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Abstract. As plug-in electric vehicles become more widespread, their charg-
ing needs to be coordinated, in order to ensure that capacity constraints are not
exceeded. This is becoming particularly critical as new fast-charging technolo-
gies are being developed that place additional burden on local transformers. To
address this problem, we propose a novel online mechanism in which agents
representing vehicle owners are incentivised to be truthful not only about their
marginal valuations for electricity units, but also about their arrival, departure
and maximum charging speeds. The work extends the state of the art in several
ways. We develop an online, model-free mechanism that handles multi-unit de-
mand per period, thus accommodating vehicles with heterogeneous and flexible
charging speeds; we provide competitive worst-case bounds for our mechanism;
finally, we simulate the proposed online mechanism using data from a real-world
trial of electric vehicles in the UK, showing that using fast charging leads to
significant cost savings.

1 Introduction

Recent advances in battery technology, and pressures to reduce the carbon emissions of
transport, have stimulated renewed interest in electric vehicles (EVs). New hybrid de-
signs, equipped with both an electric motor and an internal combustion engine (that can
be used to drive or charge the battery), address common worries about the limited range
of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales
by 2020, according to a recent Gartner report [7]. However, this potential growth has
generated concerns that if many of these vehicles are plugged in, and charged simulta-
neously, they risk overloading local electricity distribution networks (Shao et al[10]).

To address this problem, a number of researchers have begun to investigate mecha-
nisms to schedule the charging of EVs, such that the local constraints of the distribution
network are not exceeded. For example, Clement, Haesen & Driesen [1] propose a
centralised scheduler which makes optimal use of the network capacity when vehicle
owners truthfully report their expected future vehicle use to the system. However, such
approaches fail to address the fact that owners will likely misreport this information if it
is in their interest to do so (for example, reporting that they require their vehicle earlier
than is actually the case to receive preferential charging). To this end, in this paper we
use online mechanism design, in order to engineer payment mechanisms that provide
incentives for these owners to report truthfully their value for receiving electricity, their
willingness to wait and their maximum charging rate.

P. Coles et al. (Eds.): AMMA 2011, LNICST 80, pp. 100–112, 2012.
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Online mechanism design is an important topic in distributed AI and economics. For
example, Parkes and Singh [8] propose an online variant of the Vickrey-Clarke-Groves
(VCG) mechanism, which uses an MDP-type framework to predict future arrivals. Un-
like their work, the mechanism proposed here is model-free (i.e., assumes no knowl-
edge about the future). Model-free online settings have been considered by Porter [9]
and Hajiaghayi et al. [5], who study the problem of online scheduling of a single, re-
usable resource over a finite time period. We extend this work by considering multi-unit
domains, with preferences described by a non-increasing vector of values.

A different approach for dynamic problems is considered by Juda and Parkes [6].
They consider a mechanism in which agents are allocated options (a right to buy) for the
goods, instead of the goods themselves. The concept of options is promising, but would
need modifications to apply to our setting with perishable electricity units. In addition
to theoretical results, several applications have been suggested for online mechanisms,
including: the allocation of Wi-Fi bandwidth (Friedman & Parkes [3]), scheduling of
jobs on a server (Porter [9]) and the reservation of display space in online advertising
(Constantin et al. [2]).

In recent work (Gerding et al. [4]), we propose the first online mechanism to deal
with the problem of coordinating the charging of a set of plug-in hybrid electric vehi-
cles (PHEVs) under limited supply. This earlier model, however, has several limitations
that we address in this work. First, all vehicles participating in the system are assumed
to have the same charging speed. In fact, given the large numbers of competing man-
ufacturers entering this space, it is likely that domestic EV chargers with a wide range
of maximum charging speeds will become available.1 High performance chargers may
pose additional burdens on the local transmission network and, for a real-world de-
ployment, the allocation model and market design needs to be able to deal with such a
challenge. Moreover, the presence of multiple, asymmetric charging speeds may con-
siderably affect the dynamics of such a market, as they enable different allocations
of the limited network capacity to become feasible. Finally, no theoretical worst-case
bound for the mechanism was presented, whereas such a guarantee is highly desirable,
especially as online allocation leaves some items unallocated to guarantee truthfulness.
Against this background, this paper makes the following contributions to the state of
the art:

– We develop a novel online mechanism that deals with multi-unit demands per time
step, by extending the mechanism proposed by Gerding et al. [4] to accommodate
heterogeneous and flexible charging speeds.

