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Abstract. The penetration of plug-in electric vehicles (PEV) into near-
future traffic and power infrastructure is expected to be large enough
to have a serious impact on the grid. If each PEV arrives at home and
charges immediately, the distribution network can incur in serious prob-
lems. Therefore, the charging process of the PEVs has to be coordinated,
on the basis of the grid capabilities, generation and pricing. In this pa-
per, we put forward a computational monetary market intended as an
automatic scheduler for the charging problem. The market is designed
so as i) to satisfy the constraints of the distribution network, ii) to guar-
antee a reasonable level of fairness and allocation efficiency, while at the
same time iii) to give the possibility to each PEV to transiently increase
its share of the charging capacity of the local distribution network when
needed.

Keywords: Monetary markets, lottery scheduling, smart grid, plug-in
electric vehicles, exchange rates.

1 Introduction

The rate at which plug-in electric vehicles (PEV) enter the vehicle stock depends
on many factors, including battery cost and reliability, the price of gasoline, and
government incentive programs. However, the penetration of these vehicles is
expected to be large enough to have a serious impact on the grid. For instance,
in [5] it has been estimated that for some scenarios where two PEVs are charging
at the same time on the same distribution network, the addition of a hair dryer
on the same network will seriously stress it. If each PEV arrives at home and
charges immediately, the distribution network can incur in serious problems,
since historically it has not been designed for that kind of electricity intensive
loads. Therefore, the charging process of PEVs has to be coordinated, on the
basis of the grid capabilities, generation and pricing.

One way to address this problem is using time-of-use (TOU) pricing plans to
dissuade PEV owners from charging at peak times, when the distribution net-
work the PEV is plugged to is already close to the maximum capacity. However,
such an approach in inherently static and rely on the response of the human
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owners, who should adapt their behaviour and manually change the time at
which their PEVs have to be charged.

A more advanced way to address the charging problem is automatic schedul-
ing. With automatic scheduling we envision a system where PEVs are equipped
with intelligent agents that are able to negotiate with some infrastructure com-
ponent that controls the local distribution network (e.g., a transformer) in or-
der to charge their batteries, while satisfying the constraints of the distribution
network.

The paper is structured as follows. In Section 2, we detail a list of proper-
ties that our resource management need to satisfy. In Section 3 we discuss some
related works and their limitations. Section 4 formalises the PEV charging prob-
lem. In Section 5 we propose our resource management mechanism for PEV
charging, which is experimentally evaluated in Section 6. Finally, we conclude
in Section 7.

2 Desiderata

In designing a mechanism for the automatic scheduling of PEV charging, we aim
to satisfy the following list of properties:

Starvation-free. The scheduling mechanism must guarantee that all PEVs have
a non-zero probability of charging, at least partially, their batteries.

Fairness and competitiveness. Since different PEVs have different needs, related
to the quantity of electricity they demand or when the electricity is needed, the
scheduling mechanism should give the PEVs the possibility of increasing their
share of the distribution network capacity when needed. However, it is desirable
that no agent can unlimitedly increase this share and that a fair share of the
distribution network capacity is statistically guaranteed to every PEV.

Environments. Power systems are nowadays highly regulated, and in general
consumers pay electricity according to fixed per unit price plans. The proposed
scheduling mechanism must work in regulated environments, where electricity
is paid at a fixed price, as well as in deregulated environments, where dynamic
pricing [3] can be used so as to influence the consumers decision making.

3 Related Work

The problems and challenges posed by the electrification of urban transportation
are quite recent. Therefore, the application of agent-based techniques as the
means of tackling these challenges is still in its infancy.

In [6], an agent-based solution for the automatic scheduling of PEV charging
is presented. This work allows PEV owners to specify the time at which the
PEV will be available for charging, the quantity of energy that must be stored
in the battery, as well as the time at which the PEV is needed to be charged.



90 M. Vasirani and S. Ossowski

Fig. 1. Distribution network with charging spots

The PEV agent communicates this information to the agent that resides on the
local transformer, which performs the automatic scheduling while satisfying the
constraints of the distribution network. In general, such an approach is unable to
dissuade owner to misreport information. For instance, an owner may indicate an
earlier departure time or further travel distances in order to receive preferential
charging. However, if all the agents are truthful, it implicitly guarantees a fair
charging, since the scheduling is performed by the transformer agents that do
not have preferences with respect to the PEVs.

A way to address the above shortcomings is allowing dynamic pricing [3] and
defining incentive compatible market clearing mechanisms, such as in [4]. These
mechanisms aim at providing PEV agent the monetary incentives to truthfully
report their demand vector and the vehicle availability, regardless of the others’
reports. However, this approach has two main shortcomings. The mechanism
occasionally requires units of electricity to be “burned”, either at the time of
allocation or on departure of the agent. The former way of “burning” is more
realistic but it makes the computation of the allocation hard. The latter is eas-
ier to compute, but requires the battery to be discharged on departure, which
may not always be feasible in practice, since discharging is not instantaneous
and the charging spot must physically impede the PEV owner to unplug the
PEV. Furthermore, such an approach is strictly dependent on the possibility of
applying dynamic pricing, while nowadays power systems are highly regulated
and consumers typically pay electricity according to fixed per unit price plans.

4 PEV Charging

We assume a typical configuration of a local distribution network (see Fig. 1).
A transformer device converts the voltage from medium to low. The low voltage
feeds several charging spots (from a dozen to one hundred spots), where PEVs
connect to charge their batteries. We assume that both the local distribution
transformer and the PEVs are equipped with intelligent software agents.
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4.1 Transformer Agent

The transformer agent of the local distribution network is in charge of activating
the spots at which PEVs are connected to enable charging. As part of the infras-
tructure, we assume that the system designer is able to program the behaviour
of this agent, as well as the scheduling mechanism that regulates which charging
spot will be activated. We consider a model with discrete time steps t ∈ T with
fixed duration Δ. For sake of simplicity, we assume that at each time step only
one charging spot can be activated.

