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Abstract. Managing numerous security vulnerabilities has long been a difficult
and daunting task especially due to the complexity, heterogeneity, and various
operational constraints of the network. In this paper, we focus on the task of
mitigating and managing network-device-specific vulnerabilities automatically
and intelligently. We achieve the goal by a scalable, interactive, topology-aware
framework that can provide mitigation actions at selectively chosen devices. The
intuition behind our work is that more and more network devices are becoming
security-capable so that they can be collectively used to achieve security goals
while satisfying certain network policies.

The intelligence utilizes integer programming to optimize a quantifiable ob-
jective conforming to the policy of a given network. An example would be to find
the minimum number of network devices to install filters to effectively protect
the entire network against potential attacks from external untrusted sources. The
constraints of the integer programming are mainly based on the network topology
and settings of vulnerable devices and untrusted sources. Our novel implementa-
tion uses an iterative algorithm to scale to networks of tens of thousands of nodes,
and we demonstrate the effectiveness of our framework using both synthetic and
realistic network topologies. Besides scalability, our tool is also operationally
easy to use by enabling interactivity to input additional constraints during run-
time.

Keywords: vulnerability management, optimization, integer programming.

1 Introduction

With the increasing complexity of the Internet, enterprise networks have grown in both
size and complexity, so have associated network devices which not only perform packet
routing and forwarding but are also equipped with network management and security
functionalities such as packet filtering. These devices can act as firewalls to partition the
network into distinct groups and prevent intrusions by filtering unwanted traffic based
on attributes such as source/destination IP address, source/destination port, TTL values,
etc. These can provide intermediate or temporary solutions to defend the network, for
instance, by limiting access to potentially vulnerable services only to trusted/valid IPs
through the use of ACLs (Access Control List).

Given the broad range of security vulnerabilities in existing networks ranging from
buffer overflow, code injection [1] to denial of service [2], it may not be sufficient to
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rely on simple firewalls. However, many of such vulnerabilities can be mitigated at the
network level due to significant advance in network security technology manifested in
devices such as Network Intrusion Detection System (NIDS) and Network Intrusion
Prevention System (NIPS).

If a network device, e.g., Cisco Intrusion Prevention System (IPS) device [3], has
advanced Deep Packet Inspection (DPI) capability, packet filters can be set up based
on payload. They are capable of detecting and preventing a variety of intrusions. For
example, the DNS Implementations Insufficient Entropy Vulnerability can be mitigated
by installing a signature on the DPI-capable device to detect a DNS flood possibly
leading to DNS cache poisoning, reflection, or amplification attacks [4].

Note that network level defense suffers from the shortcoming by assuming where
attacks can enter the network. Thus our proposed framework shares the same assump-
tion, revealing the difficulties of fully defending against internal attacks. Nevertheless,
network level defense complements well other types of defense such as host-based
intrusion detection system. The alternative of applying a patch to fully fix the vulnera-
bility may not be immediately adopted because of several reasons. First, a patch for the
vulnerable software may not be available. Second, the patch may not be fully tested and
may introduce unwanted side-effects. Finally, applying the patch may require rebooting
the device, introducing network disruption. Since the basic firewall capability is built-in
for virtually every modern router and switch (e.g., Access Control List), various choices
with different tradeoffs exist in terms of how to temporarily protect the network.

For those vulnerabilities that cannot be prevented at the network level, applying the
patch directly to the vulnerable software is preferred since patching only incurs one-
time overhead and provides the best protection. However, considering the number of
devices in the network that are potentially very diverse (as shown in the next section),
knowing what to patch first without causing much disruption can be very challenging,
let alone consider the case when the options of patching vs. network-level defense are
both available. Finding the best strategy considering various tradeoffs can be a daunting
task. For that purpose, we have developed a framework using integer programming
that considers various tradeoffs and makes optimal suggestions on which routers to
reconfigure/patch to prevent intrusions based on the topology of the network and
policies/preference of network/sys admin. In what follows, we will use the term filter as
a general term for network-level defense.

Our work is quite applicable as large networks today often deploy DPI capable
security systems not only at a few external gateways but also internally to defend against
internal threats. Furthermore, it is the trend that more network devices will have such
security capabilities built-in. There is however no prior work to thoroughly analyze how
to plan or utilize these resources wisely. More specifically, decision has to be made to
determine which devices and what operations are to be performed to address known
vulnerabilities while minimizing overhead without compromising security protection.
The overhead includes management complexity, as well as performance penalty intro-
duced by the size of DPI signatures or firewall rules [5].