– We provide competitive bounds on allocative efficiency compared to the optimal
offline allocation (which assumes prior knowledge of future arrivals).

– We simulate the proposed mechanism using data from a real-world trial of electric
vehicles in the UK. We show that the use of fast chargers can lead to significant sav-
ings in fuel consumption, and is beneficial both from the perspective of individual
vehicle owners, and for the allocative efficiency of the whole market.

2 Multi-speed EV Charging Model

We consider a setting in which multiple units of electricity are periodically sold at fixed
time steps, t (e.g., once every hour). A unit of electricity is defined as the amount of

1 http://www.pod-point.com/pod-point-homeprovides an example of a domestic
charger that already offers a 2.5 times speed increase over standard chargers.

http://www.pod-point.com/pod-point-home
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kWh when charging at the lowest rate during that interval. Importantly, we assume that
the charging rate can be flexible, and each vehicle has a maximum charging rate (which
depends on the battery and its charger). We assume units to be indivisible, which means
that the charging rate is a multiple of the lowest rate (this is not a limitation since
units can be defined to be arbitrarily small). Moreover, we denote by S(t) the supply
of electricity available for EV charging, i.e. the number of units to be sold at time t.
Note that, since our allocation is essentially greedy (i.e. units are allocated just before
they are they are charged and there is no pre-allocation), this allows us to distribute
electricity coming from uncertain sources such as a shared renewable generator (e.g. a
shared neighbourhood wind turbine). For now, we consider a market for electricity for
EV charging that is separate from that for household consumption, and so S(t) can be
considered the residual supply once household consumption has been removed. Beyond
providing a manageable model, a practical reason for this separation of concern is to
protect one neighbour from higher electricity prices for running regular jobs (lightning,
domestic appliances) in the case that his neighbours have purchased EVs.

Let I = {1, 2, . . . , N} denote the set of agents, each of which operates on behalf of
a single EV and its owner. Vehicles come and go and are not always available for charg-
ing. Furthermore, they can have different maximum charging rates, and their owners
have different valuations for the electricity. Given this, an agent i’s type is described
by the tuple θi = 〈vi, ai, di, ri〉, where vi is the marginal valuation vector, ai and di
are the arrival and departure times (the earliest and latest times that the EV is available
for charging) and ri is the maximum charging rate (i.e., the maximum number of units
agent i can charge at any time t).

Each element vi,k of vi represents the agent’s willingness to pay for the kth unit of
electricity. We assume non-increasing marginal valuations, i.e., vi,k ≥ vi,k+1. This is a
realistic assumption for PHEVs since the first few units of electricity are always more
likely to be used [4]. Furthermore, ai and di define when the agent is present in the
market, where ai is the agent’s arrival or earliest time the vehicle can be charged, and
di is the point of departure, after which the vehicle is required by the owner.

Given this, a mechanism asks the agents to report their types and decides on an ap-
propriate allocation and payment. We denote the reported type by θ̂i = 〈v̂i, âi, d̂i, r̂i〉.
In practice, the arrival report âi is the time at which the owner plugs a vehicle into
the electricity network. At the time of arrival, an agent is also required to report its
marginal valuation vector v̂i. The departure report d̂i is not required in advance and it
simply represents the time when the vehicle is unplugged from its unit. A vehicle owner
may decide to change its (reported) departure time, by simply unplugging her vehicle.

