implementation
of Timescope. We demonstrate the accuracy of our R&R implementation and
time-traveling forensic analysis capabilities. We also measure the performance
overhead introduced by our framework.

4.1 R&R Accuracy

To evaluate the accuracy and effectiveness of our prototype R&R implementa-
tion, we took two measures. First, during a replay session, in each system call
wrapper function, our prototype performs a self-check to make sure that the
requested system call number and its input parameters always match the next
one stored in the R&R log. Our experiments confirmed the correctness of our
prototype. Note this self-checking process is costly in terms of performance and
thus it is present only in debug builds of the prototype. Second, during several
tests of VM runs and their corresponding replay sessions, we collect all instruc-
tions (organized as basic blocks) executed by the honeypot and save them in two
separate log files. By literally performing a file comparison between the two, we
verify that the same instructions are executed in the same order, thus yielding
deterministic replay.

4.2 Time-traveling Analysis

To demonstrate the effectiveness of our prototype, we have launched four syn-
thetic attacks. The first one intentionally tests our second analysis module by
verifying the recovery of an intermediate file with randomly generated content.
For the rest, we utilized real-world malware, including a worm (Slapper [11])
and two rootkits (adore-ng [26] and SucKIT [32]), to understand their behaviors
and test all developed analysis modules. Here, we summarize three of them.

Experiment 1: Intermediate evidence recovery In the first experiment, we
show the ability of Timescope to re-create past, non-predictable temporary state
and retrieve the content from a replay session for comparison. Specifically, we
intentionally create a program that will generate an intermediate file with 1 MB
random data. The file will be uploaded to a remote server and then immediately
deleted. In the experiment, the run of this program is captured in a VM record
session. In a replay session, we aim to uncover the content of the intermediate
file using the second analysis module and compare with the copy saved in the
remote server. Our manual verification indicates the uncovered file has the same
md5sum from the server copy.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 219

229089914982
rm −rf /tmp/.bugtraq.c

229168436128

/usr/lib/gcc−lib/i386−redhat−linux/3.2/cc1
−lang−c −v −iprefix

230379424260

/usr/bin/as −V −Qy −o

/tmp/ccBWSjFl.o /tmp/cc8FAmCz.s

/tmp/cclHaBFS.ld

229151593612

/usr/bin/uudecode −o

/tmp/.bugtraq.c /tmp/.uubugtraq

httpd

/tmp/ccBWSjFl.o

/tmp/.bugtraq 192.168.10.2
230522592036

2287203867146

bash −i

229166113134
gcc −B /usr/bin/ −v −o

228715486850

/bin//sh

−−eh−frame−hdr

230458369906
/usr/lib/gcc−lib/i386−

redhat−linux/3.2/collect2

/tmp/.uubugtraq

/tmp/.bugtraq.c

/tmp/.bugtraq /tmp/.bugtraq.c
−lcrypto

/tmp/cc8FAmCz.s

/tmp/cc4MfwqY.o

/tmp/ccOUzBj4.c 230459271402
/usr/bin/ld

/tmp/.bugtraq

Fig. 2. The contamination graph of Slapper worm reconstructed from a Timescope-
based replay session

Experiment 2: Slapper worm analysis In this experiment, we demonstrate
the time-traveling analysis capabilities of Timescope for a code injection attack
(Slapper worm). Particularly, we setup a Timescope Redhat Linux 8.0 honeypot
(in our isolated lab network) running a vulnerable Apache server (version 1.3.22),
along with mod ssl support that has a buffer overflow vulnerability exploited by
Slapper. From another physical machine, we launch the Slapper worm and direct
it to infect the honeypot. On the honeypot, we detect the presence of the worm by
monitoring processes running and notice the process “.bugtraq”. At this point,
we pause the honeypot VM and retrieve the R&R log.

Our analysis is performed using multiple replay sessions using the previously
described analysis modules (Section 2.2). We start a replay session with the first
analysis module and using the results, we apply the backtracking algorithm [24],
to generate a contamination graph (Fig. 2) of the Slapper infection. In this graph,
an oval represents a process; a rectangle represents a file. The numbers in each
oval represent the virtual timestamp at which the system call to execute the
corresponding process was intercepted. The graph illustrates how the suspect
process “.bugtraq” came to exist and shows that the httpd (Apache) process
was compromised to spawn a shell process. We point out our analysis result is
consistent with other Slapper analyses [20, 31].