We develop a prototype framework to help network/sys admin manage security vul-
nerabilities at the network level by integrating two main primitive operations – filter and
patch. Our novel iterative implementation allows the system to easily scale to networks
of thousands of network devices. Furthermore, we build operational interactivity into
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the design to facilitate constraint modification during run time. As with any model-
based approach, the guarantees offered depend on the model accuracy. Despite the
simplicity of the abstraction used in our model, it is sufficient for our purpose as
shown later. Furthermore, our approach has the benefit of being independent of low-
level implementations, e.g., how to configure the filtering rules. Our framework also
complements existing work in formal analysis [6] to ensure the correctness of rule
configurations.

The paper is organized as follows. §2 motivates our work by revealing the hetero-
geneity and complexity of real networks. §3 introduces our framework. §4 then focuses
on how we translate the security management problem into an optimization problem
illustrated using a simple example. We evaluate our tool against several real networks
to demonstrate its effectiveness in §6. §7 describes several related work. Finally we
conclude with discussions in §8 and §9.

2 Network Device Diversity in Real Networks

To motivate the need for a framework to deal with complex network goals and con-
straints, we first want to understand how diverse real networks are. We leverage the
inventory data from Cisco’s remote router management system (formally known as
Cisco Inventory and Reporting or IR [7]). In a nutshell, Cisco IR allows Cisco to
remotely manage the network of a company that chooses to use the service (many big
companies from different industrials use the service).

Interestingly, from these real networks, we found there are many different versions
of operating systems running on their network devices (e.g., shown in Figure 1). The Y-
axis is # of different IOS version

# of devices/chassis which indicates the degree of variety of the network
devices. The X-axis is different organizations whose networks are managed by Cisco’s
Inventory Reporting application. The number of devices for each of the organizations
range from hundreds to a thousand. Surprisingly, the most diverse network has more
than 180 different OS versions. This many different OS versions cause complex many-
to-many relationships between OS versions and corresponding vulnerabilities as shown
in Table 1, securing the entire network taking into account all OS versions and device
vulnerabilities in an optimized fashion is quite challenging. Furthermore, some of
the vulnerability may be more critical than others, some incur more overhead (e.g.,
downtime). The surprisingly diverse and complex network devices motivate the need
to mitigate and manage their vulnerabilities automatically and intelligently. To ensure
practical relevance, we design our framework to handle multiple vulnerabilities, allow-
ing users to specify these in a quantifiable metric.

3 The Framework

In this section, we first describe the high-level framework and the building blocks to
support our objective of providing intelligent attack mitigation decision support. As
example mitigation support of interest to network/sys admin could be “finding the
minimum number of network devices to install filters to prevent attack X”. This work
is based on the observation that many of the security management problems can be
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Fig. 1. The number of unique OS version per chassis in different real networks

Table 1. An example of multiple vulnerabilities on various versions of Cisco IOS

�����������IOS version
Vulnerability ID

1 2 3 4

11.0(11)BT x x
12.0(10)ST x x x x
12.0(11)S4 x x

modeled as optimization problems. We present our simple and elegant method based
on integer programming to help solve this class of problems.

Our framework is designed to be built on top of existing network information
including network topology, configuration files of the network devices, the security alert
data and the network/sys admin’s objective and requirements. We describe the inputs
below, also illustrated in Figure 2.

Inventory and vulnerability information contains data such as device type and
running services (including PCs and routers/switches). IT departments in companies
often track a subset, if not all, of such information already. For instance, Cisco offers
remote router management that tracks the inventory and vulnerability information of all
the routers. The information can be automatically collected using both open source
and commercial tools [8, 9]. As an open standard, Open Vulnerability Assessment
Language (OVAL) [9] is an XML-based language for specifying machine configuration
tests. OVAL-compatible scanners can be used to gather vulnerability information of the
devices given OVAL definitions. For network devices, the network/sys admin typically
runs the scanner via SNMP to collect the device info as well as the OS version and its
patch level. We ran the similar test on our local network which has several hundreds of
network devices and it takes only less than a minute to finish.