Agents (or their owners) can misreport their availability, for example, by unplugging
the vehicle early or plugging in the vehicle some time after arrival to try and get a better
price. Also, they could report a lower maximum charging rate or higher valuations. Our
aim is to develop a mechanism which is dominant strategy incentive compatible (DSIC),
i.e., agents are best off reporting θ̂i = θi, no matter what other agents report. Formally,
a mechanism is given by the allocation policy π

〈t〉
i (θ̂I |k〈t〉), i ∈ I , which determines

the number of units allocated to agent i at time t, and payment policy xi(θ̂−i|ki), i ∈ I ,
which calculates the total payment on (reported) departure of an agent. We denote by
θI = {θi|i ∈ I} the types of all agents, and θ−i = {θj|j ∈ I, j �= i} all agents
except i. Payments are independent of an agent’s own report.Here, ki is agent i’s
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endowment (number of items allocated) on departure, and k〈t〉 = 〈k〈t〉1 , . . . , k
〈t〉
N 〉 de-

notes the endowment of all agents at time t, wherek〈t+1〉
i = k

〈t〉
i + π

〈t〉
i (θ̂I |k〈t〉).

3 The Online Mechanism

Essentially, our mechanism uses a greedy allocation policy, which allocates available
units to the agents with the current highest marginal valuations (given their current
endowments). While this is not always optimal (since it does not consider the fact that
some agents leave earlier than others), it is generally applicable, as it does not require
information about future arrivals or departures (i.e., it is “model free”).

A key problem, identified in our previous work [4], is that greedy allocation in online
domains sometimes overallocates (given the prices it has to pay, the agent would prefer
to get fewer units than it would be allocated). To address this problem, we correct the
allocation by leaving some units unallocated under well specified conditions, which
we refer to as ‘burning’ units. We consider two types of burning, discussed below:
immediate burning, where units are simply left unallocated (i.e., none of the agents
receive the unit, even if there is a demand for them), and on-departure, where units are
initially allocated using the greedy approach (i.e., the battery is being charged), but then
on departure of the agent, any overallocated units are discharged from the battery. Both
of these have advantages/disadvantages. The model with on-departure burning is more
efficient (i.e., generally burns fewer units) and is also more computationally efficient in
computing the payments. However, it may not be realistic to expect that we can partially
discharge a car’s battery on the departure, so the model with immediate burning may be
more realistic, given the application.

Formally, let the vector b〈t〉
i = 〈v̂

i,k
〈t〉
i +1

, . . . , v̂
i,k

〈t〉
i +r̂i

〉 denote agent i’s reported

marginal values for the next r̂i units, given its endowment k〈t〉i at time t. It is convenient
to think of this as the agent’s bids for the units available at time t. Furthermore, let B〈t〉
denote the multiset of such bids from all agents that are present in the market at time t,
i.e., from all i ∈ I s.t. âi ≤ t ≤ d̂i. The allocation rule is:

Definition 1 (Greedy Allocation). At each time step t, allocate the S(t) units of elec-
tricity to the highest bids in B〈t〉.

To ensure that the payment is report-independent, the mechanism reruns the market
without agent i (from âi onwards, since agent i did not affect the market prior to this
time). Let B〈t〉

−i denote the multiset of the bids placed by all agents in the market at
time t if agent i were removed and the market were rerun from âi ≤ t onwards. In
case |B〈t〉

−i | < S(t), we add a number of zero-valued bids and refer to this enlarged set

as B
〈t〉
−i∪0, to ensure that |B〈t〉

−i∪0| ≥ S(t). Next, we define set operators maxk B and
mink B to return the highest and, respectively, lowest k elements of multiset B (or, if
|B| < k, to return B). Then, we define the externality that agent i would impose on
other agents if it won min(ri, S(t)) out of S(t) units at time t as:

E
〈t〉
i = min

ri
(max
S(t)

B
〈t〉
−i∪0)

