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Abstract. In Personalized Networked Spaces (PNets), people and devices are
integrated with the environment and demand fluid interactions to enable connec-
tivity to information, services, and people. PNet applications exhibit significant
spatiotemporal demands in which connectivity to resources and information is
personalized and focused on the here and now. We introduce Gander, a person-
alized search engine for the here and now. We examine how search expectations
are affected when users and applications interact directly with the physical envi-
ronment. We define a formal conceptual model of search in PNets that provides
a clear definition of the framework and ultimately enables reasoning about rela-
tionships between search processing and the relevance of results. We assess our
model by evaluating sophisticated Gander queries in a simulated PNet.

1 Introduction

In Personalized Networked Spaces (PNets), people and machines interact to make the
physical environment more digitally accessible. PNets are made possible by wireless
and sensor technology, cyber-physical systems, and a deeper understanding of the im-
portance of social networks. Key PNet features are spatiotemporal locality and a rapidly
changing world; knowing what is happening to me and around me now is of the essence.
PNets are likely to become ubiquitous and critical to our economy and social life.

PNets will serve different purposes and entail different interactions than the Internet,
but the same fundamental need to access information exists. PNets, however, require
tight spatiotemporal integration of user behavior and the immediate environment; infor-
mation needs are immediate, personalized, and localized. Internet search engines treat
the Internet as a large (relatively static) library for rapid access to relevant informa-
tion; enormous technological, intellectual, and organizational resources support such a
massive undertaking. In contrast, a PNet search engine needs to facilitate immediate
interactions with one’s surroundings without infrastructure and advance indexing.

Fluidity and extreme dynamics are defining features of PNets that motivate the kinds
of search users need. In the Internet, one may ask for webcams in Geneva; in a home
one may want to find where the dog is hiding using motion detectors and webcams.
Using an Internet search engine one may find available trains from Rome to Florence;
while hurrying to board a crowded train at the station one may need to find an available
seat in a second class car. In the Internet, one might ask for an aerial photo of a forest
fire, which may be acceptable even if a few hours old; when running away from the fire
one needs to know the relation between fire and wind in the immediate neighborhood.
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An Internet-centric perspective might frame the question as how to extend an exist-
ing search engine to PNets. However, PNets’ dynamic and heterogeneous nature give
rise to novel challenges. We pose a fundamental research question: Given a PNet, what
mechanisms are required to provide search capabilities without reliance on Internet
connectivity? The latter requirement is justified by practical considerations. There are
indeed situations in which Internet access is costly, inconvenient, nonexistent, or sim-
ply unnecessary; a home is managed better by exploiting local wireless connectivity, an
exploration team may be far from any connectivity other than a satellite, in underdevel-
oped countries connectivity to the Internet may be sparse or financially unattainable.

This paper’s contribution is to introduce Gander—a personalized search engine for
PNets—and to investigate how existing query protocols can be used to support person-
alized search of the here and now. Gander queries about “me, here, and now” have a
strong spatiotemporal component; the location of the user is a key point of reference.
Our conceptual model is based on a worldview in which reachable nodes have locations,
are semantically related, and have attributes of interest to the user. An important depar-
ture from traditional query processing is the tight integration of personalized relevance
(the PNet analog to page ranking) into query processing. This personalized relevance is
dynamic and reflects the user’s personalized priorities here and now; it affects the per-
ception of the search process in a fundamental and novel way and it holds the promise
to reduce the cost of processing by leveraging relevance in the query protocol.

2 Background and Motivating Example

We first consider a concrete motivating scenario; we then look at the state of the art in
related areas to demonstrate the important gap that the Gander approach fills.

2.1 Application Example

While planning a trip to an amusement park, visitors may use the Internet to find direc-
tions, opening hours, etc. Most of this information is static or updated sporadically. In
the park, visitors’ information needs change. A visitor may want to know which rides
have the shortest wait right now, where the nearest exit is, or how others like a ride.
Providing this information via the Internet is problematic: the volume of information is
too great to be shipped and stored centrally, the lifespan of information is short, and the
ratio of data used to data available is minute. A visitor’s requests for information “here
and now” must be served by local, dynamically formed networks of devices in the park.

