
A Dynamic and Distributed Addressing and

Routing Protocol for Wireless Sensor Networks

Tomás Sánchez López1 and Gonzalo Huerta-Canepa2

1 EADS UK Innovation Works, Newport NP10 8FZ, UK
tomas.sanchezlopez@eads.com

2 Korean Advanced Institute of Science and Technology, Daejeon 305-701, S. Korea
gonzalo@huerta.cl

Abstract. Wireless Sensor Networks (WSNs) have traditionally had
static topologies that require little or no maintenance from their
addressing mechanisms. New research directions have introduced ad-
ditional scenarios where WSNs should adapt to the environment and
network conditions. This shift in requirements also means that the ad-
dressing schemes should evolve dynamically, providing a distributed and
lightweight way of assigning addresses to the sensor nodes. In addition,
the routing protocols, which drive the information exchange within the
network, must leverage the addressing properties in order to function ef-
ficiently. In this paper, we present Sequence Chain (SC) as a lightweight
tree-based addressing mechanism for Wireless Sensor Networks. SC of-
fers distributed and dynamic address allocation together with optimized
tree routing. We compare our work with the de-facto industry standard,
ZigBee, and show how SC improves the formation of addressing trees
and yields up to three and a half times shorter multi-hop routes.

Keywords: Wireless Sensor Networks, Addressing, Smart Objects.

1 Introduction

Mobile and Ad-hoc Networks (MANETs) are mobile networks of computing de-
vices that are able to communicate amongst each other without the use of an
infrastructure. MANETs devices run typically on batteries and use wireless com-
munication. Unlike wired networks, which lack strong power and infrastructure
constraints, MANETs must optimize their operation and keep the connectivity
even when unexpected topology changes occur. Wireless Sensor Networks are
similar to MANETs in that they are formed by wireless devices which must
communicate among themselves without the use of an infrastructure. However,
traditional WSNs do not consider mobility among their sensor nodes but rather
assume static topologies that remain after deployment for all the network life-
time. Furthermore, WSNs are also traditionally centralized in the sense that a
Base Station collects all the sensor readings from the network members.

Dynamic address allocation is a common problem for MANETs where mobile
nodes constantly join and leave the network. Most of the approaches are based
on the Internet Protocol (IP). Node mobility is typically handled by the IP

A. Puiatti et al. (Eds.): MobiQuitous 2011, LNICST 104, pp. 260–272, 2012.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Efficient Addressing and Routing for WSNs 261

standards themselves, whose objective is to provide transparent routing allow-
ing nodes to conserve their original address while moving around different sub-
networks. Automatic address allocation, however, poses additional challenges.
A number of approaches rely on centralized agents that assign new addresses
according to a pool of available alternatives [5,13]. Other approaches allow de-
centralized address assignment but require Duplicate Address Detection (DAD)
techniques in order to ensure unique addresses [12,9].

Recent developments on Wireless Sensor Networks [7,2] make the inclusion of
dynamic address allocation a desirable feature. However, the dynamic addressing
techniques used in MANETs are inappropriate for WSNs due to their specially
scarce resources. Typical WSNs node limitations include limited RAM and Flash
memories, slow processing, short radio ranges and short-lived batteries. IP ad-
dressing is generally unsuitable for WSNs due to the excessive overhead of the
IP protocol stack. Furthermore, centralized sensor node agents are also inappro-
priate since the sensor nodes’s energy is easily exhausted. Finally, approaches
that use DAD should also be avoided because of the message overhead caused
by the search for duplicate addresses throughout the network.

In this paper, we propose a lightweight addressing scheme that provides ex-
cellent dynamic properties while minimizing the overhead of the assignment pro-
cess. Our addressing scheme, called Sequence Chain (SC), assigns addresses in
a hierarchical manner, additionally enabling simple and efficient routing among
the network nodes. In this paper, we prove that both the functionality and the
performance of SC are superior to any other related work, including the de-facto
industry standard for Wireless Personal Area Networks (WPAN) ZigBee [16].