220 D. Srinivasan and X. Jiang

(.bugtraq process
Detection Point

is observed)

VM Record

Snapshot

(error_log, ssl_engine_log) *

Data written to
2 files by httpd

(including Slapper source code) *
as, bash, ld, cc, uudecode
Data written to 8 files by

/bin//sh *
httpd spawned .bugtraq process

is launched *
VM Replay
session 1

VM Replay
session 2

VM Replay
session 3

VM Replay
session 4

Attack began with
malicious input *

Honeypot execution timeline

Fig. 3. Timescope-based multi-phase time-traveling forensic analysis of Slapper in-
fection: The replay sessions are run only for the time window indicated by the solid
regions in the execution timeline; results obtained during a replay session are indicated
by asterisks

Next, we start another replay session with the second analysis module. This
replay session focuses on a time window specified by two virtual timestamp values
(ST - when the “/bin//sh” process is spawned; EN - when the “.bugtraq” process
is launched). Our results show that there are 8 files that have been written to
(including the entire decoded Slapper source code), and their contents are stored
externally as part of analysis results. Using the third analysis module, we extract
the injected shellcode in memory that invoked the “/bin//sh” process. For this,
we extract the address of the instruction in the httpd process that caused the
sys execve() to spawn the shell process. We execute a Timescope replay session
to collect the instruction trace of the honeypot and search for this instruction
address (and the process memory layout identified by the CR3 value). Then, we
can identify the basic block of instructions that causes this shell to be spawned.

Using a secondary run of the shellcode extractor, we further identify the times-
tamp when the malicious code was injected into the process. With that, we
identify a new time window for further analysis - from the time this injection
occurred in the vulnerable process until the time the shell process was spawned.
With the new time window, we execute another Timescope replay session with
the second analysis module and we can interestingly identify two files that are
modified (including 2 log entries written to Apache’s error log). As reported
in [31], such behavior is related to the nature of the vulnerability exploited by
Slapper. Putting it all together, Fig. 3 shows a more complete picture of the
Slapper worm infection. Specifically, it depicts various events of interest along a
timeline in the honeypot’s execution.

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 221

Accessing

kernel memory

for writing

0xc7026092: mov %ebx,%eax

0xc7026094: sub $0x804f040,%eax

0xc7026099: lea 0x8050198(%eax),%edx

0xc702609f: mov %edx,0xec(%ebx)

0xc70260a5: lea 0x80502d9(%eax),%edx
.......

0xc7026073: mov −0x10(%ebp),%edi

0xc7026076: rep stos %al,%es:(%edi)

0xc7026078: call 0xc702440b

0xc702440b: call 0xc7024414

0xc7024414: pop %eax

0xc7024415: ret

0xc70261b7: mov 0x10(%ebp),%edx

0xc70261ba: mov (%edx),%eax

0xc70261bc: mov %ebx,(%eax)

0xc70261be: mov 0x4(%edx),%eax

0xc70261c1: mov %ebx,(%eax)

0xc70261c3: add $0x1c,%esp

0xc70261c6: pop %ebx

0xc70261c7: pop %esi

0xc70261c8: pop %edi

0xc70261c9: leave

0xc70261ca: ret

0xc7026044: push %ebp

0xc7026045: mov %esp,%ebp

0xc7026047: push %edi

0xc7026048: push %esi

0xc7026049: push %ebx

0xc702604a: sub $0x1c,%esp

0xc702604d: mov 0x8(%ebp),%ebx

0xc7026050: lea 0x8050e0b(%ebx),%eax

0xc7026056: mov %eax,−0x10(%ebp)
.......

.......