Intuitively, the multiset E〈t〉
i here contains the bids from other agents that would lose out

if agent i were to win ri units at time t. Note that the intuition here is the same as in the
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agent 1

agent 2

agent 3

S(t1)=2 S(t )=12

v = 10,8,31 � �

v = 72 � �

v = 13 � �

Fig. 1. Example showing arrivals, departures, and valuation vectors of 2 time units and 3 agents

regular Vickrey-Clarke-Groves (VCG) mechanism, as the total payment corresponds to
the sum of the externalities. However, to compute the overall payments online, we need
to combine these externalities across all time steps in the agent’s active period up to
current time t. To do this, we define an ordered vector of prices, p〈t〉−i , as follows:

p
〈t〉
−i = incr

(⋃t
t′=ai

E
〈t′〉
i

)
,

where incr is an operator that orders elements from a multiset in increasing order, and
we use the union symbol to denote the union of multisets (and so the same element can
appear multiple times). Now, p〈t〉−i,k is the price that agent i is charged for the k-th unit
of electricity. Intuitively, this is the minimum valuation that the agent could report for
winning this unit by time t. Note we use p−i,k to denote this price at time d̂i. Given
this, the mechanism is as follows.

– Decision Policy. The decision consists of two stages.
Stage 1. At each time point t, pre-allocate using Greedy Allocation (see Defini-
tion 1).
Stage 2. We consider two variations of when to decide to burn pre-allocated units:
• Immediate Burning. Leave any unit unallocated whenever the price for this

unit is greater than the marginal value, i.e., whenever:

v̂i,k < p
〈t〉
−i,k for k〈t〉i < k ≤ k

〈t〉
i + π

〈t〉
i

• On-Departure Burning. For each departing agent, discharge any unit k ≤ ki
where v̂i,k < p−i,k.

– Payment Policy. Payment always occurs on reported departure (i.e., when the
owner/agent unplugs the vehicle). Given that ki units are allocated to agent i, the
payment collected from i is:

xi(θ̂−i|ki) =
∑ki

k=1
p−i,k (1)

Figure 1 illustrates the mechanism through an example with 2 time steps and 3 agents,
showing the agents’ arrival, departure and valuations. Suppose furthermore, that supply
is S(t1) = 2 and S(t2) = 1. Now, consider 2 distinct cases:

The maximum charging speed of agent 1 is r1 = 1.2 In this case, at most one marginal
value is taken from each agent. At time t1, marginal valuations v1,1 = 10 of agent 1,
and v2,1 = 7 of agent 2 are allocated, while at time t2, marginal value v1,2 = 8 of agent

2 Note that the other 2 agents only desire one unit, so their maximum charging speed is irrelevant
in this example.
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1 is allocated. The prices charged to agent 1 are: p−1 = 〈0, 1〉, because without agent
1 in the market, there would be a free, spare unit at time t1 and the available unit at t2
would sell to agent 3 for 1. No units get burnt in this case, and the actual allocation is
actually equivalent to the optimal offline allocation.

The maximum charging speed of agent 1 is r1 = 2. Then, at time t1, the greedy
mechanism described above allocates the 2 marginal values of agent 1: v1,2 = 10 and
v1,2 = 8, as they are both higher than v2,1 = 7, and agent 2 drops out of the market.
At time t2, the unit is again allocated to agent 1 (due to the marginal value of 3 being
higher than 1). However, now the marginal payments vector required from agent 1 is
p−1 = 〈0, 1, 7〉, while the marginal valuations are v1 = 〈10, 8, 3〉. Given the prices,
agent 1 prefers 2 units to 3 (because 10 + 8 − 1 > 10 + 8 + 3 − 1 − 7), so the third
is burnt. The overall market efficiency is lower, as the third available unit is now burnt,
whereas with r1 = 1 it was allocated to agent 2. Note, however, that even though the
efficiency is much lower, agent 1 has an incentive to declare its true maximum charging
speed r1 = 2 as, in this case, its payment does not change.