The rest of this paper is organised as follows. Section 2 reviews the related
work in the area. Section 3 and 4 introduces our proposed scheme. Section 5
compares SC with ZigBee as part of our evaluation. Finally section 6 concludes
the paper.

2 Related Work

Address allocation in ad-hoc and wireless networks has been extensively dis-
cussed over the last years. Many protocols have been proposed that try to ad-
dress the problems of this type of networks, such as mobility, node joining and
separation, network merge, etc. Although the specific constraints of WSNs re-
strict even more the protocol design, very little work has been done in the area.
Besides few exceptions, most existing WSNs architectures just provide static ad-
dresses or assume that generic protocols designed for ad-hoc wireless networks
would fit into the sensor nodes. We have reviewed those existing approaches
that are more relevant to our work, and we present a summary of them on table
1. Although due to spece restriction we can not provide a detailed discussion
on the related work, the following list describes the criteria that we followed to
comparing and reviewing them. As the table shows, with the support of mobility
and the splitting and merging of networks, Sequence Chain is the only protocol
that fully considers dynamic WSNs.



262 T.S. López and G. Huerta-Canepa

– WSN: If the scheme was developed specifically for WSNs. This characteris-
tics indicates that more concern was put on the constraints of the nodes.

– Mobility: If mobility of nodes is specifically considered.
– Split/Merge: If network split or network merger are supported.
– Unique: If the result of the address assignment is a unique address, without

the need of any additional protocol such as DAD.
– Concatenation: If the assigned addresses are a result of concatenating local

identifiers. This is the technique followed by our proposal.
– Distributed: If the assignment process is distributed (no centralized agents).
– Overhead: The stimated overhead of the address assignment process, includ-

ing duplicate address detection and address look-up costs when applicable.

Table 1. Comparison of relevant addressing protocols

Scheme WSN Mob. S/M Unique Conc. Dist. Overhead

MANETconf [9] No No Yes No No Yes O(n)
DACP [5] No Yes Yes No No Yes O(n)
PACMAN [12] No No No No No Yes O(1) + F (P )‡
DART [6] No Yes Yes Yes No Yes O(logn), O(n)†
L+ [3] No Yes No Yes Yes No O(1), O(logn)†
Yao and Dressler [14] Yes No No No No No F (P ) +O(n)‡
Bhatti and Yue[1] Yes No No Yes∗ No Yes O(1) +O(n)
ZigBee [16] Yes No No Yes No Yes O(1)
Zheng & Lee [15] Yes No No Yes No Yes O(1)
Sequence Chain Yes Yes Yes Yes Yes Yes O(1)

† Address assignment overhead, Address look-up overhead
‡ F (P ) is a function of the probability that the selected address is not duplicated

dependent on the destination agent

3 The Sequence Chain Addressing Scheme

In our previous work [10][11], we proposed an architecture and a set of protocols
that drive the formation of Smart Object (SO) networks. Wireless sensor nodes
were attached to the objects to implement those protocols and to represent the
objects in the architecture. As a requirement, SOs should be able to leave or
join a network at any time, and so the SO network protocols need to support
mobility tailored for the constrained WSNs.

Distributed addressing schemes such as ZigBee [16] or LEADS [8], fix their
address space to a number of bits. Starting from this fixed address space, they
assign addresses by, for example, allowing parents to distribute portions of the
space to their children. This assures global unique addresses and fairness in the
assignment. However, portions of the address space become easily exhausted,
causing the rejection of new nodes while other portions of the space remain
free. Furthermore, even if a low number of nodes are part of the network, their
addresses still occupy the full number of bits, wasting memory in packets and
routing tables and also processing time in address comparison and others.



