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Abstract. Today, power consumption is a main limitation for mobile
phones. To minimize the power consumption of popular and tradition-
ally power-hungry location-based services requires knowledge of how in-
dividual phone features consume power, so that those features can be
utilized intelligently for optimal power savings while at the same time
maintaining good quality of service. This paper proposes an unsuper-
vised API-level method for power profiling mobile phones based on ge-
netic algorithms. The method enables accurate profiling of the power
consumption of devices and thereby provides the information needed by
methods that aim to minimize the power consumption of location-based
and other services.
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1 Introduction

Today, mobile phones include more and more positioning and sensor technologies
such as GPS, cellular positioning, accelerometers and compasses. This develop-
ment enables location-based services that aim to provide high-end user experi-
ences, such as location-based search, games, sports trackers, social networking
and activity recognition [12]. However, the power consumption of such location-
based services is in many cases above 1 watt, which is twenty times higher than a
mobile phone’s standby consumption and thus significantly shortens the battery
lifetime [9]. The high consumption requires frequent battery recharges which is
often inconvinient, or, for instance in deserted areas, not possible. Therefore,
power consumption inhibits the use of many promising always-on location-based
services. The problem can only to a small extend be addressed by lowering hard-
ware consumption because it is the total use of the hardware by software that
is the problem in the same manner as faster CPUs alone do not lead to fastest
answers if an inefficient algorithm invokes the instructions on the CPU. Our
previous studies [8,10,11] have shown that power savings are possible if posi-
tioning and sensor technologies are managed in a smarter way: up to 73% for a
continuous moving device and up to 95% for a periodically moving device.

To successfully minimize power consumption requires knowledge of how much
power a specific phone feature consumes and how fast it powers on and off. To
understand the power consumption of mobile phones one could as a first step
consult their specifications (e.g. [13]). However, these will often not give the
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full picture, because values are missing (e.g. the power consumption for CPU
operations) and dynamic aspects are not considered. The dynamic aspects are
due to that features do not instantly power on or off, e.g., a 3G radio needs
several seconds to power on before it is able to send or receive data. Similarly,
also the radio powering off does not happen instantly, due to a prior initiation of a
proper disconnection, maybe preceded by a short period of waiting for a potential
next radio request. Therefore, the power consumed for sending or receiving data
cannot be simply modeled as a static value, which is applied just for the span of
the actual sending period. Similar holds for other phone features, e.g. for the in-
phone GPS during the acquisition of a positioning fix. A solution for accurately
modeling dynamic aspects of power consumption is via power profiling a device
to learn the dynamic behavior of its features. However, a manual approach to
power profiling has the drawback that it does not scale, considering that many
of the different mobile platforms and models currently existing may soon be
outdated and replaced by newer models. Even worse, a power model may even
sooner be invalidated just by a software upgrade that alters the phone model’s
power profile. E.g., we observed for Symbian phones, that power consumption
for location based services changes by more than a factor of two with the OS
version, which is amongst others related to how often GPS assistance data is
requested over the cellular network in the different OS versions.

Efforts to manually power profile recent smart phones can be found in Carroll
et al. [5], Rice et al. [15] and Zhang et al. [16], all of which employed external
hardware, and our earlier work [11], which utilized software APIs. To use a power
model proactively it must be able to predict future power consumption; this is
enabled by our model based on conditional functions presented in [11], whereas
the linear model proposed by Dong and Zhong [6] and Zhang et al. [16] depends
directly on system level metrics inhibiting prediction, since the model can not
over time prescribe changes of the metrics and thereby of the modeled power
consumption. Zhong et al. [6] recognize the need for unsupervised power profiling
but also do not provide a model that enables prediction.

This paper proposes PowerProf, an unsupervised method for power profiling
mobile phones based on genetic algorithms. Genetic algorithms, operating on
profile measurements collected on the phone, are utilized to estimate a power
model consisting of a set of conditional functions. This method enables accurate
profiling of the power consumption on a wide selection of devices and thereby
provides the information needed by methods that reduce the power consumption
of location-based services. The proposed method has been evaluated on several
generations of phones (N97, N8, C7) and has generated models that can predict
the power consumption for the mentioned devices with a high accuracy.

