Activity-Oriented Context Adaptation
in Mobile Applications

Jan D.S. Wischweh and Dirk Bade

University of Hamburg
Hamburg, Germany
mail@wischweh.de, bade@informatik.uni-hamburg.de

Abstract. Although usability of mobile devices increases steadily, use
of mobile applications is still inconvenient. Adapting application behav-
ior and functionality to the user’s current needs is a promising approach
to compensate for limited input capabilities. Despite great effort in re-
search, smart adaptable applications are still rare. With our approach,
we build upon existing works and extend them with the notion of ac-
tivity context. Activities are one of the most basic elements of context
and are well suited to determine the relevance of context entities in a
given situation. Such information can be used to realize more intelligent
suggestion mechanisms for input elements in mobile applications. The
feasibility of our approach has been proven by a prototype implemen-
tation of our Activity Awareness Architecture for the Android platform
providing activity context for mobile applications and a context-aware
calendar on top of it demonstrating the usefulness of activity context.

1 Introduction

Throughout the last decade, the use of mobile phones increased steadily. In par-
ticular, smartphones are gaining more and more interest [14] as these offer, beside
a wide range of communication capabilities, a platform for a multitude of appli-
cations, ranging from entertainment to serious business appliances. Along with
the growing market of mobile applications the need for user-friendly interaction
attracts more attention, because users tend to get accustomed to accessing data
and services whenever and wherever they are.

To ease interaction with mobile devices manufacturers increased screen sizes,
made them touchable, and attached small sensors (accelerometers, gyroscopes,
etc.). By doing so, the devices are enabled to exploit context to adapt application
behavior to the current situation, e.g. adjust screen orientation, provide location-
based services or filter ambient noise. Research in this area mainly focused on
aspects about the physical environment (e.g. [12]), environmental conditions (e.g.
[37]), available resources (e.g. [29]) and the user’s social context (e.g. [28]) so far.
Information about the user himself, his activities as well as causal and temporal
relations between context entities are hardly exploited as a source for adaptation
yet. Thereby, knowledge about the user’s past, present and future activities is not
only suited to ease input by presenting context-based suggestions, but may also

A. Puiatti et al. (Eds.): MobiQuitous 2011, LNICST 104, pp. 298-BT3] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Activity-Oriented Context Adaptation in Mobile Applications 299

be used to help automating recurring activities (i.e. tasks) to establish relations
between people, places and objects and to infer the user’s focus of attention and
his cognitive load.

In this paper we propose to use activity context, which is inferred by monitor-
ing the user’s activities while he is interacting with a mobile device. This kind of
context relates to goal-oriented tasks the user performs and is therefore ideally
suited for adapting application behavior.

Section 2] of this paper details an application scenario and infers conceptual
requirements for our work. Section Bl introduces the idea of activity context and
relates it to context in general. In Section [a context model is proposed, which
is used as a basis for our Activity Awareness Architecture, presented in Section Bl
We conclude this paper by providing some details of the middleware and demo
application we developed to show the feasibility of our approach in Section
and by giving our prospects for future work in Section [7

2 Application Scenario

Alice and Bob want to conduct a meeting. For this purpose, Alice calls Bob to
make an arrangement. Afterwards, she opens the calendar application on her
mobile phone to create a new appointment. To ease the input the application
makes suggestions for each of the input fields. Hence, Bob as well as other people
related to Bob are suggested as participants. The calendar also suggests meeting
locations like Bob’s office or places Alice and Bob met before. This way, the
need for textual input is reduced to two simple selections. Moreover, other ap-
plications, e.g. a navigation app, can make use of the provided information and
once the time of the meeting approaches the navigation app, considering Alice’s
current location and the traffic situation, informs her right on time to prepare
to leave.

2.1 Scenario Analysis

Usability can be seen as a measure of simplicity to reach a specific goal using
certain technology [10]. Concerning software artifacts, it is undoubted that the
usage context greatly influences the handling of applications and tools [I0]. This
holds even more, when considering mobile devices, as their usage context is
highly dynamic. To overcome usability problems, an application should be able
to adapt its functionality to the current context. Three areas of adaptation can
be distinguished: adapting the (i) interaction, (ii) content and (iii) presentation
[22]. In our approach, we do not propose adaptation mechanisms, but we want
to provide application-level information about the user’s (activity) context, so
that applications can use this to carry out some adaptation logic. Analyzing the
presented scenario, some important aspects that need to be considered when
using activity context can be identified:

Temporal Relations. In addition to a user’s current activity, also past and
future activities are important context information. Past activities constitute

300 J.D.S. Wischweh and D. Bade

the persistent context (e.g. places where Alice and Bob met before), whereas
future activities are a result of prediction.