Efficient Addressing and Routing for WSNs 263

In SC, rather than partitioning a fixed address space we construct addresses
by attaching locally unique identifiers to build a global unique address. Each
parent assigns its children a sequence number that distinguishes it locally from
its siblings. This sequence number is then attached to the address of the parent
to form the final child’s address. This way, any node will be assigned a unique
address in a simple, distributed, hierarchical way. The simplicity of the address
assignment allows SC to provide advanced functionality with relatively low cost.
The proposed addressing scheme has the following properties:

– Hierarchical : Nodes receive addresses organized in a tree structure. The node
from the network that accepts a joining request of a new node becomes a
parent. Hence, senders of joining requests become children.

– Distributed and unique: Each node is responsible for assigning addresses only
to its children. The address that a child receives is derived from its parent
address in a way that makes that address unique for the network.

– Scalable: If a node leaves a network, its address becomes automatically avail-
able for any other node joining with the same parent. The addresses increase
in size as the network becomes bigger. Network merges reassign the addresses
of the network with the smallest number of nodes.

– Low overhead : A parent only needs to know its immediate children to assign
addresses in a unique manner. The addressing scheme provides routing along
the tree with nearly no cost. A node can know how many hops it is away
from any destination by just analyzing the destination address, and parents
can route packets following the tree by just comparing their address with
the packet’s destination address. Additionally, parents can provide shortcuts
to the destination by routing packets to neighbors that are closer to the
destination than following the tree.

3.1 Node Join and Network Merge

As described in our previous work [10], Smart Objects periodically send request
packets to discover other SOs and networks. One of the purposes of those discov-
ery packets is to trigger an address allocation process. When the process is over,
the SO that received the advertisement packet will become the parent, and the
SO that sent the advertisement packet will become a new child of that parent.
This parent/children relationship creates a hierarchical relationship among all
the nodes of a network, resulting in a tree structure. Every parent but the root
of the tree (the first node of a network) assigns local identifiers to its children
in a sequentially increasing order, starting from 0. The root of the tree assigns
itself the address 0, which is both a local and a global tree address. For this
reason, a root starts assigning addresses to its children from 1. To form a global
unique address, a child attaches its local address to the address of its parent. As
a result, the address of every node of a network contains all the addresses of its
parents from its immediate parent to the tree’s root. Since it is not possible to
specify the separation of parent-child portion within the address, the number of
bits used for each child address must be equal in order to ensure that addresses
are unique. This number is a network-wide value and is called bits-per-level



264 T.S. López and G. Huerta-Canepa

(BPL). For example, two bits will provide four children per parent, three bits
eight children, etc. Figure 1 shows an example with two BPL and node addresses
displayed in binary format.

Sequence Chain does not fix the address space but allows addresses to grow in
length as needed (i.e. as the number of the levels of the tree grows), effectively
providing a dynamic address space. An address length (i.e number of bits) is
determined by the level (i.e depth) of the node holding the address and the BPL
variable (length = depth ∗ BPL). Thus each node in the network can know
the length of its own address and the length of the addresses of its parent and
children. Additionally, given any address a node can know the address’ node
depth since the BPL variable is known network wide. Addresses can also be
found in packets, as source and destination end-points, and in neighbour tables
(see section 4). In order to be able to determine the length of arbitrary addresses
and thus be able to extract and process them adequately, the level of the node
to which each address belongs is included together with the addresses. Although
the size of this level field would depend on the maximum desired depth for a
network, 5 or 6 bits (32 and 64 levels respectively) would be enough to fulfil the
needs of networks of millions of nodes while giving enough flexibility for unequal
tree growth. For an evaluation on the SC address lengths please see section 5.2.

Algorithm 1. JoinAdvRequest reception
Input: JoinAdvRequest
Output: JoinAdvResponse
HAL = HighestSOnet#(ListOfRequests + Myself ) ;
if (NetworkID ε HAL) then

SOnet# = SOnet# + Sum(List of AssociationRequest.SOnet#) ;
SOtree# = SOtree# + Sum(List of AssociationRequest.SOnet#) - 1;
Store(List of AssociationRequest.SOtree#) ;
send JoinAdvResponse(NetworkID, SOnet#, ComputeAddress(Address), Address,
NoReverse) to ListOfRequests & children ;

end

Algorithm 2. JoinAdvResponse reception
Input: JoinAdvResponse(NewNetID,SumSOnet#,
NewAddress,ParentAdd,NoReverse)
Output: JoinAdvResponse
NetworkID=NewNetID ;
Parent address=ParentAdd ;
Address=NewAddress;
SOnet# = SOnet# + SumSOnet# ;
if (Reverse) then