Consider a visitor, Maya, who wants to discover if she has time to go on a ride before
meeting her friends for lunch. She submits a query over a dynamically formed network
of infrastructure and personal mobile devices that are reachable (possibly across mul-
tiple hops) from her mobile device. Visitors’ devices may provide information about
density of visitors in regions of the park and information collected about attractions
or restaurants they have recently encountered. Constraints on the query can restrict the
logical search space; to meet her friends for lunch, Maya needs to find a ride close to a
food vendor, so her query uses a proximity constraint to restrict the search space.

Although the constraints limit the search scope, several rides may satisfy Maya’s
query. Since Maya needs to make it to lunch in time, her query emphasizes a combi-
nation of the ride wait time and the distance from the ride to the food vendor. Such
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relevance metrics may be evaluated over devices and their associated data that are not
part of the result set for the query and its constraints. For example, wait time infor-
mation may be acquired from the mobile devices of other visitors in line for the ride.
Many other queries are possible with different search parameters, constraints, and rank-
ing metrics. The concepts are clearly not limited to this particular domain. The notions
of using semantic relationships among data items to evaluate queries and providing a
description of relevance with each query to provide personalized search of the here and
now can be generalized and applied to many other applications and spaces.

2.2 Related Work

Mobile devices, location-based services, and the embedding of computation sets the
stage for search capabilities that are inherently intertwined with our personalized spaces.
This section examines the state of the art and identifies the gap Gander fills.

Mobile Information Retrieval. Recent work has assessed requirements for informa-
tion retrieval and identified relationships between users’ information needs and their
context, including location, time, and even activity [17,23]. Such studies have exposed
influences on people’s willingness to share information about themselves; for example,
people may be willing to share with other co-located users (even unknown ones) what
they would not be willing to share publicly (i.e., on the Internet).

Systems have extended spatiotemporal search techniques to mobile applications.
WebPark [23] provides geographically relevant information using geographic filters
to capture spatial relevance. Ahlers and Boll enrich spatial context with temporal as-
pects [1]. GeoRel [26] develops metaphors for assessing relevance of geospatial fea-
tures. These systems allow users to search relatively static information (e.g., landmarks)
and focus on how to use geographic context to determine which information is most rel-
evant. In a PNet, the data searched is ephemeral; such transient data cannot be easily
indexed and associated with a relevant spatial context outside of the here and now.

Moving object databases [9,10] and spatiotemporal databases [15] have driven spa-
tiotemporal data representation. Erwig et al. use abstract data types that map time onto
points, lines, and spatial regions, enabling spatiotemporal predicates, relationships be-
tween spatial entities changing over time [13,14]. This and similar approaches enable
effective spatiotemporal search; however, they require access to a centralized library
of continuously cataloged information. PNets, in contrast, demand the ability to access
instantaneously available local information with transient spatial relationships.

The Internet of Things. The Internet of Things [3] envisions a world in which ordi-
nary objects are imbued with computation, sensing, and networking capabilities. Such
a vision makes possible and necessary the ability to perform real-time local searches. A
fundamental building block of this vision are smart objects [7,18]; the wide availability
of such smart objects drastically increases the amount of dynamic and transient infor-
mation in our spaces. Successful applications in the Internet of Things must be able to
search this large volume of data here and now efficiently.

Dyser [24] is a search engine that supports real-time search for sensors with a user-
specified current state. Searches are optimized using a technique called sensor rank-
ing [12] by assuming that searchable entities are persistently accessible via the Internet.
In a PNet, however, reachability is volatile and must be assessed instantaneously.
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Relevance and Recommender Systems. Relevance in traditional web search is well-
understood [22], even along multiple dimensions [2]. Geographic digital libraries [1,5,19]
use geospatial metadata (e.g., coordinate representations of geographic objects) to sup-
port storage and retrieval of geographic information. A document’s relevance may be
computed in terms of its geospatial metadata’s topological relation to a query (e.g., size,
shape, location, distance) in addition to its content’s relation to a search query [11].

Gander demands a richer awareness of context in determining relevance, yet contex-
tually influenced information retrieval is challenging due to an inability to appropriately
index information when it is generated [20]. Collaborative filtering combines results
from multiple users to make recommendations, using a variety of techniques to acquire
a user’s context [27]; the approaches falter in PNets because explicit computation and
comparison of rich contexts is complex even for simple queries [8]. Our approach does
not index data relative to its context but instead performs the query in the context. Fu-
ture extensions to Gander could dovetail more explicitly with collaborative filtering,
learning how other users interact with the information in this space at this time.