Security alerts contain vulnerability information for software on different platforms
(both PCs and routers/switches) and provides the basic prevention or detection rec-
ommendations. For example, the alerts may disclose whether a patch is available for
a particular piece of software. Such information or service is published by various
vendors such as Cisco Intellishield [10]. For instance, we can easily tell, according to the
security alert service, that the Multiple SNMPv3 Implementations Hash-Based Message
Authentication Code Manipulation Vulnerability can be mitigated by either applying
patches, configuring ACLs, or installing IPS signatures on DPI-capable devices.
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Fig. 2. Our framework for making attack mitigation suggestions

Network Topology. Typically, this information is maintained by IT department already.
If not, there are techniques to reconstruct layer-three topology based on their IP
addresses [11] from router configuration files. The topology information can also be
obtained by probing the network [8, 11], typically, by real network management tools
such as NetMRI [12].

Objective is used to describe the network-dependent properties that can either be
specified by the network/sys admin or inferred automatically discussed later.

Here we assume that different kinds of attack mitigation building blocks can be used
on each network device depending on its unique capability:

– Configure the ACL (Access Control List) to guard against certain (untrusted) IP
range and/or ports.

– Configure the firewall to stop unwanted traffic.
– Install an appropriate packet filter based on signatures for identifying malicious

payload if the device is IDS or IPS-enabled.
– Apply the patch on the devices or the end-hosts.
– Other network device built-in capabilities such as IP Source Guard enabled on

many Cisco devices.

4 Problem Formulation - Optimization

From the input of the framework, we can extract the network settings, the vulnerable
nodes (PCs or routers/switches), and more importantly, the goals and constraints. For
example, network/sys admin may want to balance the number of filtering rules on a
particular router (due to processing overhead) and the overall number of interfaces to
be reconfigured (due to management overhead). The constraint can be, for example,
to protect all of vulnerable nodes or to protect only nodes with the most severe vul-
nerability. Based on the problem requirement, it is natural to cast it as an optimization
problem which we can model using integer programming. The reason for this choice is
that integer programming is not only very simple and intuitive to use, but also provides
a small and well-defined interface, thus allowing various Integer Programming Solvers
to be optimized separately. We will illustrate how these variables are defined and how
to use different objective functions and constraints to solve several types of realistic
security management problems.
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Note that our framework aims to provide intelligent suggestions for various security
management problems. More specifically, the framework supports filtering and patch-
ing decisions based on various constraints/tradeoffs for multiple vulnerabilities.

4.1 Overview

Variables. For each interface in the network, we define a binary integer variable xi,
which can either be 0 or 1 indicating whether this interface is configured with a filter (for
normal switch/router) or a signature (for NIDS/NIPS). Alternatively, a variable can be
defined for each node (PC or switch/router) rather than an interface indicating whether
a node has filters installed (regardless of the interfaces). Similarly, for each node, we
define a binary integer variable yi which indicates whether this particular node is to be
patched.

Note here we can omit a variable or always assign the variable to zero if a network
device or interface does not support the basic mitigation support (e.g., an older version
of router without ACL support). To address multiple vulnerabilities, we define different
sets of variables x

(k)
i , x

(k)
i+1 etc. for the kth vulnerability. In comparison, we also

define a special patch variable yi. Since patching one node usually eliminate all the
vulnerabilities under consideration, either all k vulnerabilities are protected by filters or
the node is patched suffices the security requirement. In the following discussions, any
variables defined will be a binary integer variable unless otherwise specified.

Objective function can express many different goals but with the limitation that it
has to be linear function of the variables of the form

∑
i aixi. Despite this apparent

limitation, it is sufficient to solve many of the security management problems. For
example, the objective function could be

∑
i xi which is the total number of interfaces

that are configured to install filters or NIDS/NIPS signatures. The goal would be to
minimize this value.

Constraint is of the form
∑

i aixi <= b where ai and b are constants. A sample
constraint would be defined as x1 + x2 + x3 + y1 >= 1 where x1 is an untrusted
interface and x3 is an interface that belongs to a vulnerable device y1. This constraint
means that there has to be at least one filter along this path to protect the vulnerable
device or the device can be patched by assigning variable y1 to 1. If there is no patch
available yet for the vulnerability or due to other business reasons (e.g., downtime), we
can simply remove the variable y1.

4.2 An Example

A simple example that illustrates how integer programming can be set up is shown
in Figure 3. We do not consider patch in this example for simplicity. The topology
consists of a set of routers (from x1 to x7) and a set of servers that are vulnerable to
a newly discovered vulnerability in an enterprise network. Assuming that the operator
prefers not to simply patch these servers due to reasons such as possible downtime to
their customers, so we remove all the patch variables yi. The alternative is to install a
corresponding signature for this vulnerability to filter malicious incoming packets on the
routers (or any other mitigation building blocks such as ACLs), assuming the signature
is available. The question is where to install such filters. A simple solution would be to
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Fig. 3. Example 1 - topology

install it on every gateway (x1, x2 and x3), but it is not an optimal solution in terms of
the number of devices involved (assuming a desirable goal is minimal complexity).