MakeChildParent ;
end
if (HaveChildren) then

JoinAdvResponse(NewNetID, SOnet#, ComputeAddress(NewAddress), Address,
NoReverse) to children ;

end
if (HaveParent) then

MakeParentChild ;
send JoinAdvResponse(NewNetID, SOnet#, ComputeAddress(NewAddress), Address,
Reverse) to parent ;

end



Efficient Addressing and Routing for WSNs 265

Network merging is supported by re-assigning the addresses of the network
with the least number of nodes (i.e. the merged network). The number of nodes of
each network is calculated in a distributed way and requires no global knowledge.
The network merging process is very similar to joining individual nodes, and
every new child’s address is computed entirely by its parent according to its own
address and the sequence of the child. The node from the merged network that
serves as the bridge for the merge (i.e. the node that sent the request packet -
JoinAdvRequest) will obtain its new address from its new parent, the same way
as if it was a single node. Once its new address is computed, it will propagate a
re-assignment command to its children, which in turn will propagate it to their
own children. This process will continue until all the nodes of the merged network
are assigned a new address. Join requests may be sent and received by nodes
which are not the root of the tree. As a result, network merging often incurs
in a parent-child misplacement, where links from the merged network must be
reversed in order to keep the hierarchical structure of the tree.

Algorithms 1 and 2 detail the process involved in the joining and merging
of networks. The same algorithm is utilized for both single node joining and
network merge, since a single node is considered as a network which contains
only one node. Sequence Chain also supports the joining of several networks
simultaneously. The ListofRequests variable contains all the requests that were
received by this node in a particular request period.

When a merge occurs, a new network ID must be elected in order to repre-
sent the new network. The election of a new network ID is influenced by the
number of nodes in a network. As mentioned before, the number of nodes also
dictates which one of the networks that are merging will change its addresses.
The SOnet# and SOtree# variables store the total number of nodes of the net-
work and the number of descendants of a given node respectively. The SOtree#
will be used in section 3.2 in order to update the SOnet# variable when a sub-
tree leaves the network. The algorithm generates a JoinAdvResponse, that is
sent to the requesting nodes with the addresses computed as described earlier.
Upon reception, the node receiving the JoinAdvResponse should first proceed
with the changes indicated in the packet: update its Network ID information,
its own address and the address of its parent. The Reverse and NoReverse ar-
guments indicate if the child-parent relationship among the node that sends the
JoinAdvResponse packet and the node that receives it should be reversed, as
explained earlier. Finally, the changes reported by the JoinAdvResponse packet
should also be transmitted to the rest of the nodes of the merged networks. The
algorithm achieves that by sending JoinAdvResponse in a recursive manner until
all the members are notified.

3.2 Node Leave and Network Split

When a network leave occurs, a tree link is broken, in which one of the ends
was a parent and the other one was a child. We assume that both parent and
child become aware of their broken bond in a reasonably low amount of time.
Algorithm 3 depicts what is the procedure when either child or parent notices the



266 T.S. López and G. Huerta-Canepa

broken link. Children that find their parent missing will attempt to find a new
parent from the same network, choosing the parent with the shortest address.
A parent that finds one of its children missing, will first wait for any orphan
node to request to rejoin the network. The algorithm also elects a new network
identifier when needed and updates the node count of both the network and each
node’s subtree. Note how all the procedure is distributed and does not depend
on any node warning about its departure, but just on nodes noticing that their
parent or children are not responding.