Injecting code

into kernel memory

....
41284574626 [sys_oldolduname 59]

....
41284665890 [sys_lseek 19]: fd 3; offset 0xc037d400; origin 0
41284666202 [sys_read 3]: 3
41284666722 [sys_lseek 19]: fd 3; offset 0xc01090dc; origin 0
41284667034 [sys_read 3]: 3
....
41284691124 [sys_query_module 167]: module
....
41285184390 [sys_lseek 19]: fd 3; offset 0xc0302d1c; origin 0
41285184702 [sys_read 3]: fd 3
....
41285185218 [sys_lseek 19]: fd 3; offset 0xc0302d1c; origin 0
41285185530 [sys_write 4]: fd 3 Size: 4
....
41285195942 [sys_oldolduname 59]
....
41285196362 [sys_lseek 19]: fd 3; offset 0xc7024400; origin 0

....
41285210682 [sys_lseek 19]: fd 3; offset 0xc0302d1c; origin 0
41285210994 [sys_write 4]: fd 3 Size: 4
....
41285211526 [sys_oldolduname 59]
....
41285252480 [sys_socket 102]1: family 2; type 3; protocol 6
41285256270 [sys_fork 2]:
....
41285308920 [sys_exit 1]

41284560802 [sys_getpid 20]

41285196674 [sys_write 4]: fd 3 Size: 7627

41284594728 [sys_open 5]: /dev/kmem; flags O_RDWR

Malicious code identified for profilingSystem call log entries extracted for malicious "install" process

Virtual time [Syscall name & number] Interpreted arguments

Fig. 4. SucKIT rootkit analysis using Timescope

Experiment 3: SucKIT rootkit analysis In this experiment, we aim to demon-
strate how Timescope’s replay-based forensic analysis techniques can be used
to analyze intermediate memory states in the honeypot. For this, we use the
SucKIT kernel rootkit to attack a honeypot VM. Presuming the scenario of a
compromised root password, we launch this attack by logging remotely to the
honeypot VM (running in an isolated lab environment), downloading the rootkit
and executing a script to install it. To analyze this attack, we run a replay ses-
sion with the first analysis module and notice the root login and the subsequent
commands that were executed (with the sys execve() system call). A subset of
the log is shown in Fig. 4. In particular, we notice the command “install” run by
the attacker and that it opens the file /dev/kmem which, gives complete write
access to the root user to write to arbitrary locations in the kernel memory.
To highlight a subset of the execution profiling analysis, consider the lines in-
dicating that the kernel memory is being overwritten as shown in Fig. 4. These
lines indicate kernel memory being overwritten from the ranges 0xc7024400 to
0xc70261cb. Hence, to perform execution profiling, we use the fourth analysis
module and generate a log of memory reads and writes and their contents for in-
structions fetched from addresses in these ranges when the processor is in kernel
mode. Fig. 4 shows a subset of the instruction trace extracted in this range that
is analyzed in detail. We can then run the log through PoKeR’s combat-tracking

222 D. Srinivasan and X. Jiang

Table 1. Performance overhead in a VM record session

Benchmark Configuration Relative performance with QEMU

nbench Default 0.97x - 1.39x

gzip Compress 250 MB file 1.05x

ApacheBench ab -c3 -t60 1.62x

algorithm to identify the set of kernel objects being manipulated by the SucKIT
rootkit. One interesting observation we would like to note in Fig. 4 is that the
“install” user process is issuing a sys oldolduname() system call, when in reality,
the rootkit overwrote the address of this system call handler in the kernel mul-
tiple times to use it for allocating kernel memory, injecting rootkit code in the
kernel space, and hijacking kernel control flow. By combining different analysis
modules in our system, we are able to understand the purposes of tampering
with these data structures in the kernel memory.

4.3 Performance

After demonstrating the accuracy and effectiveness of our prototype, we then
measure its performance overhead. In particular, as we are less concerned with
the overhead during a replay session, we mainly measure the recording overhead.
All the experiments were done with the Timescope honeypot running on a Dell
Precision T1500 system with an Intel Core i7 2.8 GHz CPU and 4 GB physical
memory. In our measurement, we ran three different benchmarks - Linux nbench
[3], ApacheBench [2] and gzip. The configurations of these benchmarks as well
as the results are summarized in Table 1. Each test was run 10 times and the
averages are used to assess the overhead, compared to the default QEMU 0.12.3.