A better strategy is to install the filters on x4 and x5 only. This optimal solution can
be found by solving the corresponding integer programming problem that is translated
from the current network setting (network topology, untrusted source interfaces and
vulnerable nodes). Below are the definitions of objective functions and constraints for
this example.

Objective Function. Since we are trying to minimize the number of nodes that are
installed with filters, the objective function is defined as

∑7
i=1 xi.

Constraints:
x1 + x4 + x6 >= 1
x1 + x4 + x7 >= 1
x2 + x4 + x6 >= 1
x2 + x4 + x7 >= 1
x2 + x5 >= 1
x3 + x5 >= 1
xi >= 0 for each 1 <= i <= 7

We can easily get the answer from this integer programming setup: x4 = x5 = 1,
xi = 0 for i �= 4 and i �= 5. Sometimes, however, the number of filters on x4 and x5

may be too large so that the network/sys admin may want to avoid using them. This
can either be solved by setting a different objective function (§4.3) or allow the user to
interact with the tool and provide feedback to the tool (§6.3).

4.3 Objectives

Network/sys admins may specify different kinds of objective functions that they want to
optimize based on a given set of constraints. Here we describe some common objective
functions of interest:

Minimal involvement - minimum number of network device configuration changes.
The objective function is defined as

∑
i xi where xi is the variable for each node

indicating whether a particular node has been configured for filters as discussed before.
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Note here once the node is configured, then it can be applied to any number of interfaces
on that device without additional cost in our formulation. The reason for this policy is
that network operators may want to involve smallest number of devices to defend their
network for simplicity or management overhead considerations.

Minimal management complexity - minimum amount of management complexity
imposed. The objective function is defined as

∑
i(((ni + 1)2 − ni

2)× xi) where (ni+
1)2 − ni

2 is the amount of management complexity increased by adding a new ACL
entry on an interface, ni as the number of ACL entries for the corresponding interface
and n2

i is the management complexity of a given interface where n is the number of
entries of ACLs configured. The incentive for this policy is that due to complex ACL
matching rules, a large number of ACL entries are known to be difficult to manage.

Minimal number of devices involved - minimum number of devices that are
either to be configured for filters or patches. The objective function is defined as
∑

i,j x
(j)
i + α

∑
m ym, where x

(j)
i is the variable for node i and vulnerability j

indicating whether this node has been configured for filters to prevent vulnerability
j, ym is the variable for node m indicating whether this node is to be patched (multiple
real patches for different vulnerabilities are combined into this single variable). α is the
constant coefficient which balances the choice between installing filtering and patching.
Normally it is larger than the cost of installing filters. However, as previously stated,
if patching one node can eliminate the need for filters on many nodes, then it may
be a preferred choice. This is the case given multiple vulnerabilities in one or more
nodes, patching them obviates any other filters. In fact, modern routers tend to have
multiple vulnerabilities due to their complexities [13]. §2 describes how to set up the
constraints for multiple vulnerabilities and patch operation. We can also define the
objective function in terms of interfaces instead of nodes.

Minimal network performance overhead - minimize possible throughput and
latency performance overhead imposed by installing filters. The idea is that although
most network devices support ACL or firewall rules, they come with a cost. Even
for modern devices where hardware support has been widely applied to optimize the
ACL or firewall rules, for example, by using Content-addressable memory (CAM),
the throughput can drop significantly [14] when the number of ruleset exceeds certain
threshold (depending on vendors and models). The same also applies to DPI devices.
As a result, the objective function can be defined as

∑
i ki where ki is defined based on

the number of existing filters (denoted by ni) on interface i. ki = 0 when ni <= s and
ki = xi

j + ni − s when ni > s.
Intuitively, the objective function captures the performance penalty imposed on each

interface due to filters and the overall impact. Note that ki = 0 when ni <= s is
approximated because s is relatively larger than the number of filters to be placed
on a single interface. Typical s for modern routers is in the order of hundreds. An
alternative objective function would be to minimize max (ki) because usually the
overall network performance is determined by the bottleneck component. This policy is
to help eliminate the scenario where filters are installed only on few core routers which
may deeply impact the network performance.