1%t- and 2"9-order Relations. In the given scenario the calendar suggests
Bob to be a participant based on the fact that Alice just phoned Bob. This is
a 15t-order relation. The suggestion to meet at Bob’s office is instead based
on a 2"-order relation. Theoretically, relations are not restricted to just
two orders, but while the set of related entities grows exponentially with
increasing order the relevance probability decreases drastically.

Restriction of Entity Types. For every application, only certain types of en-
tities are relevant. The calendar app in the given example only deals with
persons and locations linked with appointments. A navigation app is in-
terested in locations only. The software in use therefore has to restrict the
entities to consider based on their types.

Cooperation of Tools. The scenario shows, how different applications may
cooperate using context information. The more applications create and use
context information, the higher its value for further usage. The calendar app
in the scenario makes use of three different context sources and represents a
new context source for the navigation app. Thereby, it is not required that
applications know each other, but they should instead be loosely coupled.

Bidirectional Flow of Information. As can be seen, the calendar app not
only consumes, but also creates new context information which can be used
by other applications (e.g. the navigation app). Therefore, the flow of infor-
mation between applications, or applications and some mediating instance,
needs to be bidirectional.

Now, that the idea of using information about a user’s activities to adapt ap-
plication behavior in order to enhance usability has been introduced, a formal
view on activities is presented in the next section.

3 Foundations of Activity Context Adaptation

Schilit at al. coined the term contexrt aware computing for mobile computer
systems, that are able to automatically adapt themselves to the current situa-
tion [35]. Various examples for such adaptation exist [929/7I28]. The examples
range from transparent adaptation to active context-aware behavior where the
exploited aspects of the situation range from location to available resources and
the social situation.

Because of this broad spectrum, context is quite an abstract term, thus multi-
tude of definitions exist. An often cited definition by Dey and Abowd [11] states,
that ” context is any information that can be used to characterize the situation
of an entity. An entity is a person, place or object [...]”. Several works (e.g.
[725]T7]) criticized this definition due its lack of behavioral factors, e.g. activi-
ties. Therefore, we follow a modification of Zimmermann et al. [43], stating that:
" [...] Elements for the description of this context information fall into five cat-
egories: individuality, activity, location, time, and relations.”. Activities are not

Activity-Oriented Context Adaptation in Mobile Applications 301

seen as context entities, but rather represent relations between such entities [33].
These relations can be based on joint participation as well as temporal or spa-
tial proximity and can be used to determine the relevancy of entities for a given
context [I3UT5]. Moreover, [I3] indicated that context and activities inevitably
belong together as context is primarily created by activities.

In computer science different perspectives on activities exist. For example,
human engineering experts observe and analyze human activities while handling
software artifacts in order to understand and optimize their interactions [26]. In
contrast, autonomous software agents pursue their own goals and in doing so
execute plans and actions to reach them [5]. In the area of user modeling a
formal, domain-dependent model of users, their goals and actions is created in
order to adapt a system’s behavior to the users’ needs [22].

Our understanding of activities is based on the activity theory which tries to
comprehend the course of activities by incorporating external influences as well
as the actors themselves [23]. This scientific/philosophical way of thinking, stem-
ming from the area of psychology, is based on several basic principles that allow
us to establish an understanding about (i) the different ways to automatically
monitor activities by a software system and (ii) what parts are out of the scope
of monitoring. In the context of our work one of the most important principles
in the activity theory is the object-orientation which states that objects always
carry socio-cultural knowledge of what can be done with them and how it can
be done. Another principle states that activities are mediated through physical
and non-physical tools. For example, language influences the way we think about
problems. Last but not least, activities are hierarchically composed of actions
which in turn are composed of operations. A corresponding hierarchy of motives,
goals and conditions exists linking behavioral levels with levels of purpose. Ac-
tivities and motives are on the top level, they are conscious and long-lasting.
Operations and conditions are at the bottom level. Like actions and goals they
are short-term, but unlike them they are unconscious.

As activities are carried out over a longer period of time and are, depending
on situations, alternated with other activities the activity theory leads us to the
conclusion that it will not be possible to completely assess a user’s activities
and his motives can only be presumed indirectly at best. Furthermore, we can
only observe user actions which are carried out using physical (software-)tools.
But activity theory also provides us with a starting point for doing so, as in the
light of this theory it seems practical to incorporate means for observing actions
directly into the (software-)tools which are used to carry out tasks. This marks a
difference to traditional approaches to context-awareness where context is often
observed from an outside perspective using some kind of sensors. It also marks a
difference to user modeling, as this approach strives to be domain-independent
and tries to avoid speculation on a user’s motives.

