

A. Puiatti et al. (Eds.): MobiQuitous 2011, LNICST 104, pp. 209–213, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

POSTER
Adaptive OSGi-Based Context Modeling for Android

Darren Carlson and Andreas Schrader

Institute of Telematics (Ambient Computing Group), University of Lübeck,
Ratzeburger Allee 160, 23538 Lübeck, Germany

{carlson,schrader}@itm.uni-luebeck.de

Abstract. Although contextual information is recognized as a foundation of
self-adapting software, context modeling middleware is often prohibitively
complex and limited to small-scale deployments. To mitigate this complexity,
we are developing Dynamix, a wide-area context modeling approach for
Android. Dynamix simplifies context-aware application development through
an extensible, OSGi-based framework that runs as a background service on a
user’s Android-based device, modeling context information from the
environment using the device itself as a sensing, processing and
communications platform. Context modeling is performed by a tailored set of
plug-ins, which are dynamically provisioned to the device over-the-air during
runtime. User privacy is maintained by a user-configurable context firewall.
This poster introduces Dynamix’s OSGI-based context modeling approach.

Keywords: Ubiquitous computing, Context-awareness, Middleware, OSGi,
Android, Component integration, Reusability, Over-the-air provisioning.

1 Introduction

The rapid adoption of smart-phones, tablet computers and net-books has paralleled a
dramatic increase in the usage of mobile data applications (or “apps”). As apps become
unmoored from the preconceptions of conventional desktop computing, mobile users
expect them to adapt intelligently and fluidly across a broad range of everyday
situations, execution environments and device platforms. However, although
contextual information is widely recognized as an essential foundation of self-adapting
software, context modeling and management middleware is often prohibitively
complex and limited to small-scale deployments [1, 2]. As a consequence, mobile app
developers transitioning from enterprise and desktop scenarios face significant (and
often prohibitive) complexity when creating context-aware apps.

Over the last decade, a variety of approaches have been devised to help insulate
developers from the demands of context modeling and management [3]. Recently,
interest in wide-area context-awareness has generated a variety of techniques that
model preexisting sources of environmental information using the capabilities of the
user’s mobile device [4]. In such scenarios, adaptive middleware is often used to
provide various functionality [5], including sensor abstraction; context modeling and
representation; service discovery and binding; and others. Unfortunately, existing

210 D. Carlson and A. Schrader

adaptive middleware technologies (e.g., OSGi [6]) have been difficult to deploy on
most mobile platforms.

The explosive rise of Google’s Android platform is providing a foundation for
domain-specific mobile middleware based on OSGi. Briefly, OSGi defines a
comprehensive dynamic module system for Java, whereby software functionality is
encapsulated within distinct logical units – called Bundles – that contain both
executable software and metadata. In an OSGi-based application, Bundles are
dynamically woven together at runtime using an OSGi Framework implementation
(OSGi container). In terms of OSGi deployment, Android overcomes previous
mobile platform limitations though a software stack that supports multitasking
(including long-lived background processes), a comprehensive inter-process
communication model and broad Java compatibility. Several recent projects [7-9]
have demonstrated that Android can be effectively used as the foundation of context-
aware applications. These projects benefit from Android’s broad device support and
extensive user base; however, Android developers still lack comprehensive, wide-area
support for sensing, modeling, representing and provisioning context information.

Towards this end, we’re developing a wide-area context modeling approach for
Android, called Dynamix. The foundation of Dynamix is an extensible middleware
framework, which runs as a background service on a user’s device, modeling context
information from the environment using the device itself as a sensing, processing and
communications platform. Context modeling is performed by a tailored set of plug-
ins, which are packaged as OSGi Bundles and provisioned to the device over-the-air
(OTA) during runtime. Context plug-ins are used to insulate app developers from the
complexities of context modeling, which often involve specialized domain
knowledge. Figure 1 provides a high level overview of the Dynamix infrastructure.

Fig. 1. Overview of the Dynamix Infrastructure

 Adaptive OSGi-Based Context Modeling for Android 211

As shown in Figure 1, a Dynamix Framework instance (Dynamix Service) is
situated between the host device’s low-level capabilities (local hardware and platform
APIs) and a set of Dynamix-based applications, which execute in their own runtime
processes. Context modeling is performed on behalf of requesting apps using a
tailored set of context plug-ins, which execute within an embedded OSGi container
hosted by the Dynamix Service. Context plug-ins interact directly with a device’s
underlying hardware, platform APIs and communications facilities within a Plug-in
Security Sandbox, which provides secured access to system resources, user data and
Android services.

Within the Dynamix Service, an embedded OSGi container (Apache Felix) is
managed by a custom OSGi Manger, which provides Dynamix-specific features, such
as plug-in installation and updates; event services (e.g., plug-in installed or updated
notifications); and integrated class-path management (to support plug-in access to
bundled resources, such as images). The OSGi Manager works in tandem with the
Capability Manager to actively prevent the loading of incompatible plug-ins (e.g.,
plug-ins that require unavailable hardware). A multithreaded Bundle installer was also
developed to support parallel plug-in installations, progress notifications and Bundle
verification. Plug-in Bundles can be provisioned from a customizable set of plug-in
repositories. Plug-ins can be manually installed into a Dynamix Service, or deployed
automatically in the background in response to app requests. Figure 2 shows the
Dynamix Service’s Home tab (left) and the Plug-ins tab (right) during a parallel plug-
in installation process.