Note that these objective functions can be combined to achieve a balance between
different goals. Here in many cases the cost of placing filter is to be set identically
for simplicity. However, we do offer some simple heuristics on how the cost can be



Decision Support for Mitigating Attacks in Large Enterprise Networks 9

selected. For example, a network device with high capability and low overhead for
installing filters should generally be considered low cost. Another example is that when
the number of existing filters on the device is already large, it should be considered
high cost. Further, we allow the users to tune the result in an interactive fashion which
provides much better usability as shown in § 6.3.

4.4 Constraints

Below are some examples of useful constraints.

Installing Filters to Protect Vulnerable Nodes. For each vulnerable node j and
untrusted node i, enumerate all possible paths from i to j. For each path, consider
the constraint xi + .. + xj >= 1 where each variable can be the variable for the node
or the interface, depending on the problem setup. If this constraint is satisfied, then a
vulnerable node is guaranteed to be protected on this particular path (since at least one
interface/router along the way will be configured to filter malicious packets). Similarly,
we can apply this for every vulnerable node and untrusted node pair to ensure global
safety. There are variants where one can specify the constraint to be xi + ..+ xj >= 2
to increase defense redundancy.

Filters or Patch. Given a particular vulnerability for which a patch is available, a
vulnerable node j and an untrusted node i, enumerate all possible paths from i to j.
For each path, consider the constraint xi + ..+xj + yj >= 1 where xi to xj can be the
variables for the node or the interface. yj is the additional variable (defined in objective
functions) indicating whether this node will be patched. This constraint will be satisfied
either when there is a filter along the path or it is patched. Note that in practice, we might
need several different patches to be installed for diverse vulnerabilities, but generally
we consider them logically as one aggregate patch in our abstraction. Exceptions are
made when some vulnerabilities have corresponding patches but some do not. We can
also support this case by partitioning the vulnerabilities into patchable ones and un-
patchable ones, as discussed in §4.3 and §4.4.

Latency Constraint. For simplicity, we can model the latency constraint using filtering
rules. Intuitively, with more rules, the router needs to spend more time processing them.
For a beginning node i and an ending node j on a path, consider the constraint x(1)

i +

.. + x
(1)
j + x

(2)
i + ... + x

(2)
j + ... + x

(n)
i + ... + x

(n)
j <= c, where each x

(k)
l is the

variable defined for each interface along the path, assuming that x(k)
l = 1 is equivalent

of adding one filtering rule on an interface. c is a constant describing the maximum
number of increased filtering rules allowed. x(k)

i + ...+ x
(k)
j is the number of filtering

rules added for kth vulnerability along the path from node i to node j. Obviously,
∑

k x
(k)
i + ...+ x

(k)
j is the overall filtering rules added for the path.

5 Implementation

The Integer Programming Solver we use is CPLEX-11.0 [15]. We first implement our
tool in a brute-force, naive manner, by calculating all possible constraints through the
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enumeration of all paths between untrusted node and vulnerable node. The problem is
that when the graph is dense enough, the number of paths between two nodes could
be exponential with respect to the number of nodes. We may argue that most real
topologies are usually not dense graphs, but many large networks usually have redun-
dant links/backup nodes to provide availability and failure resilience. To address this
problem, we have proposed the novel implementation that uses an iterative approach to
incrementally add constraints to reduce the search space for all possible paths between
two nodes. Further, the iterative implementation produces the same optimal result as
the naive implementation.

Formally, our problem is min cTx, under a set of constraints I . Note that the size of I
can be very large. We propose to iteratively add a subset of I and generate a temporary
result for the subset of constraints. The hope is that the outcome computed based on
the subset of I will satisfy the ultimate constraint that all of the vulnerable nodes are
protected before all of the constraints in I are added. It is illustrated in Figure 4.

This approach is based on the following observations:

1. We may not need all the constraints in I to compute the optimal solution because
there are many redundant constraints. It is unnecessary to go through all of them. For
example, x1 + x2 + x3 >= 1 is redundant if there is a constraint x1 + x2 >= 1.
These cases should be handled automatically by standard linear programming or integer
programming solver. However, there are many other constraints that can share common
variables while neither one of them is redundant. See Figure 5 as an example, there are
two paths from x1 to x6 whose corresponding constraints look like x1+x2+x3+x4+
x6 >= 1 and x1 + x2 + x3 + x5 + x6 >= 1. They share four common variables. It
is highly likely, although not always the case, that one satisfied constraint will lead to
others being satisfied as well. In real networks, it is not uncommon that several paths
share common devices or links. By iteratively adding constraints (in a certain order),
we are able to take advantage of such properties.