2 Related Work

The power consumption of smart phones has been studied from several angles
to provide measurement tools, analysis results and models of power consump-
tion. Rice et al. [15] propopes a mobile measurement tool for decomposition of
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the power consumption of smart phones by designing an artificial measurement
battery. Carroll et al. [5] provide an analysis based on external measurement
equipment and Kjærgaard et al. [11] provides an analysis of the power consump-
tion of Nokia phones using measurements from the internal battery interface.

Related work on modeling power consumption can be classified according to
several dimensions. Firstly, according to how the measurements are collected for
building the model: Measurements can either be collected using external equip-
ment or using an internal smart battery interface, if existent, and the respective
choice has a direct impact on the requirements for building new models. Sec-
ondly, according to what type of information the model is built from. A model
for power consumption can be deduced from i) measurements of system uti-
lization, e.g., disk and processor statistics available from the operating system,
from ii) power consumption measurements per system call made to the operating
system, or from iii) power consumption measurements per API call made in a
specific programming language. Thirdly, according to what type of information
the model can provide. The model can enable either solely the estimation of the
current power consumption, or it can allow additionally for the prediction of the
power consumption ahead of time. Fourthly, according to how the model is con-
structed: is it a human supervised process or an unsupervised process performed
entirely by a software component. Table 2 provides a summary of related work
according to these four dimensions.

Kjærgaard [11] PowerTutor [16] Sesame [6] Pathak [14] PowerProf

External x x
Internal x x x x

Utilization x x
System-call x
API-call x x

Estimation x x x x x
Prediction x x

Supervised x
Unsupervised x x x x

In this paper we propose PowerProf that utilizes measurements from the in-
ternal battery of a phone enabling models to be built on user demand, whenever
a new model is needed, e.g. for a new phone type or after a software upgrade
that might alter the power management and thus the power profile of the phone.
Dong and Zhong [6] compared the accuracy of power models constructed based
on measurements from internal battery interfaces versus external equipment and
found that models constructed utilizing internal battery interfaces where only
marginally less accurate than models built from external equipment. PowerProf
builds models that captures the phone’s power consumption per API call issued
in the utilized programming language. This is enabled by utilizing a program lan-
guage API to the battery interface. This API solution enables in-code placement
of power consumption measurements with explicitly defined start and end times,
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which enables optimal synchronization between code timing and measurements.
This in turn allows all code to be placed at the application layer, thus avoiding i)
changes to the operating system such as those needed for detecting system calls
[14], as well as avoiding ii) a strong dependence on the operating system to read
out runtime statistics [6,16]. This also ensures that the resulting PowerProf-built
models capture the logic of a program language interpreter or virtual machine
that can have a large impact on the power consumption as they, e.g., define
how resources are allocated and deallocated. Furthermore, the models built by
PowerProf enable prediction which allows, e.g., sensor scheduling algorithms to
make decisions comparing the predicted power consumption of different possible
actions. The method of PowerProf aims –in agreement with related work– for
unsupervised building of models, but does not require any predefined thresholds
as earlier work uses to separate different power states [14]; e.g., PowerProf’s
modelling is able to identify new states without requiring from them, that they
change the power consumption by more than a given threshold.

3 Automatic Power Profiling

In this section we will present the proposed method PowerProf, which is enabled
by the increasing availability of smart battery interfaces on mobile devices. These
interfaces include software APIs that provide access to measurements of voltage,
current and other battery statistics [6]. The PowerProfmethod requires that a set
of training measurements is collected to build models from. During collection,
relevant phone features are exercised sequentially and independently of each
other. Note, that the collection of these measurements does not require any user
interaction and can thus be carried out when the device is not needed by the user
for other tasks. Alternatively, the training can be performed as an installation
step, thus making the process invisible to device users.1 The training might then
be reapplied if an application detects that an interpreter or operating systems
has been updated to a new version or has been reconfigured, e.g., if the GPS is
reconfigured to use (a different scope of) GPS assistance data.