4 Truthfulness Properties

In this section, we discuss the incentive compatibility properties of our mechanism
under the following assumption:

Limited Misreports: Agents cannot report an earlier arrival, a later departure, or a
higher charging rate, i.e., âi ≥ ai, d̂i ≤ di, r̂i ≤ ri must hold.

In our domain, this is a reasonable assumption since a vehicle owner cannot physi-
cally plug in her vehicle before it is available or unplug it after the actual departure.
Note that the assumption r̂i ≤ ri is natural for EV charging. While most electric
batteries can be configured to charge at a slower rate, charging them at a faster rate
than the one allowed by the manufacturer might destroy them. As the battery is an inte-
gral and expensive part of an EV, this by itself acts as a natural deterrent. An EV agent
may strategise by reporting a r̂i lower than its true maximal speed, but we show truthful
reporting of ri is a dominant strategy. Given this, we can state the following:

Theorem 1. Assuming limited misreports, and given the decision and payment policy
as described above, reporting θ̂i = θi is a dominant strategy for ∀i ∈ I .
Proof Sketch:The proof for this theorem has 3 parts:

1. Showing that, after fixing any tuple of 〈âi, d̂i, r̂i〉, reporting the valuation vector
v̂i = vi truthfully is dominant strategy incentive compatible (DSIC).

2. Showing that for any fixed 〈v̂i, r̂i〉 (and under the limited misreports assumption
âi ≥ ai, d̂i ≤ di), reporting truthfully âi = ai, d̂i = di is DSIC.

3. Showing that for any fixed 〈v̂i, âi, d̂i〉, using the limited misreports assumption
r̂i ≤ ri, reporting truthfully the maximum charging rate r̂i = ri is DSIC.

The first two parts can be shown by using the same proof techniques as in [4]. For the
third part, we can show that the vector of marginal payments p〈r̂i〉 (computed given the
report r̂i) will always contain a subset of the elements from the vector p〈ri〉

−i (computed
given the truthful report ri), because r̂i ≤ ri. Thus, either an agent gets the same alloca-
tion, but pays less by reporting a higher speed (because the pi vectors are increasingly
ordered, and the payment is the sum of the first ki units allocated), or the agent is allo-
cated more units but then those additional units are needed, given the prices (otherwise,
burning would apply).
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5 Theoretical Bounds on Allocative Efficiency

An important question given the online allocation with burning proposed above is how
the allocative efficiency compares to that of an optimal offline allocation (i.e., assuming
full knowledge of the future). To answer this, we consider the cases with immediate
burning and on-departure burning separately. For the case of immediate burning, we
can show that no lower bound can be established through an example:

Example 1: Let an agent Asyn with marginal valuation vector vsyn = 〈v1, v2, . . . , vn〉,
where marginal valuations are strictly decreasing, i.e., v1 > v2 > .... > vn. Assume
supply is S(t) = 1 for all t, and at each time step, one other “local” agent is present
for that time step only and desires a single unit. The valuation of the first local bidder
is v1 = 〈v1 − ε〉, the valuations of the next two are v2,3 = 〈v2 − ε〉, the next three
v3,4,5 = 〈v3 − ε〉, and so on, where ε is an arbitrarily small quantity. In other words,
each marginal value vk − ε appears exactly k times.

In this example, agent Asyn is pre-allocated every unit, but for each valuation vk, the
first k − 1 pre-allocated units are burnt, with only the last unit being allocated (due to
the expandingp〈t〉

−i vector). Thus, in the limit, the fraction of units burnt goes to 1, while
the efficiency goes to 0.

For on-departure burning, Theorem 2 provides the following worst-case guarantee:

Theorem 2. The mechanism with on-departure burning is 2-competitive with the opti-
mal offline allocation, for a setting with non-increasing marginal values.