We will therefore present a context model for activity context which holds
observable information about actions and afterwards a middleware architecture
which interacts with arbitrary software tools to gather information, to infer

302 J.D.S. Wischweh and D. Bade

Table 1. Evaluation of Context Models [42]

Key/Value Markup OO Dataflow Relational Logic Ontology

(C1) Lightweightness ++ + / _ _ _ _
(C2) Access Efficiency / — / / 4t / /
(C3) Aggregation Support - — 4t 44+ / + +
(C4) Management of Relations — — / — ++ + /
(C5) Natural Projection - — 4t — + / +
(C6) Data Distribution - — — [/ _ +
(C7) Unambiguousness - ++ — — _ _ .
(C8) Quality Compensation —_ - / + _ _ /
(C9) Inference of Facts - — — —— — ++ 4t

higher-level activity context information and to provide this for applications as
a basis to adapt their behavior to the user’s current activity.

4 Context Models and Data Schemes

In literature the term context model is often used in different ways. Some au-
thors understand a context model as the set of information, their representation
as well as processing rules for a certain context-aware application or domain.
For example, in an application which adapts to current weather conditions the
fact that temperature is represented in degree Celsius, humidity as relative air
humidity in percent as well as a rule that states at which thresholds the weather
is considered muggy could make up a context model. Typically, authors who de-
scribe concrete context-aware systems [I8] use the term in this way. Authors who
seek to compare different approaches of modeling context [39/16] use the term
context model to describe the generic underlying data structures and available
operations. These different meanings correspond to the notions of a database
schema and data model in the terminology of database systems.

Throughout this paper we will use the term context model in the latter sense
as we understand a context model as a set of methods and formal languages
used to create, represent and interpret a context data schema. We will use this
understanding to evaluate several existing context models based on a set of
requirements that are presented in the following.

4.1 Evaluation of Context Models

A multitude of context models can be found in literature (cp. surveys by
Chen/Kotz [6], Strang/Linnhoff-Popien [39] and Hartman/Austaller [16]).
Thereby, different categories of models can be distinguished: key/value models,
models based upon markup-languages, graphical models, object-oriented models,
logical models, ontology-based models and dataflow models.

All of these classes make use of different methods and methodologies in order
to model context. For the purpose of modeling activity context we conducted
a requirements analysis based on a set of application scenarios as well as a
literature survey in order to evaluate existing models. In the following, a set of

Activity-Oriented Context Adaptation in Mobile Applications 303

criteria is presented that need to be considered when it comes to implementing
context awareness on modern smartphones, providing a basis for the following
evaluation of context models.

(C1) The infrastructure for realizing a model shall pose as few and low require-
ments as possible on soft- and hardware. (C2) Access to data shall be efficient.
(C3) To ease access to high-level context data for developers, mechanisms for
aggregating high-level data from lower-level data are vital. (C4) The model shall
allow to easily manage relations between context entities. (C5) Real world con-
cepts shall be naturally projected onto a context model, whereat the mapping
shall be simple, direct, immediate and comprehensible. Although not used in the
scenarios we addressed, future context-aware systems will likely be distributed.
Therefore, (C6) support for distribution of context data is required. (C7) The
context data shall be unambiguously interpretable even in heterogeneous sys-
tems. (C8) Mechanisms for dealing with incomplete, contradictory or uncertain
data should also be considered. And finally, (C9) the ability to infer new facts
from acquired data or preexisting world knowledge is desirable.

A summary of the strengths and weaknesses of different models can be seen in
Table[ll Simple models like key /value- or markup models are lightweight and rel-
atively efficient, but they lack support for more sophisticated demands. Whereas
more complex approaches like logic-based models or ontologies offer good sup-
port for reasoning and data distribution at the price of being more heavyweight.
As activities are relational in nature (cf. Section[3)) and access to a potential large
quantity of historical data is required a relational model was chosen to model
activity context data. However, the context architectures discussed in Section
augment this model with some dataflow-oriented mechanisms. Especially when
it comes to terms of distributing data and data sources as well as aggregating
them this approach is useful to compensate weaknesses of the relational model.

4.2 A Generic Context Data Schema for Activity Context

Activities are the core of our data schema and our concept has to provide means
for representing activities, entities and their relationships. Due to the fact that
activities always occur in time and space and can form indirect relationships
through spatial or temporal relations such data must be represented in the
schema (including information about future events). As our approach should not
be limited to a certain domain, activities and entities are modeled in a generic
and abstract sense. This results in an open schema, extensible for all kinds of
activities, entities, relations and application domains.

A graphical representation of the developed context data schema in the Con-
text Modeling Language (CML) [I8] can be seen in Figure[ll Activities form direct
relations to entities and carry information about the place and time in which
they took place. Places are also modeled as entities. Activities are enhanced
with meta-data about how the data was gathered (as reported by software tools,
measured by sensors, inferred from existing knowledge, other indirect means, or
planned to be executed in the future), so the quality and reliability of informa-
tion can be judged. This is especially useful for dealing with future activities

304 J.D.S. Wischweh and D. Bade

Relations
@—— mandatory
optional

Activity...1involves...
AA

——-- Meta-Data

— Generalisation

€ sourss
Types of Facts
AA Sensed Fact Type
[1 Temporal Fact Type

Activity... at... in a period of... in state...