Overall System Structure. The structure of and the individual steps when ap-
plying the PowerProf system are illustrated in Figure 1. First, a request is sent
to a software API that interfaces with the smart battery to start providing
time-stamped power measurements (1). Relevant phone features are indepen-
dently exercised and time-stamps for the starts of features and for the return of
results are logged (2). Measurements are processed and prepared, and addition-
ally directly observable characteristics are determined, e.g., background power

1 Also, accuracy in power modeling may be further increased through training in
several environment types, e.g. indoors and outdoors, which differ in reception prop-
erties, and thus also in time and energy required for obtaining, e.g. GPS fixes or
GSM communication. Detecting the type of environment, a phone is currently in,
can be done in real-time on-device, e.g. via analysis of GPS reception quality data
[4].
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Fig. 1. Steps of the PowerProf system from measuring to generating power models

consumption (3). A genetic algorithm [7] is used to search for optimal parameter
values for the power model (4). This step is delegated to a server as an extensive
amount of processing is involved in running the genetic algorithm. The fitness
function of the algorithm calculates the difference between the power consump-
tion as predicted by the current model and as actually measured on the device.
Finally, the parameter values resulting from minimizing the fitness function are
used as input to the final power model (5).

Power Model Design. A power model, as built by PowerProf, is given by one
conditional function per phone feature. Such a function models the feature’s
power consumption in dependence of the input parameter t, which resembles
the time span, since the feature was last requested via a programming API call.
Each conditional function is restricted to four power states, defined by four time
parameters t1, t2, tresult and tend where the first two parameters are free vari-
ables and the second two are the time that it takes the function to return, and
the time when the power consumption finally drops to background consump-
tion, respectively. The two free variables t1 and t2 defines the transition times
between state one and two, and state three and four, respectively. The power
consumption for each of the four states is defined by a parameter p1, p2, p3
and p4, respectively. The form of the resulting conditional function is given in
Equation 1, and Figure 2 illustrates an example of the resulting power profile
for such a conditional function. The restriction to four parameters is applied to
decrease the search space when fitting the functions to actual measurements.
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Furthermore, this restriction has been chosen based on the number of power
states identified in our earlier work [11]. If the same function is exercised several
times in the training phase, average values are used for tresult and tend. The drop
to background consumption is detected, when the average power consumption
over three consecutive measurements is below μbackground+σbackground, the sum
of the mean and the standard deviation of the background consumption, respec-
tively. Note, that the this sum is well separated from the power consumption
when using a phone feature, since the latter use considerably more power than
experienced by fluctations in background consumption.

P(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1 if t <= t1

p2 if t > t1 and t <= tresult

p3 if t > tresult and t <= t2

p4 if t > t2 and t <= tend

(1)

t1 tresult t2 tend

p1

p2
p3

p4

t0

Fig. 2. Power Model for a single phone feature

Power Model Construction. The reason for choosing a genetic algorithm for find-
ing model parameters, i.e. an algorithm which searches for an optimal solution
based on the principles of natural evolution, is that it is a well known technique
for finding approximate solutions to intractable parameter optimization prob-
lems [7] and especially to real world optimization problems on the basis of noisy
data, e.g. noisy power consumption measurements.

To apply genetic algorithms, one needs, firstly, to define the format of the
chromosome that has to be evolved towards a solution using the principles of
natural evolution. Secondly, a fitness function is applied iteratively to evaluate
the last generation’s chromosomes, which are developed by the genetic algorithm,
to only let the fittest survive. Our chromosomes consist, as shown in Figure 3, of
the parameters of the power model that need to be found. Thus, a chromosome
consists of six entries for each phone feature to represent the six unknowns in
Equation 1: t1, t2, p1, p2, p3 and p4. Note, that tresult is recorded by in-code
measurement as the time span from API call till the return of the call, and tend
is found as the time till the power drops down to background consumption.
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Fig. 3. Chromosome consisting of parameters for 1...n features

To evaluate the fitness of a developed chromosome C, we use the n training
measurements, which consist of the time-stamps ti, i = 1, . . . n during which
phone features were exercised and the corrsesponding measurements of power
consumptions mi on the phone. From a chromosome C we parametrise a
power model PC and use it together with the training time-stamps to predict
the power consumption during each measurement phase i for i = 0 . . . n, so that
each predicted power value is aligned in time with its actual measurement. The
fitness of the chromosome is then found as the inverse sum of absolute differences
as defined in Equation 2. Therefore, as the differences decrease, the fitness value
will increase.2

fitness =
1

∑n
i |PC(i)−mi| (2)

4 Evaluation

To evaluate PowerProf we have implemented and tested the system on three
different mobile device types. In our evaluation we consider the accuracy of the
respective power models and the dependence of the accuracy on the number
of the training iterations and on the number of generations that the genetic
algorithm is allowed for evolving the chromosomes.