Fig. 2. The Dynamix Service’s Home and Plug-ins Tabs

Dynamix apps are defined as standard Android applications that incorporate extra
context modeling functionality provided by a local Dynamix Service. Dynamix apps
communicate with the Dynamix Service using an Android Service Connection, which
is a core component of the Android IPC model. Communication is facilitated through
two Dynamix interfaces, which provide a simple way for Android apps to interact

212 D. Carlson and A. Schrader

with the Dynamix Service. The Facade API enables apps to request context modeling
support. The Event API enables apps to receive system notifications and context
events from the Dynamix Service.

Dynamix mediates the flow of context events (from plug-ins to applications) using
a configurable Context Firewall, which enables users to precisely manage the privacy
risk level of the contextual information available to each app. Users define a Context
Firewall policy for each app using preconfigured Privacy Policies and custom
settings. A Privacy Policy assigns an overall trust level to an application, ranging
from blocked (no trust) to highest trust. A trust level determines the privacy risk level
of the context information that it is allowed to flow from plug-ins to an application.
Users can tap on each context plug-in in the Dynamix Service’s user interface to view
a detailed description of the supported privacy risk levels.

After an app has been granted security authorization by the Context Firewall, it
requests context support by creating context subscriptions using the Facade API. A
context subscription is a registration made by a specific Dynamix listener indicating
that it wishes to receive context events of a particular type. During a context
subscription registration, the requested context type is checked against the plug-ins
installed in a Dynamix Service. If the Dynamix Service is able to support the context
subscription type (i.e., it has a compatible context plug-in installed), it sets up the
subscription, initiates context modeling, and informs the app using the Event API. If
context support is not available locally, the Dynamix Service will attempt to
dynamically discover and install compatible context plug-ins using its configured set
of plug-in repositories. Once the context subscription is initiated, the Dynamix
Service sends discovered context information to its registered listeners using an
extensible Context Event object, which contains both event data (i.e., context
information) and event metadata (e.g., context type, event source, string
representation, expiration information).

As a proof of concept, we created and evaluated a prototype implementation of the
Dynamix infrastructure shown in Figure 1. The prototype includes an embedded OSGi
container (Apache Felix 3.2.2) and was tested on several Motorola Milestone,
Samsung Galaxy Tab, and HTC Hero devices. We evaluated the framework’s
abstractions by creating eight example context plug-ins, which ranged in complexity
from simple extensions of existing Android sensor services, to relatively complex
integrations of externally developed proprietary and open-source projects. Prototype
context plug-in functionality includes physiological monitoring; radio signal
detection; geo-location detection; social network profile extraction; orientation
primitives; ambient sound level detection; step detection and step force calculation;
and bar-code scanning. We evaluated the Dynamix Application APIs by developing
and evaluating several sample applications. Overall, five sample Dynamix apps were
developed by several participants. The apps included a range of functionality,
including context event logging; product pricing and reviews; virtual information
space management; health monitoring; social network interaction; and third party
framework integration. Integration of the Dynamix Framework was not observed to
be overly complex, even for developers with little or no Android experience.

 Adaptive OSGi-Based Context Modeling for Android 213

Moreover, the diversity of these initial apps provides encouraging indications that
Dynamix can be used in a variety of wide-area scenarios.

Dynamix (formerly Aladdin) is developed within an Ambient Assisted Living
project supported by the Federal Ministry of Education and Research (BMBF),
Germany. ID: 16KT0942. For more information, please see http://www.smartassist.de
[10] and http://dynamixframework.org.

References

1. Want, R., Pering, T.: System challenges for ubiquitous & pervasive computing. In:
Proceedings of the 27th International Conference on Software Engineering, St. Louis, MO,
USA (2005)

2. Davies, N., Gellersen, H.-W.: Beyond Prototypes: Challenges in Deploying Ubiquitous
Systems. Pervasive Computing 1(1), 26–35 (2002)

3. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

4. Carlson, D., Schrader, A., Busch, D.: Modular framework support for context-aware
mobile cinema. Personal and Ubiquitous Computing 12(4), 299–306 (2008)

5. Endres, C., Butz, A., MacWilliams, A.: A Survey of Software Infrastructures and
Frameworks for Ubiquitous Computing. Mobile Information Systems 1(1), 41–80 (2005)

6. OSGi Service Platform Release 4,
http://www.osgi.org/Specifications/HomePage

7. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an
expression-based context framework for Android. In: Proceedings of PhoneSense (2010)

8. IST-MUSIC Consortium. IST-MUSIC: Context-aware self-adaptive platform for mobile
applications, http://ist-music.berlios.de

9. Appeltauer, M., Hirschfeld, R., Rho, T.: Dedicated Programming Support for Context-
Aware Ubiquitous Applications. In: Proceedings of the International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies, Valencia, Spain
(2008)

10. Schrader, A., Carlson, D., Rothenpieler, P.: SmartAssist - Wireless Sensor Networks for
Unobtrusive Health Monitoring. In: Proceedings of the 5th Behaviour Monitoring and
Interpretation Workshop at the 33rd German Conference on Artificial Intelligence (KI 2010),
Karlsruhe, Germany (2010)

	POSTER Adaptive OSGi-Based Context Modeling for Android
	Introduction
	References