(b (b

Fig. 1. Core Components of the Context Data Schema

as these are not certain to be carried out. Also, the lifecycle of an activity is
modeled, whose abstract states are ongoing, paused, successfully finished, un-
successfully finished or finished with unknown result. This information is crucial
to infer the goals and needs of a user as a successful operation has other conse-
quences for the goals of a user than an unsuccessful one. Now that we introduced
the context data schema the next section will briefly survey existing middleware
architectures for context awareness.

5 Architecture and Middleware for Context Awareness

Context data is relatively complex, the retrieval might be cumbersome and its
management is not trivial. At the same time, a lot of applications could benefit
from using context data and could even contribute context data. The latter is
especially true for activity context. To address the difficulties in dealing with con-
text data several approaches for developing middleware architectures for context
awareness exist. The general goal of such software systems is to mediate context
data between context sources and context consumers (i.e. applications). Typi-
cally, such systems are responsible for communicating with sensors, processing
context data, supporting context-dependent decisions and for providing a com-
munication infrastructure between the several components of a context-aware
system [19].

By analyzing a set of application scenarios as well as existing literature, we
found several requirements which apply to any middleware supporting context
awareness for mobile devices. Ideally, the middleware should leverage a context
model (R1) by being able to hold and manage instances of context data schemes.
It should tolerate failures of components (R2), e.g. malfunction of sensors. A
generic approach should be flexible and extensible (R3) and would benefit from
a separation of basic facts and conclusions (R4) as this not only supports the flex-
ibility, but also would make resources and inference processes more manageable.
Compactness and suitability for limited hardware resources (R5), mechanisms
for respecting privacy and security needs (R6) and for distributing the consti-
tuting components (R7) are other common desires.

Our perspective on activity context reveals additional requirements: In sce-
narios where activity context is used (cf. Section [2)) context-aware applications

Activity-Oriented Context Adaptation in Mobile Applications 305

not only consume context data, but the usage of software tools also directly pro-
vides context data. Therefore, the middleware should support activities (R8) by
having direct means of reporting them. The more software tools use and provide
activity context the greater the potential benefit for the user. As a consequence,
such a middleware should be easy to use for application developers (R9). Look-
ing at the scenario analysis presented in Section 2] and the context data schema
developed in the previous section it becomes obvious that several traits of data
and data structures need to be considered in the design of the middleware,
such as: state and event-oriented data (R10.1), relational views (R10.2), time
and sequence-oriented pattern analysis (R10.3) as well as hierarchical structures
(R10.4). The support for temporal information should be taken into special con-
sideration as there is a need to deal with events expected in the future (R11.1)
as well as for recording time series to persist historical data (R11.2).

Besides the well known Context Toolkit [34], several other software architec-
tures supporting context awareness have been presented (e.g. [41IT91242]). These
can be grouped into service-oriented, agent-oriented as well as object-oriented
approaches [42] and are briefly surveyed in the following.

Service-Oriented Approaches. Service-oriented approaches aim at simpli-
fying the use of hardware and network infrastructures for context-aware sys-
tems by providing a set of services. Typical services are communication ser-
vices [27J30U3T], services for dealing with geodata and positioning information
[27030U3T] and services for local aggregation and storage of context data [27J2TI31].
For systems which are meant to be run in a dynamic, fully distributed ubiqui-
tous computing scenario some means for service discovery are usually provided
[27031]. A lot of service-oriented approaches consider the challenges of mobile
computing already in their design, several are targeted at smartphones which is
why they often shine having a small footprint. The idea of building context-aware
services by composing different services is somehow similar to the philosophy of
the Context Toolkit. However, often these approaches are not based on an explicit
context model and the different services lack unity. For instance, the Contezt-
Phone platform is a service-oriented approach which provides services to monitor
some aspects of user behavior (like messaging or telephony), but is not based
on an explicit context model. To gather different kinds of context information,
different services have to be queried [30].

Agent-Oriented Approaches. These kinds of approaches use autonomous,
cooperative software agents to gather context information. Moreover, the agents
are often able to exhibit context-adaptive behavior in order to achieve their
goals. They often rely on well-defined context models based on ontologies, such
as the Web Ontology Language [A], or custom extensions of them. Hence, most
of these systems directly support reasoning and inference, but they do not nec-
essarily support pattern detection and analysis. Examples for such approaches
are the early work of Schilit [36], Spreitz and Theimer [38] or more recently the
Context Broker Architecture by Chen et al. [§]. But, hence most existing systems

306 J.D.S. Wischweh and D. Bade

are developed for ubiquitous computing rather than mobile computing they are
rather heavy-weight.