From the table, our evaluation indicates that recording introduces low over-
head for the computation-intensive nbench - this is as expected, since most of the
execution does not involve external interaction (or involvement of the recording
layer). The slowest one in this suite is the “Assignment” test with a relative per-
formance of 1.39x. In a couple of other tests, a minor speedup is noticed, which
is due to the variation of different runs. Our evaluation indicates that recording
introduces low overhead for the computation-intensive nbench (0.97x - 1.39x of
the default QEMU performance). This is as expected, since most of the execution
does not involve external interaction (or involvement of the recording layer). For
the gzip test, we generated a 250MB file with random data and compressed it,
and find that gzip performs at 1.05x of the default QEMU performance. In the
case of ApacheBench, it performs at 1.62x of the default QEMU - this is a largely
I/O-driven workload, hence the recording software is capturing large amounts
of system activity. Though the performance overhead may seem high for normal
production systems, we consider it is acceptable for honeypot purposes. From
another perspective, the performance overhead is introduced due to certain sim-
plifications we made in the implementation - e.g. disabling asynchronous I/O
which could be addressed using other techniques [7].

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 223

5 Discussion

In this section, we describe current limitations in our prototype and possible
solutions to mitigate them. Our honeypot framework shares certain limitations
with other VM-based intrusion detection systems - the presence of the VMM
can be detected by an attacker. However, recent tests have shown that only a
small percentage [12] of malware currently perform such checks. Also, with the
popularity of virtualized platforms, they may also appear attractive to existing
malware. Moreover, recent work [7,23] shows promising ways to detect the change
in a malware’s execution in a virtual environment from a native one and adapt
accordingly the underlying VMM layer to handle such difference. In this case,
R&R could be leveraged to resume the malware’s execution from the point of
detection, with the VMM code now adapted to avoid detection and resume the
malware analysis. Similar to other VMM-based security research efforts [16, 17,
18, 20, 21], we assume a trustworthy VMM and this is supported with recent
progress in improving the hypervisor security [25, 27, 38].

Our analysis modules can also be further extended. For example, it will be
helpful to develop extensions with the ability of launching a “go live” session
during a replay. That is, instead of executing based on input from the log, the
VM resumes real execution from a checkpoint state during a replay. Also, another
example will be the development of “what-if” analysis modules that could alter
certain input to the VM or its state and determine its effects. This will prove
useful for developing and testing defense mechanisms. However, this will require
a “live” session of the honeypot and would possibly need network packets to be
replayed, depending on the kind of attack.

6 Related Work

In traditional host-based high-interaction honeypots, monitoring software (e.g.,
Sebek [4]) is introduced into the honeypot environment and the logs generated
from it are used for forensic analysis. As another example, the Forensix [19]
system targets answering various queries related to an intrusion by collecting
detailed system information and enabling the resultant log for fast retrieval of
queried data. Such systems are limited in re-creating past temporary state (such
as memory state) and applying new data collection mechanisms. From another
perspective, to address the issue of tamper-resistant forensic analysis while still
collecting semantic-rich information, honeypots can be installed as virtual ma-
chines and the monitoring software operates at the VMM or hypervisor layer
(e.g., by leveraging virtual machine introspection techniques [18, 20]).

Further, the use of virtualization significantly improves deployment and man-
agement of honeypots and many honeypot systems have leveraged virtualization
to monitor and analyze new attacker techniques [22, 36, 37]. In Timescope, by
using VM-based R&R and introducing forensic analysis modules in the VMM
layer, one can rewind the honeypot’s execution and examine past states of the
honeypot in a transparent and non-perturbing manner.

224 D. Srinivasan and X. Jiang

The use of R&R has been proposed previously for a variety of purposes. For
example, application cloning [9] aims to capture an application’s execution and
replay it to its clone on another machine. Aftersight [13] presents the general case
for decoupled intrusion detection analysis so that production workloads’ perfor-
mance are not impacted by heavyweight analysis techniques. Similarly, Cross-
cut [14], allows replay logs to be “sliced” along time and abstraction boundaries.
Both Aftersight and Crosscut implement the record feature based on a pro-
prietary VMM, which significantly limits the capability to customize existing
forensic analysis modules or prevents the development of new ones. ReVirt [16]
presents a similar VM-based R&R system, but requires a heavily para-virtualized
guest OS kernel for the R&R capability. Argos [33], originally developed for cap-
turing zero-day attacks with system-wide taint analysis, has been extended for
VM R&R. By leveraging and extending the insights from these R&R systems,
we have additionally developed a number of R&R-empowered interdependent
investigation modules for honeypot-specific forensic analysis (four of them have
been demonstrated in the paper).