Algorithm 3. Leaving procedure
if (Parent missing) then

AnswerList=SearchNewParent(NetworkID) ;
if (AnswerList �= null) then

NewParent=SelectShortestAddress(AnswerList);
MakeParent(NewParent) ;
rejoin=True ;
SOnet#=(SOtree#+1)+NewParent.SOnet# ;

else
rejoin=False; Address=rootAddress; SOnet#=SOtree# + 1;

end
UpdateChildren(Address, SOnet#); CheckNetIDleft() ;

end
if (Child missing) then

SOnet#=SOnet# - (Child.SOtree# + 1) ;
SOtree#=SOtree# - (Child.SOtree# + 1) ;
ListOfOrphans=wait(OrphansToJoin) ;
if (ListOfOrphans = null) then

CheckNetIDleft() ;
else

SOnet#=SOnet#+(Orphan.SOtree#+ 1);
SOtree#=SOtree#+(Orphan.SOtree#+ 1) ;

end
UpdateTree(SOnet#,Difference(SOtree#)) ;

end

4 Sequence Chain Routing

The Sequence Chain addressing scheme provides tree routing by simple compar-
ison of addresses. This is possible due to two simple properties:

– Any node’s address contains the addresses of all its parents towards the root.
– The number of maximum children for each parent is fixed network-wide.

This means that the number of address BPL is fixed.

Let dest be the destination address of a packet and destL the length of that
address. In a similar way, let router be the address of the node that receives
the packet and is asked to route it to the destination, and routerL the length of
that address. Let nbits be the number of BPL and ‘×’ and ‘∗’ the concatenation
and arithmetic multiplication operations respectively. Fundamental properties of
Sequence Chain are:



Efficient Addressing and Routing for WSNs 267

1. destL = nbits∗n, where n ∈ ℵ. In a similar way, routerL = nbits∗m, where
m ∈ ℵ.

2. if dest = x × k and router = x × j, where k �= j, then length(k)+length(j)
nbits

is the number of hops from the router node to the destination. This is also
true if length(x) = 0.

3. if dest = router× y , then the destination is one of the children in router’s
subtree

4. if dest = router× y, and y = z× v, router× z is the next hop to dest, where
length(z) = nbits and z is the local address of one of the children of router.

In the previous properties, x, k, j, y, z and v are portions of addresses and their
length also follow property 1.

The general tree routing operation is then as follows: When a node router

receives a packet and is asked to route it to dest, it first checks if its address
router is contained in the destination address dest. If so, it means that the
destination is in its subtree, and the next hop is computed as in property 4. If
its address is partially contained or not contained at all, the packet must be sent
to its parent.

Fig. 1. Example of routing in Sequence Chain. BPL=2.

It is possible to provide shortcuts to the destination by analyzing the ad-
dresses of the neighbour nodes before proceeding with the general tree-routing.
Neighbour addresses can easily be obtained by overhearing packets at node join-
ing time, routing or link health checking, and storing them in a neighbour table.
Figure 1 shows an simple example of how one routing hop can be saved by
analysing the address of the neighbouring nodes of the origin node of a packet.
Note that this technique can be applied at any point on a routing chain, every
time a routing decision has to be made.

It also worth noting that networks built using the SC addressing scheme can
also benefit from the addressing properties outlined earlier even if tree routing
is not used. For example, in many mesh routing mechanisms, such as AODV
or DSR [4], the initial effects of flooding for routing discovery can be mitigated
by limiting the number of hops that the broadcast will be propagated. In SC
networks, this number can be set to the number of hops between source and
destination nodes if the SC tree routing was used.



268 T.S. López and G. Huerta-Canepa

5 Evaluation

According to section 2, ZigBee is the most similar related work to Sequence
Chain as well as being a widely used industrial standard for WSNs. Therefore,
in this section we will analyse a number of metrics aiming to demonstrate that
our proposed addressing mechanism is superior to ZigBee. The rationale behind
each one of the metrics is detailed on each of the subsections below. The simulator
introduced in [10] was used to obtain all the evaluation results presented in the
following sections. Common parameters of all the simulation scenarios include:

– A square deployment area of 500x500 meters.
– A Sequence Chain BPL of two. This limits the maximum number of direct

children per node to four.
– ZigBee parameters of nwkMaxChildren=4 and nwkMaxRouters=4. In this

way, the maximum number of children is the same as SC, and all the children
are capable of having other children (i.e. being routers) in the same way as
SC. Since the nwkMaxDepth variable very much affects the results, it will be
varied throughout our simulations

– For each simulation scenario, 100 repetitions with randomized node loca-
tions.