3 The Gander Conceptual Model

Personalized search of the here and now entails two components: (1) query processing:
i.e., how to distribute a query (and its responses) using local interactions; and (2) rele-
vance determination: i.e., how to rate results’ relevance to the query. We next describe
the Gander conceptual model, which is essential for providing a rigorous understanding
of the quality of a Gander query and its ability to represent the here and now.

3.1 Gander Conceptual Model Components

A PNet is a collection of nodes connected via a dynamic topology. Nodes issue queries
that are evaluated across information stored at other nodes. A data item is an atom
(ν, d), where ν is a data value (e.g., a measure of some condition in the environment),
and d is meta-data associated with that piece of data (e.g., the device(s) that generated
the data, the data’s location, a timestamp, etc.). This representation reflects existing
work in capturing and representing context in ubiquitous computing [6].

For every valid result for a query, the result’s ν must “match” the search string. A
query can include one or more additional query constraints. For each constraint c, valid
results are those whose ν values match the search string and c((ν, d)) returns true. A
query relevance metric compares valid results against each other. For each relevance
metric m, m((ν, d)) returns a value; these values can be ordered. A query can use mul-
tiple metrics evaluated independently or using weighted statistics. A query processing
protocol executes in a distributed multihop fashion to select a subset of the PNet to
distribute a query to; this subset includes only “reachable” nodes in the PNet. Gander
query processing can use the search string, constraints, and relevance metrics.

3.2 Gander Query Processing

A Gander query is a function Gh : D → Φ, where D contains all data items in the
world, Φ is the domain of the relevance metric, and h is the node issuing the query. A
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query processing protocol is a partial function QPh : D → D; QPh is not required
to be defined for every element of its domain, D. Informally, QPh((ν, d)) = (ν, d) if
(ν, d) ∈ D is a “valid” result; otherwise QPh((ν, d)) is undefined. One can view QPh

as a filter on D. The three components of are the following.

Reachability. The partial function Rh : D → D expresses whether the data item
(ν, d) is reachable from h; if not, Rh((ν, d)) is not defined. This is a specialization of
a general reachability function; R : H × H → {0, 1}, written as R(h1, h2), which
expresses whether h2 is reachable from h1. We focus on query reachability, the abil-
ity to send a query from h1 to h2 and receive a response [25]. R is related to Rh as:
Rh((ν, d)) = (ν, d) ⇔ 〈∃h2 : (ν, d) ∈ h2 :: R(h, h2)〉, where (ν, d) ∈ h2 indi-
cates that (ν, d) is “owned” by h2. Clearly R depends on both physical communication
capabilities and communication protocols used in the PNet.

Query Resolution. The partial function S : D → D is defined for each (ν, d) ∈ D that
matches the search string. In our application scenario, S indicates whether or not the
data item (ν, d) is a reachable data item describing a ride.

Query Constraint. The partial function C : D → D is defined for each (ν, d) ∈ D that
satisfies the query constraints. C’s resolution may rely on the meta-data (d), which may
provide the context of that data item in the PNet. In our scenario, an example constraint
is whether (ν, d) refers to a ride near a food vendor.

These three functions filter D to the subset of

Fig. 1. Query processing functions

reachable data items that match the search string
and satisfy the constraints. Given a snapshot of all
data items in the PNet, Fig. 1 shows the compo-
sition of reachability, query resolution, and query
constraints; QPh = C ◦ S ◦ Rh. This model as-
sumes complete knowledge of the PNet. Practi-
cally, this is not reasonable, but this formulation
of query processing as a composition of partially defined functions allows us to incre-
mentally compute a query’s result.

3.3 Gander Relevance Model

A Gander query defines regions of the PNet from which to draw data to satisfy a person-
alized search of the here and now. Gander query constraints and relevance definitions
provide criteria by which data in these regions is selected for delivery to the query
issuer. Our goal is not to collect all of the data but only the data that is most relevant.