Meanwhile, it is worth mentioning that our approach to implement R&R is
different from most previous ones, i.e., the host-based virtualization approach
taken by QEMU will introduce non-determinism in the VM systems. Accord-
ingly, we have to address such non-determinism to enable desirable R&R for
honeypot analysis purposes. Also, our analysis modules are tailored for use in
multiple-stage forensic analysis of honeypots. The development and deployment
of a series of interdependent forensic analysis modules are helpful to construct a
comprehensive picture of an intrusion. As a result, our system helps to address
key questions in honeypot forensic analysis: “At what point in the execution of
a honeypot should we retrieve its state for forensic analysis?” “Should a broader
or narrower time window of the honeypot’s execution be considered for further
analysis?” “What data structures in memory were tampered by the intrusion?”

7 Conclusion

Honeypots are a valuable tool for intrusion and malware infection analysis. In
this paper, we present Timescope, a honeypot record and replay system that
greatly enhances existing ways to perform forensic analysis of honeypots. Par-
ticularly, by allowing (potentially new) analysis methods to “travel back in time”,
Timescope offers great flexibility in the types of intrusion analysis that can be
done. We have developed a QEMU-based prototype and four representative anal-
ysis modules. Our evaluation with a number of synthetic honeypot attacks has
demonstrated its effectiveness by repeatedly rewinding the honeypot’s execution
and comprehensively revealing various aspects of honeypot intrusions.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their insightful comments that helped improve the presentation of this
paper. This work was supported in part by the US Air Force Office of Scientific
Research (AFOSR) under Contract FA9550-10-1-0099 and the US National Sci-
ence Foundation (NSF) under Grants 0852131, 0855297, 0855036, 0910767, and
0952640. Any opinions, findings, and conclusions or recommendations expressed

Time-Traveling Forensic Analysis of VM-Based High-Interaction Honeypots 225

in this material are those of the authors and do not necessarily reflect the views
of the AFOSR and the NSF.

References

1. The Amazing VM Record/Replay Feature in VMware Workstation 6,
http://blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html

2. Apache HTTP Server Benchmarking Tool,
http://httpd.apache.org/docs/2.0/programs/ab.html

3. Linux/Unix nbench, http://www.tux.org/~mayer/linux/bmark.html
4. Sebek Project, http://projects.honeynet.org/sebek/
5. VirtualBox, http://www.virtualbox.org
6. VMware Inc., http://www.vmware.com
7. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient

Detection of Split Personalities in Malware. In: Proceedings of the 17th Annual
Network and Distributed System Security Symposium (2010)

8. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proceedings of
the 2005 USENIX Annual Technical Conference (2005)

9. Bergheaud, P., Subhraveti, D., Vertes, M.: Fault Tolerance in Multiprocessor Sys-
tems Via Application Cloning. In: Proceedings of the 27th IEEE International
Conference on Distributed Computing Systems (2007)

10. Bressoud, T.C., Schneider, F.B.: Hypervisor-based Fault Tolerance. In: Proceedings
of the 15th ACM Symposium on Operating Systems Principles (1995)

11. CERT/CC: CERT Advisory CA-2002-27 Apache/mod ssl Worm,
http://www.cert.org/advisories/CA-2002-27.html

12. Chen, X., Andersen, J., Mao, Z.M., Bailey, M.D., Nazario, J.: Towards an Under-
standing of Anti-Virtualization and Anti-Debugging Behavior in Modern Malware.
In: Proceedings of the 38th Annual IEEE International Conference on Dependable
Systems and Networks (2008)

13. Chow, J., Garfinkel, T., Chen, P.M.: Decoupling Dynamic Program Analysis from
Execution in Virtual Environments. In: Proceedings of the USENIX 2008 Annual
Technical Conference (2008)

14. Chow, J., Lucchetti, D., Garfinkel, T., Lefebvre, G., Gardner, R., Mason, J., Small,
S., Chen, P.M.: Multi-stage Replay with Crosscut. In: Proceedings of the 6th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(2010)

15. Dinaburg, A., Royal, P., Sharif, M.I., Lee, W.: Ether: Malware Analysis via Hard-
ware Virtualization Extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security (2008)

16. Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: Enabling Intrusion
Analysis through Virtual-machine Logging and Replay. ACM SIGOPS Operating
Systems Review 36 (2002)

17. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual
Machine-Based Platform for Trusted Computing. In: Proceedings of the 19th Sym-
posium on Operating System Principles (2003)

18. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Proceedings of the 10th Annual Network and
Distributed Systems Security Symposium (2003)

19. Goel, A., Feng, W., Maier, D., Feng, W., Walpole, J.: Forensix: A Robust, High-
performance Reconstruction System. In: Proceedings of the 25th IEEE Interna-
tional Conference on Distributed Computing Systems Workshops (2005)

http://blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.tux.org/~mayer/linux/bmark.html
http://projects.honeynet.org/sebek/
http://www.virtualbox.org
http://www.vmware.com
http://www.cert.org/advisories/CA-2002-27.html

226 D. Srinivasan and X. Jiang

20. Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction
Honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

21. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection Through VMM-Based
“Out-of-the-Box” Semantic View Reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (2007)

22. Jiang, X., Xu, D.: Collapsar: A VM-based Architecture for Network Attack Deten-
tion Center. In: Proceedings of the 13th USENIX Security Symposium (2004)

23. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating Emulation-
Resistant Malware. In: Proceedings of the 2nd Workshop on Virtual Machine Se-
curity (2009)

24. King, S.T., Chen, P.M.: Backtracking Intrusions. ACM SIGOPS Operating Sys-
tems Review 37 (2003)

25. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal Verification of an OS Kernel. In: Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (2009)

26. LWN: A New Adore Root Kit, http://lwn.net/Articles/75990
27. Murray, D.G., Milos, G., Hand, S.: Improving Xen Security through Disaggrega-

tion. In: Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (2008)

28. Newsome, J., Song, D.: DynamicTaint Analysis: AutomaticDetection, Analysis, and
Signature Generation of Exploit Attacks on Commodity Software. In: Proceedings
of the 12th Annual Network and Distributed Systems Security Symposium (2005)

29. Northcutt, S., Novak, J.: Network Intrusion Detection: An Analyst’s Handbook,
2nd edn. New Riders Publishing (2000)

30. de Oliveira, D.A.S., Crandall, J.R., Wassermann, G., Wu, S.F., Su, Z., Chong,
F.T.: ExecRecorder: VM-based Full-system Replay for Attack Analysis and Sys-
tem Recovery. In: Proceedings of the 1st Workshop on Architectural and System
Support for Improving Software Dependability (2006)

31. Perriot, F., Szor, P.: An Analysis of the Slapper Worm Exploit,
http://www.symantec.com/avcenter/reference/analysis.slapper.worm.pdf

32. Phrack: Linux On-the-fly Kernel Patching without LKM,
http://www.phrack.org/issues.html?id=7&issue=58

33. Portokalidis, G., Slowinska, A., Bos, H.: Argos: An Emulator for Fingerprinting
Zero-Day Attacks. In: Proceedings of the 1st ACM European Conference on Com-
puter Systems (2006)

34. Riley, R., Jiang, X., Xu, D.: Multi-aspect Profiling of Kernel Rootkit Behavior. In:
Proceedings of the 4th ACM European Conference on Computer Systems (2009)

35. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Professional (2002)
36. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker,

G.M., Savage, S.: Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm. ACM SIGOPS Operating Systems Review 39 (2005)

37. Wang, Y.M., Beck, D., Jiang, X., Roussev, R.: Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites that Exploit Browser Vulnerabilities. In: Pro-
ceedings of the 13th Annual Symposium on Network and Distributed System Se-
curity (2006)

38. Wang, Z., Jiang, X.: HyperSafe: A Lightweight Approach to Provide Lifetime Hy-
pervisor Control-Flow Integrity. In: Proceedings of the 2010 IEEE Symposium on
Security and Privacy (2010)

http://lwn.net/Articles/75990
http://www.symantec.com/avcenter/reference/analysis.slapper.worm.pdf
http://www.phrack.org/issues.html?id=7&issue=58

	Time-Traveling Forensic Analysis of VM-BasedHigh-Interaction Honeypots
	Introduction
	System Design
	Timescope Framework
	Analysis Modules

	Implementation
	QEMU Record and Replay
	Analysis Modules

	Evaluation
	R&R Accuracy
	Time-traveling Analysis
	Performance

	Discussion
	Related Work
	Conclusion
	References