The method adopted for the simulations was the following: the programmed
disconnected nodes were positioned randomly in the deployment area, and the
node closest to the center of such area was identified. This node was assigned
the address ’0’ and made part of the tree (root and initiator of the network). For
each other node in an increasing distance from the initiator, a parent node was
selected, which was 1) in the transmission range of the node 2) already part of the
tree and 3) had an available child address. For all the potential parents meeting
these requirements, the parent which was in the lowest level (least depth) in the
tree was selected. After a parent was chosen for a node, the following node was
selected and the process repeated until all the nodes in the deployment area had
searched for a parent.

O
rp

ha
n 

no
de

s

 0  50  100  150  200  250  300Range  0
 20

 40
 60

 80
 100

# of nodes
 0

 20

 40

 60

 80

 100

(a) Orphan nodes

B
its

 p
er

 A
dd

re
ss

 0  50  100  150  200  250  300Range  0
 20

 40
 60

 80
 100

# of nodes
 0
 2
 4
 6
 8

 10
 12
 14
 16

(b) Bits per address

Fig. 2. Average orphan nodes and maximum depth resulting from simulations of SC



Efficient Addressing and Routing for WSNs 269

5.1 Orphan Nodes

Those nodes that are unable to find a parent are considered orphan. Orphan
nodes may appear for two main reasons: no parent was found in the transmission
range of the selected node, or parents were found but they were unable to accept
more children. As a general rule, the smaller the number of orphans that appear
in a random deployment scenario, the better the addresses are being assigned.

Graph 2(a) shows how the average orphan nodes from the SC simulations vary
when both the number of nodes in the simulation and their transmission range
varies. As the graph shows, when the number of nodes increases, the number
of orphan nodes tends to decrease since the density of deployed nodes allows
more nodes to find an available parent. At the same time, the number of orphan
nodes decreases as the transmission range increases, since the chances of finding
available parent nodes also increases. For ZigBee, instead of showing one graph
for each value of nwkMaxDepth, table 2 shows how often the number of orphan
nodes resulting from the SC simulations are higher than, lower than or equal to
those of the ZigBee simulations for each simulated value of nwkMaxDepth. From
Table 2, we see that SC obtains a lower number of orphan nodes for almost any
value of nwkMaxDepth, and that the improvement of SC is lower in the middle
values of nwkMaxDepth.

Table 2. Comparison percentages of orphan nodes between SC and ZigBee

nwkMaxDepth → 1 2 3 4 5 6 7 8 9 10 11 12 13 14
↓ Orphan nodes

SC > ZigBee 0% 1% 2% 4% 7% 9% 11% 0% 1% 1% 1% 0% 0% 1%
SC < ZigBee 81% 75% 53% 23% 16% 10% 9% 13% 32% 40% 45% 49% 52% 55%
SC = ZigBee 19% 24% 45% 73% 77% 81% 80% 87% 67% 59% 54% 51% 48% 44%

5.2 Bits Per Address

ZigBee uses fixed 16 bit network addresses and so can accommodate amaximum of
65536 nodes per network. The address assignment mechanism uses chunks of the
16 bit address space that are assigned by a parent to its children. As a consequence,
children are allocated addresses according to the potential descendants that they
may have. Previously it was shown that random joins tend to producemore orphan
nodes in ZigBee, which fixes its addressing space for each child. Also, if the number
of nodes per network is not very high, fixed large addresses waste valuable memory
space both in the nodes themselves (e.g. in neighbour tables) and in the protocols
that use the addresses for communication (e.g. message exchange). SC allows the
increase of address lengths on demand when the number of nodes increases, as
long as the number of BPL is respected. This strategy not only produces shorter
addresses, but also provides more flexibility by not limiting the maximum number
of nodes in any part of the addressing tree.