A Gander relevance metric, Mi : D → φi, is a partial function; φi is the domain of
the relevance metricMi. Elements of φi should be scalar; Mi((ν, d)) gives the distance
of a data item (ν, d) from an ideal (with respect to the relevance metric Mi). A Gander
query may entail more than one relevance metric; given a query’s n relevance metrics,
the complete relevance metric is the partial functionK{M1,M2,...,Mn} : D → φ1×φ2×
· · · × φn, or simply K{M1,M2,...,Mn} : D → Φ. A Gander query, Gh, composes the
complete relevance metric with a query processing protocol: Gh = K{M1,M2,...,Mn} ◦
C ◦ S ◦ Rh. This combination of query processing with relevance maps valid results to
a multidimensional space whose dimensions are given by Φ = φ1 × φ2 × · · · × φn.
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Gh((ν, d)) is not defined if (ν, d), is not reachable or does not satisfy the search string
or query constraints; otherwise Gh((ν, d)) is an n-tuple, where field i has the value
Mi((ν, d)). We can plot each valid result in a multidimensional space, where each axis
represents one of the n metrics; results closer to the origin are more relevant1.

We give two examples of computing the distance from a point in this multidimen-
sional space to the origin: lexicographical ordering and weighted combination. The for-
mer is less expressive but more flexible since any metrics can be combined. A weighted
combination requires the metrics to be expressed in domains that are comparable (or
could be made comparable by applying scaling factors) but is more expressive.

Lexicographically Ordered Relevance Metrics. In lexicographical ordering, the order
of the metrics matters; data items are ranked first based on the first metric, and later
relevance metric values break ties. Given two n-tuples k and k′ representing relevance
values for (ν, d) and (ν, d)′, (ν, d) is more relevant if and only if:

〈∃i : 1 ≤ i ≤ n : k[i] < k′[i] ∧ 〈∀j : 1 ≤ j < i :: k[j] = k′[j]〉〉

Maya wants to maximize the thrill for the rides she experiences. Her query looks for
rides she has not yet ridden, favoring first rides with the highest thrill and breaking ties
by favoring those that are closer. Her friend Alex also likes thrill rides, but he wants to
go on as many rides as possible. His query also looks only at rides he has not yet ridden,
but first uses a relevance metric of distance and then one for thrill.

Weighted Combination of Relevance Metrics. This approach requires as input a vec-
tor W that associates a weight with each metric. We map each n-tuple to a single value:
m : Φ → R

2. Given W = 〈w1, w2, . . . wn〉, we can map a result’s n-tuple to a weighted
sum of the tuple’s constituents: m+

W((ν, d)) =
∑n

i=1(wi ×Mi((ν, d)))). W normal-
izes Φ’s dimensions so metrics can be numerically combined. As an example, Maya’s
relevance metrics can express the travel time to a ride from her location, the travel time
from that ride to a food vendor, and the ride’s wait time; by weighting these component
metrics equally and summing their values, we can order the rides according to the total
time it would take Maya to ride the ride and meet her friends.

The multiplicative combination,m×
W , can be defined similarly. This combination can

support a user who wants to ride the most thrilling rides but only has two hours. The
wait time relevance metric maps to a value between 0 and 1. When this wait time metric
is part of a multiplicative combination with a thrill metric, rides that the user does not
have time to enjoy will have a total relevance ranking of 0.

These approaches to combining multidimensional relevance linearly order the re-
sults; future work will consider more complex yet expressive relevance combinators.
In the remainder of this paper, we examine how well existing query protocols for mo-
bile networks support this conceptual model. This paper’s novelty is in defining the
conceptual model and using existing query protocols to distribute personalized queries

1 We assume the origin is absolute and relevance metrics are defined relative to an ideal. The
origin could itself be relative to the results; this causes a translation of the axes of the multidi-
mensional space to move the origin. The same distance functions can be applied.

2 We use R as the function’s range; for other combinations, the range could be any set over
which a partial order can be defined.
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of the here and now. We do not define novel protocols; instead we use our evaluation
of the Gander conceptual model to posit how existing protocols could be modified (or
replaced) to better support personalized search of the here and now.

4 Evaluation

In this section, we evaluate the Gander conceptual model to ascertain how well existing
protocols for mobile networks can support personalized searches of the here and now.