Object-Oriented Approaches. In object-oriented approaches context entities
are modeled as objects. A supporting middleware provides means for communi-
cation between objects, persisting and marshalling and most important observ-
ing them as well as notifying other components and entities upon any changes.
Examples following this approach are the Java Context Awareness Framework
[3] and the DEMAC Context Service [40]. Object-oriented approaches are very
flexible and only make few restrictions. However, as they need to instantiate
objects for all context entities they are not very efficient in large-scale scenarios.
Moreover, they typically follow the principle of encapsulation and are therefore
not well suited for reasoning about context entities, which involves some kind of
data mining or pattern analysis. Finally, they can implement a context model,
but are not necessarily based on one.

Two recent approaches to support context-aware systems deserve a more de-
tailed explanation as some of their ideas influenced the design of our own mid-
dleware to a greater extend.

PACE Middleware. The Pervasive Autonomic Context-Aware Environments
(PACE) Project [19] developed a middleware to support context data schemes
based on a relational context model, along with a formal graphical Context
Modeling Language (CML) [I8] to develop them. The middleware incorporates
context repositories holding instances of such data schemes and provides means
for managing and discovering them. Repositories support the logging of histor-
ical data if needed. Additionally, repositories can be distributed and the mid-
dleware manages communication by supporting querying as well as notification
mechanisms using content-based message relaying between the loosely coupled
components.

Gaia OS. Gaia OS was developed as an operating system for context-aware
ubiquitous computing applications [32]. It could be described as a service-oriented
approach featuring five central services: (i) event management, (ii) context data
storage, (iii) a service for detecting the presence of people, hardware, appli-
cations and other services, (iv) a service to access properties of such entities,
and (v) a context file system. Unlike other service-oriented approaches it fea-
tures an explicit, logic-based context model. In this model context is repre-
sented as four-digit predicate and this structure is closely linked to the mech-
anisms of the other services. How this works can be illustrated by the exam-
ple of the Context File System (CFS) [20]. By storing a file in the directory
/location:/RM2401/situation:/meeting it would be associated with the con-
text "meeting in room RM2401”. Listing the content of /situation:/meeting
would list all files associated with meetings. Additionally, the special keyword
current always expands to the current context. Gaia OS is a good example of
leveraging a context model and integrating it with the mechanism of the frame-
work while allowing transparent access by applications. Even applications not

Activity-Oriented Context Adaptation in Mobile Applications 307

having implemented any kind of context awareness could benefit from the CFS
and become context-aware (to some degree) without any further development
work.

Table PI gives an overview of our evaluation. Some approaches use activity
context to some degree, but none supports generic activities. Furthermore, bidi-
rectional communication between a context-aware application and the enabling
middleware in a way that applications not only consume context data, but also
provide data is missing in general (R8). Support for temporal information is
also generally limited, but some approaches at least provide support for record-
ing and querying historical data (R11.1). Others feature ad-hoc mechanism to
query calendar data, but do so without a well-defined model and generic support
for future events (R11.2).

Table 2. Evaluation of Architectures for Context Awareness [42]

Context Service- Agent- Object- PACE Gaia

Toolkit oriented oriented oriented OoSs
(R1) Context model key /value - ontology (object-oriented) relational logic
(R2) Fault Tolerance — partial partial partial partial partial
(R3) Extensibility 4 partial Vv V4 v partial
(R4) Separation Vv Vv 4 4 Vv 4
(R5) Lightweight partial some — — partial partial
(R6) Privacy - some 4 some A —
(R7) Distribution 4 4 Vv Vv V4 partial
(R8) Activities — - - - — -
(R9) Ease of Use partial partial partial partial partial partial
(R10) Range of Data Aspects partial partial — — - —
(R11) Temporal Information partial partial partial partial partial —

6 The Activity Awareness Architecture

As existing architectures of context-aware middleware systems do not meet all
of the requirements to deal with activity context, we will present our Activity
Awareness Architecture and describe some of the most important architectural
and functional aspects as well as an example for the Android platform.

Support for Activities. To support observing and reporting ongoing activi-
ties, the middleware is based on a minimalistic model of activities (cf. Section
[M2). The middleware offers a simple application programming interface (API)
to create activities, report lifecycle state changes and assign related entities to
them. Such API-calls will automatically trigger the creation and dispatching
of events which will inform other endpoints of the system about the ongoing
activity.

Modularisation. The basic building blocks of our middleware are loosely cou-
pled modules of two types: EventSources generating events and queryable Repos-
itories with mixtures of them being possible. An example for an event source
would be a sensor which monitors outgoing and incoming phone calls and reports

308 J.D.S. Wischweh and D. Bade

them using the Activity API. Repositories are active data containers that are
able to process and store data. Multiple repositories may coexist for different
tasks or domains. They acquire data by listening for events or querying other
sources and are also able to actively engage in event processing by conducting
e.g. pattern analysis or infer high-level context from primitive events. To retrieve
information afterwards repositories expose simple id-based interfaces for queries,
offer path-based interfaces for hierarchical data or SQL-based interfaces for re-
lational data. One example for such a repository is our central module which
holds an instance of the context data schema (cf. Section d2)). Another example
is a repository which listens for ongoing activities and provides heuristic-based
conclusions which entities are currently relevant for the user.