Graph 2(b) shows the variation of the number of address bits as both the num-
ber of nodes and their transmission range are varied. Results show that the Se-
quence Chain addressing scheme always produces shorter addresses than ZigBee



270 T.S. López and G. Huerta-Canepa

(i.e under 16 bits). Addresses are longer for high number of nodes and relatively
low ranges. These conditions coincide with the location of the deepest trees, and
therefore with the longest routes (Graph 3(a)). Only 19% of the addresses gener-
ated by SC are longer than 8 bits, whichwould be beneficial even in case of memory
restrictions (for example if a byte is the minimum addressable memory portion).
Note that even if we consider the 5 or 6 bit level field needed to calculate an ad-
dress length as part of its bit count (as mentioned in section 3.1), the resulting
address lengths are still 25 to 30 per cent shorter than those of ZigBee.

5.3 Tree Depth and Routing

Nodes looking for parents to join the tree always choose the candidate which
is located in the lowest level of the addressing hierarchy. However, depending
on the addressing scheme, the list of candidates may differ and the trees depth
might grow in different ways. Trees with larger maximum depths are potentially
less efficient, since messages have to traverse longer distances from the origin
to the destination if the addressing tree is followed for routing. We analyzed
the performance of tree routing between Sequence Chain and ZigBee by mea-
suring the number of hops between origin and destination nodes on randomized
communication scenarios. For each deployment scenario, addressing trees were
formed for both Sequence Chain and ZigBee addressing schemes. Finally, origin
and destination were randomly chosen and communication simulated between
them. This last step was repeated fifty times, and the average number of hops
was recorded for those repetitions.

N
um

be
r 

of
 H

op
s

 0  50  100  150  200  250  300Range  0
 20

 40
 60

 80
 100

# of nodes
 0

 1

 2

 3

 4

 5

 6

(a)

N
um

be
r 

of
 H

op
s

 0  50  100  150  200  250  300Range  0
 20

 40
 60

 80
 100

# of nodes
 0
 1
 2
 3
 4
 5
 6
 7

(b)

Fig. 3. Average number of hops with randomized routing scenarios using the SC with
shortcut 3(a) and ZigBee 3(b)

Table 3. Distribution of simulated average route lengths for different tree depths

nwkMaxDepth → 1 2 3 4 5 6 7 8 9 10 11 12 13 14
↓ Average n�of hops

SCshortcut > ZigBee 89% 36% 23% 15% 12% 9% 10% 4% 15% 23% 25% 26% 26% 27%
SCshortcut < ZigBee 8% 61% 74% 82% 85% 88% 87% 92% 82% 74% 72% 71% 71% 70%
SCshortcut = ZigBee 3% 3% 3% 3% 3% 3% 3% 4% 3% 3% 3% 3% 3% 3%



Efficient Addressing and Routing for WSNs 271

Figure 3(a) shows the results obtained by using the Sequence Chain addressing
and routing with the shortcut mechanism. Figure 3(b) show the results using the
ZigBee tree routing. In order to compare these differences with different values of
nwkMaxDepth, Table 3 presents a percentage comparison among these 2 routing
algorithms. Sequence Chain with the shortcut mechanism obtains significantly
shorter routes as compared with ZigBee. We have recorded differences of up to
3.8 hops for some scenarios, which is 3.5 times shorter than ZigBee.