Proof Sketch: In order to establish a competitive bound with the optimal offline allo-
cation, we use a “charging argument”’ similar to Hajiaghayi et al. [5].3 The basic idea
is to “charge” (or match) all the marginal values of each agent that are allocated in the
offline case with one or more values allocated online. Specifically, let voff

i,k denote the
k-th marginal value of agent i that is allocated in the offline case. In the following we
say that a unit is satisfied (or allocated) in the online case if it is actually allocated to
agent i by the greedy mechanism and not burnt on departure.

Consider each marginal value voff
i,k from agents i that are allocated in the offline case,

and to “charge” the values as follows: 1. Marginal values allocated both in the online
and offline case are charged to themselves. 2. Marginal values that are allocated in the
offline case, but not in the online case will always be displaced by some higher value
voff
j,p. Note that, since these values could be allocated online and are higher, they must

necessarily also be allocated in the offline case (but this may occur at a different time
than in the online case, when they would displace a lower valued unit). To complete the
charging argument, we need to show what happens to these units w.r.t. burning.

Lemma 1. A marginal utility value voff
i,k that is allocated to agent i both offline and

online cannot be burnt on the departure of agent i in the online market. Moreover, if a
unit voff

i,k is displaced by another unit voff
j,p, the displacing unit voff

j,p cannot be burnt on
departure of agent j.

Proof Sketch: The proof for this lemma relies on comparing the vectors of decreasing
marginal values vi and the payment vector p−i as well as the condition for burning
specified by the on-departure burning decision policy. In summary, one can show by
contradiction that, if a unit voff

i,k is allocated both offline and online, there could not be

3 Here the term “charging” does not refer to electricity charging, but represents the name of a
proof device used in online MD.
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enough higher valued marginal units in agent i’s active interval [ai, di] for this unit (or
a higher valued one) to be burnt.

Given Lemma 1, for all agents i, each marginal value unit that is allocated offline
can be charged at most twice:

- At most once to itself (if it is also allocated online).
- At most once by another unit allocated offline, with a value less than its own, that

it displaced at some time t when that unit was allocated in the offline case (recall that
in the mechanism with on-departure burning, each unit vi,j can be the winning bid at
most once, so it can displace at most one other unit). Thus each unit allocated offline is
charged at most twice, giving the online allocation with on-departure burning and non-
increasing marginal values a competitive bound of 2 with the optimal offline allocation.

Theorem 2 shows the multi-unit demand case with on-departure burning is no worse
in terms of worst-case competitive bound than the case with single unit demand (c.f.
Hajiaghayi et al. [5]) which may seem surprising, given the burning. However, the only
units allocated online which could be burnt online on departure of an agent i are units
of such low value that would not be allocated in the corresponding offline case.

6 Experimental Evaluation

In this section, we apply our mechanism to a range of settings that are based on real data
collected during the first large-scale trial of EVs in the UK. Our experiments examine
two main questions. First, we study how our online allocation mechanism performs
compared to a range of benchmarks as demand for electricity increases in a neighbour-
hood with limited supply. Second, we look at how the gradual introduction of fast-
charging EVs would affect the neighbourhood, both in terms of social welfare (i.e.,
overall fuel savings) and the financial savings of individuals.

6.1 Experimental Setup

We base our experiments on data gathered by the CABLED (Coventry And Birmingham
Low Emissions Demonstration) project,4 which is the first large-scale endeavour in
the UK to record and study the driving and charging behaviours of EV owners. The
arrival and departure times of vehicle owners are generated based on this data. We also
construct the agents’ valuation vectors using the expected travel distances reported by
the project, as well as the fuel and electric efficiencies and battery capacities of typical
plug-in hybrid EVs, such as the Chevrolet Volt or Toyota Plug-In Prius. Such hybrid
electric vehicles have a dual engine, and a per mile driving efficiency, which can be
expressed either in units of electricity or litres of fuel (assuming a standard driving
speed). As such, an agent’s marginal valuation of a unit of electricity corresponds to the
savings in fuel costs that the agent expects to make due to consuming this unit instead
of regular fuel (based on a fuel price of £1.3/litre). For each configuration, 500 or 1000
runs were performed, with the expected driving distance for each vehicle for the next
day being and its entry point into the market being randomized in each run. For full
details, see Gerding et al. [4], where we use the same setup and dataset.