2. It is relatively easy to verify whether a given set of filters and patch operations will
protect all vulnerable devices. This allows us to quickly iterate several times. To check
if all vulnerable devices are protected, we perform a breadth-first search in the graph
from the untrusted nodes to the vulnerable nodes. The search stops when it encounters
a filter or the reached vulnerable node on the edge will be patched.

3. The ordering of added constraints can be determined relatively easily – first add the
ones that are less likely to be redundant. Specifically, we pick those shortest attack paths
to be the constraints. In general, fewer variables result in less redundancy. If a constraint
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Algorithm 1. The iterative algorithm

Initialization: I ′ = {},
filter set F0 = {},
patch set P0 = {},
objective function f .

repeat {iteration i from 0 to ...}
1. Given Fi and Pi, compute the set of shortest attack paths and its corresponding
Ii based on the topology.
2. I ′ = I ′ ∪ Ii.
3. Run the IP solver for objective function f under constraints I ′, get the solution
Fi+1 and Pi+1.

until Fi+1 and Pi+1 protects all vulnerable nodes

with fewer variables is satisfied, the constraints with more variables that share common
variables are also likely satisfied.

Formally, the algorithm works as shown in Algorithm 1. It is easy to see that when
we select a set of constraints, it limits the search space of the IP solver. The complete
set of constraints I will produce the smallest search space. Given a subset of I , we
essentially enlarge the search space for the IP solver.

We illustrate the iterative algorithm in Figure 6. The oval here represents the search
space of corresponding constraint set. Initially, the search space of the constraint set
I ′′ is generated for the first iteration and then I ′ is generated in the second iteration.
Suppose the initial search space by I ′′ is too large and causes an incorrect solution
(i.e., some nodes will not be protected), while the search space by I ′ is smaller and
the solution can be found within the same range, then there is no need to go to the
next iteration and use constraints I to re-compute. The reasoning is that if we found
a minimum value in a larger search space (suppose the objective is to minimize), it
is guaranteed that we can only find the same minimum or bigger value in a smaller
search space too. Since we also check if the result in larger search space satisfies all the
constraints, a satisfying result can guarantee that the same minimum value can be found
in the final smaller search space.

Note that we are able to approach a good subset quickly and wisely by adding the
constraints that are represented by shortest attack path in each iteration. It is essentially
an optimistic method by assuming a smaller number of constraints are needed to find
the optimal solution which in reality is often the case. By reducing the exponentially
large number of constraints, the execution time is significantly improved shown in §6
where most cases take 2 to 5 iterations only.

5.1 Correctness Verification

Note that by the above reasoning, the iterative algorithm is equivalent to the naive
approach. To further verify the correctness of our implementation, we ran more than
100 tests up to hundreds of nodes to check that the results generated by naive imple-
mentation indeed matches the results generated by the iterative algorithm.
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Fig. 6. Illustrating why results computed under a subset of the complete constraint set I are the
same as the one under I

6 Evaluation

We describe the evaluation of our framework using both realistic and synthetic network
data.

6.1 Real Network Based Evaluation

We have evaluated our tool for a small real network, as shown in Figure 7. The problem
setting is as follows (based on a real topology and vulnerabilities): In this network,
each node is a router. Node 15 - 18 and 19 - 22 are the untrusted nodes (For simplicity,
we do not consider internal nodes as potentially untrusted), and nodes 1 and 2 are the
vulnerable nodes. These two vulnerable nodes are installed with different OS versions
on the router with a different set of vulnerabilities. Node 1 has vulnerability 1 while
Node 2 has vulnerability 1 and 2. All of the vulnerabilities can either be patched or
temporarily protected by installing filters. The cost of patch operation is set to be 3
here. The variables are defined in terms of the interfaces visible in the figure.

Our first attempt to set up the problem is to only consider installing filters. Thus the
objective function can be setup as:

∑

i

x
(1)
i +

∑

i

x
(2)
i

where two vulnerabilities are considered together in the objective function.
Alternatively, we can examine each vulnerability independently. These two ap-

proaches yield the same solution since the variables in different set of constraints for
each vulnerability happen to be disjoint. We first consider vulnerability 1.

The goal is to minimize the objective function defined as
∑

i x
(1)
i . The constraints

are to protect every possible attack path and the solution would be 3 according to the
integer programming solver which means only three interfaces need to be configured
for filters. Similarly we can obtain the solution for vulnerability 2, which is 2. So it takes
3 + 2 = 5 interfaces to be configured in order to protect from all of the vulnerabilities.