PowerProf has been implemented in python for S60 [2] to run on different mo-
bile devices supporting the Symbian operating system. The implemented Pow-
erProf system consists of the components shown in Figure 1. To interface with
the smart battery interface of the devices we use a python software API that
interfaces with the Nokia energy profiler [1]. The Nokia energy profiler provides
power measurements at the same sample rate of 4 Hz as provided by the python
software API. To implement the genetic algorithm component we utilize the
Pyevolve software library for genetic algorithms [3], using the library’s standard
parameters, which specify a population size of 80 individuals, a mutation rate of
2%, a crossover rate of 80% and that a ranking selector is used. To enable our
evaluation of the dependency between the accuracy and the number of training
measurements and evolved generations, the genetic algorithm part has for the
evaluation been implemented and run on a server.

To evaluate the PowerProf method, we have collected three datasets for each
of the three Nokia Phones N97, N8 and C7. In each dataset we iterate three

2 We decided against the alternative of using squared differences, since the latter
strategy would result in power models that attempt to fit (potentially irregular and
random) spikes in the power consumption, rather than more regular, and thus more
likely reoccuring, patterns.



Unsupervised Power Profiling for Mobile Devices 145

times over the functions for different phone features, where each iteration takes
around five minutes. Table 1 lists the exercised phone features. Note, that for
various applications, further phone features may be of interest. In such cases, the
respective application developer should extend PowerProf’s feature set and its set
of training measurements accordingly. Besides the PowerProf program no other
programs were running on the phone during data collection. The measurements
were collected outdoors, and prior to the measurements a single GPS fix was
obtained, and with it the current A-GPS data, so that we subsequently power
profile only the GPS device, provided that the phone is configured not to obtain
A-GPS data via the radio for every invocation. Note, that the latter A-GPS data,
once obtained, is valid for several hours. The reason for choosing a measurement
duration as long as five minutes is that we need to separate the usage of individual
features by at least thirty seconds to be able to analyse the time it takes the
individual features to power off. The thirty seconds as lower limit was selected
based on prior work [11].

Table 1. Functions for features exercised

Feature Scenario

WiFi WiFi Scanning at 1 Hz during ten seconds to provide
measurements for WiFi positioning

Accelerometer Acceleration measurements for ten seconds at the
hardware-provided frequency

Compass Compass measurements for ten seconds at the hardware-
provided frequency

GSM GSM scanning at 1 Hz during ten seconds to provide
measurements for GSM positioning

CPU Calculate π with 1500 decimals
HTTP Read ’www.google.com’ using an HTTP connection
GPS Receive one GPS position

Before presenting our evaluation we provide with Figure 4 an exemplary com-
parison of the predictions of a model, generated by PowerProf, and real power
measurements for a C7 phone. Generally, as indicated by the overlap of the
two graphs, the predictions match the real measurements with a few exceptions.
One such exception is, that the HTTP feature is predicted to power off too early,
which is due to that both power on and off time spans vary for this feature to
some extent between calls, due to changes in the network characteristics.

To analyse the performance of PowerProf we evaluate it based on the pre-
diction error defined as the difference between the predicted power consumption
and the measured one. We use the three datasets for each phone type, and to de-
vide this data into training and test data we perform three-fold cross validation
where each fold only contains data from one dataset. To evaluate specific aspects
of our approach, we also vary i) the number of iterations included in the datasets
used for training and ii) the number of generations that the chromosomes had
to evolve. Furthermore, we have repeated each genetic evolution three times, so
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Fig. 4. Comparison for a C7 phone of model predictions and real measurements

that the results presented here are less dependent on the random elements of
the evolution process.