We developed a simulation-based imple-

Fig. 2. The data input to our query simulator

mentation that executes each query over a
model of PNet data and dynamics and returns
a list of ranked results. We use our amuse-
ment park scenario and data we collected
about Disney World’s Magic Kingdom in Or-
lando, Florida. Our simulation includes static
nodes that represent 30 attractions, 12 restau-
rants, and 8 restrooms. We populated the park
with 20,000 visitors and simulate visitors’
movements along paths at an average speed
of 0.5 mph. Fig. 2 shows an example of the
input; yellow discs are rides, green discs are
restaurants, orange discs are restrooms, and
pink spots indicate visitors. In this figure we only placed 100 visitors so that other ele-
ments are visible. We use ride wait times published by Lines [21]; we collected wait time
data every 60 seconds on a single day. Simulated visitors carry timestamped data about
amenities they have visited recently. Static nodes provide data about fixed entities and
metadata (e.g., ride name, its thrill factor and location).

In our prototype, a Gander query can choose from one of four protocols: flooding,
probabilistic propagation, location-based, and probabilistic sampling, which are repre-
sentative of commonly used paradigms in mobile querying. Fig. 3 depicts each protocol.
Our evaluation focuses on the utility of Gander’s relevance metrics to personalize search
and the impact of different query protocol behaviors on the quality of search results.

We issued six queries, all with the same string (“thrill ride”) and constraint (“within
75 ft of a restaurant”) but different relevance metrics: Q1: wait time; Q2: distance from
me; Q3: thrill; Q4: wait time then distance from me; Q5: wait time then thrill; Q6:
thrill then wait time. We report results using three of Gander’s protocols: flooding with a
range of three hops, probabilistic with a range of three hops and propagation probability
of 0.5, and probabilistic sampling with a probability of responding of 0.5; we limit
propagation to within 10 hops for tractability. A node is considered reachable from
another if the two are within 7.5 feet of each other; we model dropped packets using a
loss probability associated with a link and experiment with different link qualities.

Fig. 4 shows a sample result. Here, the Gander result is a subset of the ideal with small
differences. One result is missing (Tom Sawyer Island), and some data is old (as mea-
sured by timestamps). This results in stale data (e.g., the wait time for Pirate Tutorial).
Such differences are likely to be small in PNets (since the data collected is relatively
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(a) (b)

A

(c) (d)

Fig. 3. Query routing protocols. (a) Flooding. Every node in a given range (2 hops) retransmits
the query. (b) Probabilistic Propagation. Every node in a given range (3 hops) that receives the
packet retransmits it to 2 random neighbors. (c) Location. The query reaches nodes in region A.
(d) Probabilistic Sampling. The query reaches any 5 nodes.

fresh), but they can impact relevance rankings. The alternative, i.e., searching via the
Internet, would be more severely impacted by even moderately out of date data. This
highlights a fundamental differences between PNets and the Internet: data volatility.

2011-04-09 15:00:00.0 Tom Sawyer Island {waittime=5.0, thrill=2}
2011-04-09 15:00:00.0 Regal Carrousel {waittime=5.0, thrill=3}
2011-04-09 15:00:00.0 Mickey’s PhilharMagic {waittime=10.0, thrill=4}
2011-04-09 08:37:00.0 Pirate Tutorial {waittime=26.0, thrill=5}
2011-04-09 15:00:00.0 Dumbo {waittime=19.0, thrill=5}
2011-04-09 15:00:00.0 Snow White {waittime=17.0, thrill=6}
2011-04-09 15:00:00.0 Pirates of the Caribbean {waittime=12.0, thrill=6}
2011-04-09 15:00:00.0 Tomorrowland Speedway {waittime=29.0, thrill=8}
2011-04-09 15:00:00.0 Splash Mountain {waittime=29.0, thrill=10}

(a)

2011-04-09 15:00:00.0 Regal Carrousel {waittime=5.0, thrill=3}
2011-04-09 15:00:00.0 Mickey’s PhilharMagic {waittime=10.0, thrill=4}
2011-04-09 15:00:00.0 Dumbo {waittime=19.0, thrill=5}
2011-04-09 08:32:00.0 Pirate Tutorial {waittime=21.0, thrill=5}
2011-04-09 15:00:00.0 Snow White {waittime=17.0, thrill=6}
2011-04-09 14:55:00.0 Pirates of the Caribbean {waittime=12.0, thrill=6}
2011-04-09 15:00:00.0 Tomorrowland Speedway {waittime=29.0, thrill=8}
2011-04-09 14:20:00.0 Splash Mountain {waittime=29.0, thrill=10}

(b)

Fig. 4. Results for Query 3. (a) ideal query results. (b) Gander query results with flooding.