Our next step is to set up the problem by allowing patch operation, and the objective
function is slightly tuned to include the patch variables for the two nodes:

∑
i x

(1)
i +

∑
i x

(2)
i + 2× (y1 + y2)

The 2× (y1 + y2) is added to include the cost of patching vulnerable nodes. y1 and
y2 indicate whether Node 1 and 2 will be patched respectively.
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Fig. 7. A small real network for evaluation

The constraints are similar as before, namely to protect every possible attack paths.
The difference is that the patch variable y1 and y2 are added respectively into each
previous constraint depending on the destination node. For example, y1 will be added
to the original constraint x33 +x34 +x23 +x24 +x2 +x1 >= 1 such that x33 +x34 +
x23 + x24 + x2 + x1 + y1 >= 1 forms a new constraint. Since x4 belongs to Node
1, this means that if the vulnerable node is patched, all the constraints associated with
protecting this node can be automatically satisfied.

We obtain the value 4 as the optimal solution where x
(1)
4 = x

(1)
3 = x

(2)
5 = y2 = 1

with every other variable equals to zero.

6.2 Simulation-Based Evaluation

To illustrate the performance of our tool, we simulate various random topologies
using the transit-stub model in GT-ITM [16] and randomly select malicious nodes and
vulnerable nodes for the problem setup.

In the simulation, we first measure the average running time of our tool against
various topologies using our iterative implementation compared with the naive imple-
mentation. Then, we measure the number of paths generated and compare with that of
the naive implementation. The parameters can be found in Table 2 and Table 3. The
sizes of the topologies are approximately 100, 500, 1000, 3000, 5000, 7000 and 10000
respectively.

It can be seen from Figure 8 that the running time (average for ten runs) for naive
implementation increases much more quickly with network size compared with the
iterative approach. We also verified that they indeed produce the same optimal value. It
is quite evident that our iterative approach scales very well. Similarly, Figure 9 shows
the overall number of paths for the naive implementation is much larger. This clearly
implies much information in the complete constraint set I is quite redundant.

We also illustrate how performance changes when the problem becomes more
complex (e.g., with increasing number of untrusted devices and vulnerabilities). We fix
a topology with 200 nodes and set up the problem so that the number of untrusted nodes
grows together with the number of vulnerable nodes and the types of vulnerabilities.
We execute our tool 10 times to measure the average running time and the number of
paths/constraints generated. In Figure 10, we can see that our tool can efficiently handle
networks of large size.
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Table 2. Parameter in the topology generation

Parameters Variable Values
# stubs domains per trans node Fs/t 4,4,5,7,8,10

# of transit domains Nt 4,5,6,8,8,8
# of nodes in each transit domain nt 5,8,10,10,10,11
Edge prob. between transit nodes Pt 0.6
# of nodes in each stub domain Ns 6,6,10,10,11,11
Edge prob. between stub nodes Ps 0.42

Table 3. Parameter in the problem setup

Parameters Variable Value
# of untrusted/malicious node Nu 10

# of vulnerable node Nv 10
# of vulnerability V 3

6.3 Enabling User Interactivity

From the large simulation result, we know that the execution time increases with the
problem size (i.e., network size, the number of untrusted/vulnerable nodes, and the
number of vulnerability). To understand the bottleneck of the iterative algorithm, we
compare the time spent on calculating constraints vs. that on the solver, and observe that
the former consumes more than 90% of the execution time. This leads us to develop the
heuristic of reusing already calculated constraints. One of the interesting applications
it enables is allowing network/sys admin to modify the constraint after he/she sees the
result. This effectively turns the tool into an interactive one, which is very useful in
operational settings. Although theoretically the result computed is the global optimal
in terms of the objective function and constraints, the network/sys admin may not have
given sufficient input to the tool initially. So allowing changes to the initial result in an
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interactive fashion is useful to further tune based on the network/sys admin’s domain
knowledge of the network. For example, the network/sys admin may want to manually
tune the result slightly (e.g., remove filters from some network devices and/or give
preference to other devices).

We implemented two types of primitives to allow interactive changes and evaluate
their performance. The first primitive is removing a filter assigned on an interface,
and the second one is giving preference to a network device for installing filters.
The implementation of the first one is straightforward – adding another constraint
∑

j x
(j)
i == 0 where x

(j)
i is the variable indicating whether there should be a filter

for vulnerability j on interface xi. The implementation of second primitive is also
simple, i.e., reducing the cost of installing a filter on the specified network device in
the objective function (e.g., halving the cost). Given such simplicity, the performance
overhead is minimal for supporting interactivity.