Figure 5 shows a cumulative distribution over the prediction errors in each of
the three datasets for each device type. The best performance is achieved for the
C7 and N8 devices. For the N97 datasets the performance is a bit worse with
a higher degree of large errors, the two reasons having been identified as the
background consumption being less stable for the N97 phones, and the power
consumption being often more spiky than for C7 and N8 devices.
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Fig. 5. Cummulative distributions for model accuracy after 200 generations

To evaluate how many generations are necessary for our genetic algorithm
to evolve stable chromosomes, we list in Table 2 results in terms of prediction
error of the modeled power consumption for chromosomes evolved for a varying
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Table 2. Results with different number of generations

25 gen. [watt] 100 gen. [watt] 200 gen. [watt] 400 gen. [watt]
Median 95-quantile Median 95-quantile Median 95-quantile Median 95-quantile

C7 0.013 0.159 0.013 0.148 0.013 0.145 0.013 0.145
N8 0.012 0.182 0.012 0.171 0.012 0.172 0.012 0.171
N97 0.015 0.298 0.015 0.290 0.015 0.290 0.015 0.290

Table 3. Results with different number of iterations for 200 generations

1 iteration [watt] 2 iterations [watt] 3 iterations [watt]
Median 95-quantile Median 95-quantile Median 95-quantile

C7 0.013 0.155 0.013 0.154 0.013 0.145
N8 0.012 0.177 0.012 0.166 0.012 0.172
N97 0.015 0.318 0.015 0.294 0.015 0.290

number of generations.3 Generally, the improvement of the models with addi-
tional generations is more significant for the 95-quantile than for the median
prediction errors: To obtain an accurate model for the power consumption for
the respective phone model, which can only be insignificantly improved in fur-
ther generations, 25 (resp. 200) generations seem sufficient, when considering
(the granularity of) the median (resp. the 95-quantile) error measurements.

We also considered the number of training iterations used. Each iteration
contains one set of training measurements for each of the features, listed in
Table 1. The results with one, two and three iterations, as listed in Table 3,
indicate a significant gain in model accuracy by collecting more than one iteration
for the 95-quantile, though not for the median error. The gain is caused by
the extra training measurements increasing the model’s generality and therefore
increasing its ability to predict the test measurements.

Finally, we have also evaluated the model’s performance in a real location-
based-service use-case scenario, featuring more frequent and overlapping fea-
ture usage. For this test, we considered a deployment dataset of our system
EnTrackedT [10], that has been designed to provide energy-efficient user posi-
tion and trajectory tracking. The deployment was conducted with a N97 phone
configured to use A-GPS seldom, and during the experiment the phone logged
both time-stamped function calls within EnTrackedT as well as power con-
sumption. In the following, we compare the power consumption predicted by a
PowerProf-built model for the N97 phone with the measured power consump-
tion. Figure 6 shows both the predicted and measured power consumption during
an experiment where a person was walking in a city area while being position
tracked by EnTrackedT . As we can observe from the figure, the model produced
by PowerProf is able to capture the overall power consumption, whereas occa-
sional spikes are not accurately captured. This is expected as the model will

3 Note, that within PowerProf and given settings, computing one generation took on
average 1.2 seconds on a PC, featuring a Intel X3430 processor and 8GB RAM.
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be unable to capture non-repetitve phenomena. The overall prediction accuracy
for both the previously described experiment and another one, where the tar-
get person was driving in a car, exhibited a median error of 0.143 watt and a
95th quantile error of 0.313 watt. This indicates that PowerProf models power
consumption accurately and that the 95-quantile and worst-case error can be
properly predicted from the PowerProf training measurements, whereas the av-
erage error increased with the more frequent and overlapping feature usage as it
is to be expected when using location based services ’in the wild’.
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Fig. 6. Comparison of predicted and measured power consumption during a try out of
the EnTrackedT system

5 Conclusions

In this paper we presented PowerProf, an unsupervised API-level method for
power profiling mobile phones based on genetic algorithms. The method has been
evaluated for building models of common phone features utilized by location-
based services. Evaluation results provide evidence that the system for the three
tested phone types achieves predictions with high accuracy, with average errors
of 0.012 watt for the median and 0.145 watt for the 95th quantile. Evaluation
results for a real use-case scenario with the energy-efficient position tracking
system EnTrackedT showed an increase in the median error to on average 0.143
watt, but only a slight increase of the 95th quantile error.

Future work items are to evaluate whether the profiling accuracy of PowerProf
can be further increased by extending the search space by adding more states to
each conditional feature function and by experimenting with different strategies
and parameters for the genetic algorithms PowerProf employs. Additionally, we
would like to consider the impact on model accuracy of applying averaging filters
to remove non-periodic power spikes.
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