6 Conclusion

In this paper, we present the tree-based Sequence Chain addressing mechanism
for Wireless Sensor Networks. SC proposes a simple and distributed way of as-
signing addresses to nodes inside a WSN, and supports all the features required
by dynamic and mobile environments such as node join and leave or network split
and merge, as well as mechanisms for avoiding address space exhaustion prob-
lems. By means of the hierarchical way in which addresses are assigned, SC can
provide extremely simple and efficient routing along the tree. We demonstrate
that SC provides notable benefits in tree formation and routing, and generally
produces more stable networks than ZigBee, in which the number of orphan
nodes and tree depths is balanced and does not depend on protocol variables or
deployment scenarios. We conclude that the Sequence Chain addressing mecha-
nism is adequate for dynamic and mobile WSNs, and that it provides excellent
performance both in tree formation and in tree routing. Additional results and
an overview of the conclusions on the context of a Smart Objects architecture
can be found in [11].

References

1. Bhatti, G., Yue, G.: A structured addressing scheme for wireless multi-hop net-
works. Tech. rep., Mitsubishi Electric Research Labs Tech. Report (2002)

2. Butler, Z., Rus, D.: Event-based motion control for mobile-sensor networks. IEEE
Pervasive Computing 2, 34–42 (2003)

3. Chen, B., Morris, R.: : Scalable landmark routing and address lookup for multi-hop
wireless networksl+. Tech. rep., MIT LCS Technical Report 837 (2002)

4. Johnson, D., Hu, Y., Maltz, D.: RFC 4728: The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4. The IETF Trust (2007)

5. Elizabeth, Y.S., Sun, Y., Belding-Royer, E.M.: Dynamic address configuration in
mobile ad hoc networks. Tech. rep., Computer Science, UCSB, Tech. Rep (2003)

6. Eriksson, J., Faloutsos, M., Krishnamurthy, S.V.: Dart: Dynamic address routing
for scalable ad hoc and mesh networks. IEEE/ACM Transactions on Network-
ing 15(1), 119–132 (2007)

7. Heo, N., Varshney, P.: A distributed self spreading algorithm for mobile wireless
sensor networks. In: 2003 IEEE Wireless Communications and Networking, WCNC
2003, vol. 3, pp. 1597–1602 (2003)

8. Lu, J.L., Valois, F., Barthel, D., Dohler, M.: Low-energy address allocation scheme
for wireless sensor networks. In: IEEE 18th International Symposium on Personal,
Indoor and Mobile Radio Communications, PIMRC 2007, pp. 1–5 (2007)



272 T.S. López and G. Huerta-Canepa

9. Mesargi, S., Prakash, R.: Manetconf: Configuration of hosts in a mobile ad hoc
network. In: Proc. of INFOCOM 2002, New Yok, NA, pp. 1059–1068 (2002)

10. Sánchez López, T., Kim, D., Huerta Canepa, G., Koumadi, K.: Integrating wire-
less sensors and rfid tags into energy-efficient and dynamic context networks. The
Computer Journal 52(2), 240–267 (2008)

11. Sánchez López, T., Ranasinghe, D., Harrison, M., McFarlane, D.: Adding sense to
the internet of things. Personal and Ubiquitous Computing, 1–18 (2011)

12. Weniger, K.: Pacman: Passive autoconfiguration for mobile ad hoc networks. IEEE
Journal on Selected Areas in Communications 23(3), 507–519 (2005)

13. Weniger, K., Zitterbart, M.: Ipv6 autoconfiguration in large scale mobile ad-hoc
networks. In: Proceedings of European Wireless 2002, pp. 142–148 (2002)

14. Yao, Z., Dressler, F.: Dynamic address allocation for management and control in
wireless sensor networks. In: Proc. of HICSS 2007, p. 292b (2007)

15. Zheng, J., Lee, M.J.: A resource-efficient and scalable wireless mesh routing pro-
tocol. Ad Hoc Networks 5, 704–718 (2007)

16. ZigBee Alliance: ZigBee Specification. ZigBee Alliance (2008)


	A Dynamic and Distributed Addressing and Routing Protocol for Wireless Sensor Networks
	Introduction
	Related Work
	The Sequence Chain Addressing Scheme
	Node Join and Network Merge
	Node Leave and Network Split

	Sequence Chain Routing
	Evaluation
	Orphan Nodes
	Bits Per Address
	Tree Depth and Routing

	Conclusion
	References