For each experiment, we consider a single day and, to calculate the capacity con-
straints (the supply function S(t)), we divide the day into 24 hourly time steps. For
each time step, we first obtain the overall neighbourhood consumption based on real

4 See http://cabled.org.uk/

http://cabled.org.uk/
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Fig. 2. Units of electricity available for EV charging

data.5 We then consider two possible scenarios. First, when supply is low, electricity is
highly constrained, and we set the capacity limit to 90% of the peak overall consump-
tion, i.e., about 0.9 kW per household. This scenario represents neighbourhoods where
the local transformer can only just support domestic demand with no spare capacity
for vehicle charging during peak hours. Second, for high supply with significant spare
capacity, we set the limit to 150% of peak consumption, i.e., approximately 1.5 kW per
household.

In addition to our mechanism with On-Departure and Immediate burning, we con-
sider a set of benchmark mechanisms.

(i): Random allocates units randomly to agents that have some positive marginal
valuation for them.

(ii): Fixed Price allocates units at random to agents that have valuations greater than
a fixed price and collects a payment equal to this fixed price. The price is chosen a priori
to optimise the expected social welfare (i.e., total fuel savings), given full knowledge of
the agent type distributions.

(iv): Heuristic is a common earliest-deadline-first scheduling heuristic that allocates
units to agents to maximise a weighted sum of the agent’s valuation for the unit and its
deadline. The weights are chosen as for Fixed Price.

(v): Optimal allocates units to optimise the overall social welfare, assuming full
knowledge of all future arrivals.

Note that apart from the Random baseline, these benchmarks assume additional
knowledge either about agent type distributions or even future arrivals, and so they
should be seen as upper bounds for our approach rather than actual realistic alternatives.
Furthermore, only Random and Fixed Price are truthful (DSIC) like our mechanism.

6.2 Result 1: General Trends with Increasing Demand

First we consider the effect of rising electricity demand within a neighbourhood. To
this end, Figure 3 shows the performance of our mechanism in a neighbourhood of
25 households with increasing numbers of EVs.6 These results are for the low supply
setting only, as the variation of EV numbers also changes the supply/demand balance.
We assume that electricity is allocated in units of 3 kWh (the charging rate of a standard

5 We use the average data for domestic households in June 2010, as reported by SCE
(http://www.sce.com/)

6 Note that as this exceeds 25, some households will have multiple cars. We show this to indicate
the effect of very high demand and assume there is no collusion within a household.

http://www.sce.com/
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Fig. 3. Effect of increasing demand for electricity in a small 25-household neighbourhood with
low supply

UK power socket), and that maximum rates are chosen at random from {1,2,3} units,
corresponding to the rates of currently available fast chargers for domestic use. Due to
the computational complexity of the Optimal and Immediate mechanisms, we only plot
those up to 30 and 15 agents, respectively.7

First, the graph on the left shows the daily fuel saving (excluding payments) for EV
owners under the different mechanisms (all results reported are averaged over at least
500 samples and plotted with 95% confidence intervals). This shows that there is little
difference between the various mechanisms when competition is low, as most agents
are allocated; but as demand increases, our mechanism starts to outperform the other
truthful benchmarks (by almost 50%) and achieves 95% or more of the optimal through-
out. Interestingly, our mechanism sustains higher savings per agent for neighbourhoods
with far higher EV penetration than the truthful benchmarks. For example, to guaran-
tee a saving of at least £0.7 (just over half a litre of fuel), the Random benchmark can
support up to 35 EVs, while our mechanism can cope with 50. The graph on the right
shows the overall allocative efficiency achieved in the same setting, normalised to the
optimal (beyond 30 EVs, this is normalised to the Heuristic as a close approximation).