Communication Infrastructure. The Activity Awareness Architecture uses
an event-based publish/ subscribe mechanism as a basic communication infras-
tructure [1]. Modules and applications declare in which kind of events they are
interested by specifying Filters. Filters can be based on event types, entity types,
ids associated with events or a combination thereof. These filters are registered
and managed by our middleware which uses them as a basis for content-based
relaying of events. This structure allows for a loose coupling of modules and en-
ables horizontal or vertical data fragmentation which is the basis for distribution
later on.

Entities and Context-Dependent, Dynamic Naming Schemes. A special
kind of query which repositories may support are context-aware dynamic path-
based queries. Assuming that each entity can be identified by its type and its
id, it is possible to use a simple path syntax like /Person/id/5 to query for
a certain person or /Person/id/5/related/Place to query all places related
with the given person. Much like the Context File System (cf. Section [l an
entity or a list of entities can be addressed using such dynamic context-based
path schemes. But unlike the CFS this mechanism is not limited to files, but can
be used for all kinds of entities. The possibility to resolve such path-schemes by
using multiple repositories and not being bound to a single central repository is
an even more important difference.

Support for Historical Data and Future Events. To deal with future
events, like planned activities derived from calendar entries, our event system
supports special kinds of events. InstantEvents are events taking place at the
time they are dispatched and are exactly what traditional events are like.
ScheduledEvents wrap other events and indicate that something is expected to
happen in the future. As future events are not certain to happen they can hold
additional meta-information to deal with this uncertainty. If a future event is
canceled, for instance because a user deletes a calendar entry, this can be indi-
cated by broadcasting a CanceledEvent. In order to query future as well as past
events, special TimelineRepositories are used. Such repositories hold timelines
for events which are managed on the basis of InstantEvents, ScheduledEvents
and CanceledEvents. Other modules may not only query, but can also register
themselves to be notified some time before future events occur.

Activity-Oriented Context Adaptation in Mobile Applications 309

6.1 Implementation of a Context-Aware Calendar

We developed a basic implementation of the middleware and a context-aware
calendar application for the Android platform to prove the feasibility. One of the
main reasons for choosing Android, was its application framework, allowing to
develop complex applications as a set of specialized, loosely coupled screens. As
this concept is close to our understanding of activities it can be easily exploited
to monitor the user’s activities by injecting proxies between these modules which
record what is going on. A similar mechanism can also be used to monitor phone
calls.

The different middleware components that enable our context-aware calendar
and the data flow between these are depicted in Figure[2l A call sensor monitors
incoming and outgoing calls and reports them along with information about
the participants using our Activity API. A location sensor monitors the user’s
whereabouts, tries to translate the position into symbolic location data and
creates a LocationEvent. All this data is gathered in the ActivityRepository
which implements the data schema for activity context (cf. Section [2]). The
ActivityRepository in turn is monitored by the RelevanceRepository which uses
a simple heuristic to estimate which entities are relevant for the user in the near
future. The heuristic is based upon the frequency of engaging entities, 15%- and
2"d_order relations between entities, and the temporal proximity of activities in
which these entities take part. It is implemented using a bayesian network.

To further ease the use of the Activity Awareness Architecture we developed
a generic GUI widget which suggests relevant entities depending on the current
context. A path schema can be used as parameter to specify what kind of sug-
gestion should be made. In our demo application we used it to suggest people
and places for a calendar entry. Once a calendar entry is created our application
will report this using the Activity API. A screenshot of the GUI and the GUI

Misc.
D Events Call e ,
Sensor potivity Sensor
Sensor
Queries o] (N
% Jul 3, 2009 12:15:00 AM

Jul 3,2009 1:15:00 AM
— o o— — —

Activity
Repository

Relevance
Repository

Entity
Repositories

D Application ‘

Fig. 2. Middleware Modules and Data Flow Fig.3. Context-based Calendar App

310 J.D.S. Wischweh and D. Bade

widget suggesting people to assign with the entry (red bounding box) can be
seen in Figure 3

7 Conclusion

Activities are one of the most basic elements of context and represent goal-
directed actions of a user. They are well suited to determine the relevance of
context entities in a given situation by establishing relations between them which
in turn can be used by applications to adapt their behavior to the user’s cur-
rent needs. In order to do so, a well-defined activity context model as well as
a mediating middleware is required. In this paper, we therefore conducted an
extensive requirements analysis, evaluated several existing context models and
context awareness middleware architectures and concluded that none of the ex-
isting approaches is suited for dealing with activity context. Because of this, we
presented a generic, domain-independent context data schema which is able to
represent activities, the entities taking part as well as relations between these
entities. Based upon this data schema, we introduced the Activity Awareness Ar-
chitecture, a middleware for mediating activity context between context sources
and context consumers and demonstrated the feasibility of our concepts by pre-
senting an activity-aware calendar application for the Android platform.