Gander Queries Reflect the Ground Truth. We evaluate Gander using the discounted
cumulative gain (DCG) [16] of a ranked list of results, which compares how useful a
result is to the user and its ranked position in the set. The intuition is simple: since a
result with a lower ranking is less likely to be used, a result’s gain is discounted as the
position decreases. We compare the result of executing a Gander query with the ground

truth, i.e., we compute the DCG for a list of search results as: DCGp =
∑p

i=1

reldi
log2(i+1) ,

where p is the size of the result set, and reldi is an integer that reflects the result’s
position in the ideal query’s rankings. A query result d returned with ranking i is graded
on a scale from 1 (least relevant) to n, where n is the number of items returned by the
ideal query. The value of reldi is determined by the ranked position j of the item in
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the ideal result: reldi = n/j. We normalize computed DCG values based on the ideal
result by calculating the DCG for the ideal result (IDCG) and dividing each DCG by
IDCG , generating a set of normalized values, nDCG .

We use DCG values to evaluate how well

Fig. 5. Query Quality vs. Link Quality

queries reflect the PNet, and we plot this for
varying connection qualities for Query 1
(Fig. 5). Different query protocols perform
differently. All of the protocols do a good job
of reflecting the ground truth, especially un-
der reasonable connection qualities (> 50%
success of delivery). Probabilistic Sampling
performs poorly when the connection quality
is poor; this is because the queries propagate
over longer paths, sampling a wider space of
the PNet. These longer paths are more susceptible to low link quality, as the probability of
a dropped packet is multiplicative. However, when the quality of the links is high, Prob-
abilistic Sampling’s performance surpasses the other protocols, motivating that certain
queries need to broaden their search space and query protocols that enable such capa-
bilities are necessary. Flooding and Probabilistic Sampling, on the other hand, sampling
sometimes suffer from localization around the query issuer.

(a) (b)

Fig. 6. Age of responses (a) 50% of packets dropped (b) perfect connectivity

Another way to highlight the difference between the Gander query and the ideal one
is to look at the difference in results’ time stamps. Fig. 6 shows the measured time
stamp differences for the three protocols across all six queries. Fig. 6(a) shows that,
given faulty communication links, the time stamp differences between an ideal query
and a Gander query result vary widely. However, as the quality of the links increases,
we see a drastic difference between the freshness of the data returned by Probabilistic
Sampling in comparison to the other protocols. This is especially evident when the loss
probability decreases to 0, shown in Fig. 6(b). The density of connections in a PNet
(our nodes had an average of 18 network neighbors) makes it possible to select nodes at
random to sample, and this Probabilistic Sampling achieves better coverage than flood-
ing or probabilistic sampling since the latter end up restricting their searches to nearby
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devices. This latter result specifically motivates that some situations may demand reli-
able communication protocols that better enable search to reflect the ground truth effi-
ciently. More generally, these results demonstrate that having a formal understanding of
the structure of the results of queries given different query processing protocols could
be informative in selecting the appropriate query protocol for a given query, user, and
environment. Future work will build on our existing conceptual model to create an un-
derstanding of incremental Gander query processing that relates the results of a query
processing protocol (including relevance rankings) to the ideal result. This will allow
formal mathematical reasoning about the quality of a Gander query result.

Relevance Matters. It is common to com-

Fig. 7. Average inversion counts

pare rankings by counting inversions [4].
Given two rankings, we fix one set of rank-
ings and compute how much out of order
results in the other ranking are. To demon-
strate that using different relevance metrics
has a significant impact on results, we com-
pute the number of inversions returned by queries that are identical other than their use
of relevance. Fig. 7 compares our six queries, given everything else (the network, the
location of the query issuer, and the state of the data) is held constant. This identifies
two equivalence classes of queries: {Query 1, Query 4, Query 5} and {Query 3, Query
6}. The average number of inversions of rankings from Query 3 and Query 6 was 0.78.
Within the class {Query 1, Query 4, Query 5}, the average number of inversions was
always less than 1. For all other combinations, there was a significant number of inver-
sions (>∼ 2) when comparing two result sets’ rankings. Given our relevance metrics,
this is reasonable. For example, Query 1 uses only the single relevance metric wait
time, while Query 4 uses a relevance metric of wait time breaking ties using the dis-
tance from the query issuer. Inversions in rankings returned by these two queries result
exactly from resolving ties.