7 Related Work

There is a significant amount of research focusing on describing, analyzing and verify-
ing firewall rules [17, 18, 19, 6] to achieve specific global policy. Work on developing
a higher level language to describe the firewall rules can be useful, but orthogonal to
our work. Investigating issues after the rules are set is complementary to our goal of
designing the rules in advance.

Several related work tries to enforce the global policy by distributing policies at
different places in the network. An extreme is to distribute the policy to end-hosts
instead of to network nodes [20, 21]. This method is topology-ignorant and can be easy
to deploy since end-host is easier to change. However, if every policy is to be checked
at the end-host (for each packet), it could incur non-trivial overhead. There is additional
complexity and security measure introduced to ensure end-host identity, which can
potentially lead to another set of security holes; While our solution is leveraging existing
security measures and does not introduce new mechanisms. Further, their solution
focuses on the access control policy issues rather than protecting vulnerable nodes in
general. For example, routers may also be vulnerable and require protection.
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There are many reasoning systems specific to firewall or NIDS. For example, filtering
Postures [22] uses heuristics to automatically compute the set of filters for individual
routers to enforce a particular global policy. The solution they found, however, may
not be optimal. Further, they are only limited to the problem of network access control,
rather than our broader goal of leveraging both filter and patch operations to mitigate
network vulnerabilities. A follow-up work in [23] includes NIDS behavior into the
reasoning system and differ from our work by neither considering patch operation nor
trade-offs among various defense strategies.

Similar but more powerful, MulVal [24] uses formal methods to reason about the
security properties which can easily enable what-if analysis such as verifying “if router
A is patched, machine B will be free of attack.” Our proposed framework tackles a
different problem by going a step further that not only verifies that machine B is free
of attack, but also computes the optimal way to stop such attack. In fact, our work
complements theirs in the sense that once they finish reasoning about the vulnerabilities
and identify the available options to fix the network, it can be abstracted into our model
which performs the subsequent optimization.

Other works including [25, 26, 11] have somewhat similar goals though without
considering patch operation either. For example, one of their goals is to find the virtual
border - minimum number of filters or nodes to install filters. We can easily capture this
goal by our Minimal disruption objective function. Further, we can also express other
goals by using different objective functions as those listed in §4.3. The use of integer
programming allows us to easily accommodate new objective functions and constraints.
As a result, our framework is more general and extensible compared to previous work,
as it can solve not only one particular problem but also many other problems by tuning
the objective functions and taking various constraints into account.

8 Discussion

Different Types of Network-Level Defense. Different types of network defense have
different capabilities (some may be able to defend against more sophisticated attacks).
It is possible to distinguish different network-level defense (e.g., ACL and NIDS)
in our framework by assigning different cost for different types of network defense.
Alternatively, we can simply always choose the most powerful defense mechanism
available.

Incremental Deployment. While it is easy to use our tool to provide a new protection
suggestion, our tool also fits in the scenario where the network has been partially
protected and we can provide incremental suggestions in terms of additional protection
based on existing setups.

Appropriate Abstraction? Note that the abstraction we have still support many of the
existing abstractions. For example, to solve similar problems a human expert may use
abstractions such as the network of department x or the unsecured wireless network or
the group of servers holding financial records. We can easily support these abstractions
by understanding the mapping between the group and a number of network devices or
IP addresses.
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Path Selection. Currently we are conservatively assuming that any path could be
traversed from untrusted devices to the vulnerable device while it may not be the case
in reality. One may desire to pick only paths that are in greater need of protection by
ranking each path by the probability that it is selected as the actual forwarding path.
This can be done by enumerating all possible failures in the network and simulate the
routing algorithm to find the path [25].

9 Conclusions and Future Work

We have presented a simple and novel way of modeling the vulnerability mitigation
and management problem using integer programming. We have given examples about
how to model the problem. More specifically, our framework provides intelligent
suggestions in terms of where to deploy filtering or where to patch which are the two
main mechanisms in network defense. Further, optimal solutions can be computed by
considering multiple vulnerabilities jointly which is of practical need. Our prototype
suggestion tool has been evaluated using several examples based on real network
topologies with demonstrated efficiency and effectiveness.

For future work, we plan to consider other objective functions and constraints. Our
framework is fairly easy to extend since integer programming has a plain and clean
interface. We plan to add more objective functions and constraints into our framework
based on real user needs. In addition, we also plan to evaluate our tool more extensively
with real usage scenarios.
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