As the idea of using activity context in mobile applications is relatively new
our prospects for future work include a qualitative evaluation of our heuristic for
suggesting related entities in a given context, an analysis in what way our middle-
ware can help to conduct studies about user behavior, to what extent complex
event processing techniques can be used to realize notifications about future-
directed complex activities and how the activity context data can be distributed
among several devices, thereby obeying privacy and security considerations.

In a future where ubiquitous computing will increasingly become reality more
and more tools of our daily life will emerge into software-enhanced tools. Thus,
the basis for sensing user activities will constantly grow, increasing the potential
knowledge of activity context as well as the opportunities for making use of it.
Therefore, activity context is a natural field for ubiquitous computing research.

References

1. Aitenbichler, E.: Event-based and publish/subscribe communication. In:
Miihlhauser, M., Gurevych, I. (eds.) Handbook of Research on Ubiquitous Com-
puting Technology for Real Time Enterprises, pp. 152-171. Idea Group Publishing
(December 2007)

2. Baldauf, M., Dustdar, S.: A survey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing 2(4) (2004)

3. Bardram, J.E.: The Java Context Awareness Framework (JCAF) — A Service In-
frastructure and Programming Framework for Context-Aware Applications. In:
Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468,
pp. 98-115. Springer, Heidelberg (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Activity-Oriented Context Adaptation in Mobile Applications 311

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: Owl reference. W3C Recommendation (February 2004)
(visited February 5, 2009)

Braubach, L.: Architekturen und Methoden zur Entwicklung verteilter agentenori-
entierter Softwaresysteme. PhD thesis, University of Hamburg (2007)

Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech-
nical Report TR2000-381 (2000)

Chen, H.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems.
PhD thesis, University of Maryland, Baltimore County (December 2004)

Chen, H., Finin, T., Joshi, A.: Using owl in a pervasive computing broker. In:
Proceedings of the Workshop on Ontologies in Agent Systems (OAS) (July 2003)
Cheverst, K., Mitchell, K., Davies, N.: Design of an object model for a context
sensitive tourist guide. Computers and Graphics 23, 24-25 (1999)

Coursaris, C.K., Kim, D.J.: A qualitative review of empirical mobile usability stud-
ies. In: Proceedings of the Twelfth American Conference on Information Systems,
AMCIS (2006)

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W.
(ed.) HUC 1999. LNCS, vol. 1707, pp. 304-307. Springer, Heidelberg (1999)

Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A., Palfreyman, K.: Exploiting
space and location as a design framework for interactive mobile systems. ACM
Trans. Comput.-Hum. Interact. 7(3), 285-321 (2000)

Dourish, P.: What we talk about when we talk about context. Personal and Ubi-
Comp 8(1), 19-30 (2004)

Gartner, Inc. Market Share: Mobile Communication Devices by Region and Coun-
try 2Q11 (August 2011), http://www.gartner.com/it/page.jsp?id=1764714
(visited: August 11, 2011)

Greene, S., Finnegan, J.: Usability of mobile devices and intelligently adapting to
a user’s needs. In: Proceedings of the 1st International Symposium on Information
and Communication Technologies, pp. 175-180. Trinity College Dublin, Dublin
(2003)

Hartmann, M., Austaller, G.: Context models and context awareness. In:
Miihlhauser, M., Gurevych, I. (eds.) Handbook of Research on Ubiquitous Com-
puting Technology for Real Time Enterprises, pp. 235-256. Idea Group Publishing
(December 2007)

Henricksen, K.: A framework for context-aware pervasive computing applications.
PhD thesis, University of Queensland (September 2003)

Henricksen, K., Indulska, J.: Developing context-aware pervasive computing appli-
cations: models and approach. Journal of Pervasive and Mobile Computing 2(1),
37-64 (2005)

Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for
Distributed Context-Aware Systems. In: Meersman, R. (ed.) OTM 2005, Part I.
LNCS, vol. 3760, pp. 846-863. Springer, Heidelberg (2005)

Hess, C.K., Campbell, R.H.: A context file system for ubiquitous computing en-
vironments. Technical Report UITUCDCS-R-2002-2285 UILU-ENG-2002-1729, De-
partment of Computer Science, University of illinois, Urbana, Illinois (July 2002)
Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Rets-
chitzegger, W.: Context-awareness on mobile devices - the hydrogen approach. In:
Proc. of the 36th Annual Hawaii Int. Conf. on System Sciences (HICSS 2003), p.
292.1. IEEE Computer Society (2003)

http://www.gartner.com/it/page.jsp?id=1764714

312

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

J.D.S. Wischweh and D. Bade

Jost, M.: Adapting to the user. In: Miihlhauser, M., Gurevych, I. (eds.) Handbook
of Research on Ubiquitous Computing Technology for Real Time Enterprises, pp.
282-295. Idea Group Publishing (December 2007)