Our principal finding is that online allocation with On-Departure burning achieves
almost the same performance as the Optimal, calculated using full prior information
about departures (the difference is not statistically significant). Moreover, the difference
between our online allocation with Immediate burning and with On-Departure burning
is also not significant. Surprising, given the different theoretical performance bounds of
these policies, and indicates that burning is not a large problem in realistic settings.

6.3 Result 2: Proliferation of Fast-Charging EVs

We now consider in more detail how the presence of fast-charging vehicles affects mar-
ket performance. To this end, we examine a larger neighbourhood of 50 households
with one EV each. We choose this size, because it is realistic and leads to more in-
teresting results, due to increasing likelihood of competition at each time step. Due to

7 Briefly, Immediate is computationally hard, because the price vector p〈t〉
−i has to be computed

at every time step by simulating the market without agent i, and, recursively, for every agent
within that market, as it is needed to compute when burning takes place.
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Fig. 4. Social welfare, individual utilities and units burnt in scenarios with low supply (left) and
high supply (right), as more fast-charging EVs are introduced

their computational cost, we no longer run the Optimal and Immediate mechanisms (but
their performance is similar to the Heuristic and On-Departure, respectively, as shown
previously). To investigate the impact of fast-charging, we assume there are two agent
types — the first, normal, can charge a single unit of 3 kWh per time step, while the
second, fast, are equipped with fast chargers that can charge up to three such units per
time step. Throughout the experiments, we vary the number of fast-charging EVs (out
of the total 50).

Results for this setting are shown in Figure 4. First, we note that the trends for the
two scenarios are different – when supply is low, the introduction of more fast charging
vehicles results only in a small overall improvement in social welfare. However, when it
is high, there is a very marked improvement, with an additional 13–14 litres of fuel per
day being saved by our mechanism as more fast-chargers are present (corresponding to
a saving of around 5000 litres of fuel per year over the whole neighbourhood). This is
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because, at low demand times, there is some spare capacity that remains unallocated,
unless vehicles have a high charging speed.

With respect to the utility of individual agents (including payments to the mech-
anism), we see that agents in both settings always have an incentive to switch to fast-
charging EVs (e.g., by purchasing a domestic fast charger). With low supply, the
expected daily saving when switching to a fast-charging EV is approximately £0.05,
while with high supply, this is around £0.45. In both cases, this benefit is the result
of increasing available supply per time step, as well as increasing the size of the price
vector.

Finally, another benefit of introducing fast-charging vehicles is the reduced propor-
tion of units of electricity that are burnt by our mechanism. In the low supply setting,
the percentage of burnt units is more than halved to less than 1% of all units allocated
(on average 1.5 kWh) when all cars are fast-charging. With high supply, this is even
more significant as only about a third of units are burnt. This reduction is a result of
reduced competition and a larger price vector.

7 Conclusions and Further Work

This work makes several key contributions to the existing literature. On the theoretical
side, we extend the multi-unit, online mechanism proposed in Gerding et al. [4] to
also allow for modeling multi-unit demand per time step, in conjunction with multi-
unit demand over time. For our EV application, this allows us to model more realistic
markets, which include vehicles with heterogeneous charging capabilities. Moreover,
we provide the first theoretical worst-case bounds for multi-unit online mechanisms.
On the practical side, we build a detailed simulation of an EV charging market and
show that our online mechanism performs close to the offline optimal in a variety of
realistic settings. We also show that faster-charging batteries lead to savings in fuel
consumption and increased allocative efficiency.

In future work, we plan to compare the model-free mechanism presented in this paper
with online mechanisms that use a model of expected future arrivals. Moreover, we are
interested in studying whether there are truthful mechanisms for this problem that do
not require monetary payments.
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