Clearly, personalized relevance metrics have a dramatic effect on which results are
presented and in what order. This could drive future work in assistive Gander interfaces
that help users identify similar queries or queries that will help them more effectively
distinguish physical aspects of the PNet environment.

It is apparent that existing query processing protocols for dynamic networks are a
feasible starting point for supporting personalized search of the here and now. Our
evaluation and conceptual model have exposed two key aspects necessary for Gander
queries in these dynamic environments: (i) search processing must be tailored to PNets
and search of the here and now and (ii) the semantics of search execution must be for-
malized (i.e., Q, the Gander query, must be formally related to Gh, the ideal result).

5 Conclusions

PNet Search Requires Tailored Reflective Protocols. Different styles of search pro-
cessing provide different qualities of results in terms of their timely reflection of the
ground truth. Gander queries inherently carry information that can benefit the proto-
cols’ execution, for example by directing queries towards areas of the PNet more likely
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to have relevant results or by taking advantage of reliable connectivity when possible
to achieve a wider coverage of the space sampled by the query. Thus the results above
motivate reflective protocols that can adapt their behavior to the nature of the PNet, its
capabilities, the data it contains, and the results of previous similar searches.

We omitted a performance evaluation in this paper. As we develop protocols tailored
for Gander queries, it will be essential to perform a thorough performance evaluation
that measures the network aspects of Gander query processing from all directions, in-
cluding measuring the overhead (in terms of communication, storage, and energy con-
sumed on users’ devices) and delay in receiving query results, coupling evaluation in
simulation with evaluation in live PNets.

Search Execution Demands Formal Semantics. More interestingly, the use of partial
functions in our conceptual model maps intuitively to incremental evaluation in which
a search execution starts with a completely undefined function and gradually increases
the size of the subset of the domain for which the function is defined.

One may expect that query execution should yield Gh, but achieving this exact reflec-
tion of the environment is unreasonable in practical PNets. Instead, we want to provide
guarantees with which a query protocol realizes Gh in computing Q. If the protocol
maintains a relationship between Q and Gh that has certain structural properties, we
can reason about the results in the context of the posed query. An example of a query
protocol that exhibits good structure is one that ensures that Q ⊆ Gh, i.e., Q will never
contain a result that is not in Gh, but there may exist valid results we have not (yet)
discovered. Results’ relevance values are correct in Gh, i.e., the relative ordering of
elements a and b in Q is the same as their relative ordering in Gh. We could envision
a weaker relationship in which Q is always less defined than Gh, but in addition the
values returned in Q may be somewhat different (within some τ ) of the actual values.
We could also envision the opposite: that Q ⊇ Gh, i.e., we start by assuming that the
set of valid results is larger than the ideal query and gradually trim results out of Q. Ex-
plicitly relating the structure of Q to Gh allows us to reason about the fidelity of a query
(and its query protocol). Our goal is to create query protocols that (provably) maintain
structural relationships between Gh and Q, though practically we can never know Gh.

As the digital world becomes increasingly accessible, we need to access the vast
amount of information available in our Personalized Networked Spaces. We introduced
Gander, a search engine for personalized search of the here and now. A key contribution
of Gander is use of a multi-dimensional specification of relevance, which provides a
personalized search of a PNet from the perspective of a query issuer. We derived a
conceptual model that mathematically defines Gander query processing and relevance
in terms of partial functions. This model gives a formal foundation that maps to the
formulation of protocols that incrementally evaluate a Gander query and allows us to
reason about the semantics of results returned by a distributed implementation of a
Gander query. We have provided a simulation-based evaluation in a large-scale PNet;
our results illustrate the expressiveness of this approach and highlight the fact that using
personalized relevance metrics can give increased value to the user of ranked search
results.
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