Kaenampornpan, M., Ay, B.B.: An integrated context model: Bringing activity to
context. In: Workshop on Advanced Context Modelling, Reasoning and Manage-
ment, UbiComp 2004 (2004)

Kjeer, K.E.: A survey of context-aware middleware. In: Proceedings of the 25th
Conference on IASTED International Multi-Conference: Software Engineering, pp.
148-155. ACTA Press, Innsbruck (2007)

Kofod-Petersen, A., Cassens, J.: Using Activity Theory to Model Context Aware-
ness. In: Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.) MRC 2005. LNCS
(LNAI), vol. 3946, pp. 1-17. Springer, Heidelberg (2006)

Kuutti, K.: Activity theory as a potential framework for human-computer in-
teraction research. In: Context and Consciousness: Activity Theory and Human-
Computer Interaction, pp. 17-44. MIT Press (1996)

Lei, H., Sow, D.M., Davis II, J.S., Banavar, G., Ebling, M.R.: The design and
applications of a context service. SIGMOBILE Mob. Comput. Commun. Rev. 6(4),
45-55 (2002)

Oulasvirta, A., Raento, M., Tiitta, S.: Contextcontacts: re-designing smartphone’s
contact book to support mobile awareness and collaboration, pp. 167-174. IEEE
Photon. Technol. Lett., Portal (2005)

Pham, T.-L., Schneider, G., Goose, S., Pizano, A.: Composite device computing
environment: A framework for situated interaction using small screen devices. Per-
sonal UbiComp 5, 25-28 (2001)

Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: Contextphone: A prototyping
platform for context-aware mobile applications. IEEE Pervasive Computing 4(2),
51-59 (2005)

Riekki, J., Davidyuk, O., Forstadius, J., Sun, J., Sauvola, J.: Enabling context-
aware services for mobile users. In: Proceedings of IADIS Virtual Multi Conference
on Computer Science and Information Systems, pp. 360-369 (April 2005)

Romén, M., Hess, C., Cerqueira, R., Campbell, R.H., Nahrstedt, K.: Gaia: A mid-
dleware infrastructure to enable active spaces. IEEE Pervasive Computing 1, 74-83
(2002)

Ryan, C., Gonsalves, A.: The effect of context and application type on mobile
usability: an empirical study. In: Proceedings of the Twenty-Eighth Australasian
Conference on Computer Science, vol. 38, pp. 115-124. Australian Computer So-
ciety, Inc., Newcastle (2005)

Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development
of context-enabled applications. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems: The CHI is the Limit, pp. 434-441. ACM,
Pittsburgh (1999)

Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In:
Proceedings of the Workshop on Mobile Computing Systems and Applications,
pp- 85-90 (1994)

Schilit, W.N.: A System Architecture for Context-aware Mobile Computing. PhD
thesis, Columbia University (1995)

Schmidt, A.: Implicit human computer interaction through context. Personal and
Ubiquitous Computing 4(2), 191-199 (2000)

Spreitzer, M., Theimer, M.: Providing location information in a ubiquitous comput-
ing environment (panel session). SIGOPS Oper. Syst. Rev. 27(5), 270-283 (1993)

39.

40.

41.

42.

43.

Activity-Oriented Context Adaptation in Mobile Applications 313

Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Ad-
vanced Context Modelling, Reasoning and Management, UbiComp 2004 - The
Sixth International Conference on Ubiquitous Computing, Nottingham/England
(2004)

Turjalei, M.: Integration von Context-Awareness in eine Middleware fiir mobile
Systeme. Diplomarbeit, University of Hamburg (June 2006)

Winograd, T.: Architectures for context. Hum.-Comput. Interact. 16(2), 401-419
(2001)

Wischweh, J.D.S.: Aktivitatsorientierte Kontextadaption in mobilen Anwendun-
gen. Master’s thesis, University of Hamburg (July 2009)

Zimmermann, A., Lorenz, A., Oppermann, R.: An Operational Definition of Con-
text. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.)
CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558-571. Springer, Heidelberg
(2007)

	Activity-Oriented Context Adaptation in Mobile Applications
	Introduction
	Application Scenario
	Scenario Analysis

	Foundations of Activity Context Adaptation
	Context Models and Data Schemes
	Evaluation of Context Models
	A Generic Context Data Schema for Activity Context

	Architecture and Middleware for Context Awareness
	The Activity Awareness Architecture
	Implementation of a Context-Aware Calendar

	Conclusion
	References