4.2 PEV Agent

Let V = {1, 2, . . . , n} be a set of PEVs. For every PEV, let c ∈ R+ be the
quantity of electricity demanded by the PEV, which for simplicity is equal to
the capacity of the battery, a ∈ T the time slot when the PEV is plugged to the
charging spot, and d ∈ T the departure time slot (i.e., the time slot at which
the PEV need to have charged the demanded quantity in the battery). Given the
charge rate γ, it is possible to compute the number of time steps k = c/(γ ·Δ)
at which the PEV needs to be charging. The objective of each PEV is therefore
having its charging spot activated for k time slots after its arrival and before its
departure.

5 Resource Management for PEV Charging

The resource management mechanism we propose is inspired by lottery schedul-
ing [7], a randomised resource allocation mechanism that has been developed for
resource allocation in operating systems. In lottery scheduling resource rights are
represented by lottery tickets, and an allocation is determined by holding a lot-
tery. The agent with the winning ticket is granted the resource. This effectively
allocates resources to competing agent in proportion to the number of tickets
that they hold. Lottery tickets are denominated in different currencies (one
for each PEV), and each currency is backed by a base commodity. Ultimately,
lottery tickets are equivalent to monetary notes, which are issued in different
denominations and are backed by a base commodity (e.g., gold).

5.1 Registration

When a PEV is plugged in the charging spot for the first time, the corresponding
PEV agent registers itself with the local transformer agent. The PEV agent
sends a register message, providing its identification number, assumed to be
unique. The transformer agent confirms the registration, providing the initial
monetary base m of the PEV agent which is determined as follows. Let G be
an arbitrary constant integer value. This value represents the overall quantity
of base commodity that backs the different currencies1. Let q be the number

1 In monetary terms, G is equivalent to the quantity of gold in circulation.
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of charging spots in the local distribution network. The base commodity G is
equally split among the PEVs, so as that each PEV owns a share g = G/q of
the base commodity. This share funds the monetary base m of the PEV agent,
according to the exchange rate r. The exchange rate determines the quantity of
base commodity a monetary note is worth, according to the equation m = r · g

In the registration phase, the initial exchange rate r is set to 1, and
therefore the monetary base m is equal to g. We remark that while G and g are
constant, the monetary basem and the exchange rate r change with time2. In par-
ticular, the monetary base can be expanded by the PEV agent, which issues the
monetary notes, while the exchange rate is set by the transformer agent. The trans-
former agentmaintains a table with the actual values of the base commodity g, the
monetary base m with its currency3, and the exchange rate r.

5.2 Lottery

As said before, we assume a model with discrete time steps t ∈ T with fixed
duration Δ. This means that at each time step one of the charging spots with a
connected PEV must be activated to enable charging for the whole duration of
the time step. Thus, at the beginning of each time step, the transformer agent
sends a proposal, contained in a call for lotterymessage, to all the registered
PEVs. A PEV that wants to participate in the lottery replies with an accept

message and reports the monetary basem, which determines the probability that
its charging spot will be activated. Since the PEV agent control the monetary
base, it is possible that the new monetary base differs from the actual monetary
base that is stored by the transformer agent. In fact, a PEV may try to increase
its relative probability by inflating its monetary base.

The transformer agent then updates the exchange rate of all the PEVs. Let
M t =

∑
i∈V mt

i be the sum of the PEV agents’ monetary base submitted at
time t, G the total base commodity, η ∈ (0, 1] a tunable parameter, and H(·) the
Heaviside step function, whose value is zero for negative argument and one for
positive argument. The PEV exchange rates is updated according to Eq. 1, where
α(mt,mt−1) : R+ ×R+ → (0, 1] is an update step function, which depends on
the new monetary base mt, submitted by the PEV agent, and the old monetary
base mt−1, stored by the transformer agent. The rationale of this exchange rate
update scheme will be detailed in section 5.3.

r ←− r + α(mt,mt−1) ·
(
mt

g
− r

)1+ηH

⎛
⎝mt

g
−r

⎞
⎠
⎛
⎝M t

G
−1

⎞
⎠

(1)

After the update of the exchange rate, also the monetary base of each PEV that
is stored by the transformer agent is updated to the new value mt. Then the
lottery takes place and the transformer agent draws the winner ticket according

2 When necessary, we will use the notationmt and rt respectively to express the depen-
dence of time of these quantities.

3 For simplicity, the currency is set to the ID of the PEV.
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to Eq. 2. The ratio between the monetary base and the exchange rate gives the
probability of a charging spot to be activated.

p(i) =

mi

ri∑

j∈V

mj

rj

(2)

The transformer agent probabilistically selects the winner of the lottery and
notifies the participants about the outcome. After that, the transformer agent
physically activates the charging spot to which the winner PEV is connected.
The PEV then starts charging the battery for the entire duration of the time
slot, and it is charged for the electricity that it draws from the grid according
to a fixed per unit price plan.

5.3 Exchange Rate Update

As said before, the monetary base m of a PEV is related to the base commodity
g through the exchange rate r. For example, let’s suppose that the exchange
rate is 1. In this case, the value of one monetary note equals the value of one
unit of the base commodity. If a PEV agent expands its monetary base by dou-
bling the number of notes, the value of the monetary note should halve, since
the base commodity g that funds the monetary base is constant. However, if
the inflationary adjustment of the exchange rate were instantaneous, an ex-
pansion of the monetary base performed by a PEV agent would not have any
positive effect on the probability of having its charging spot activated: if m is
doubled and r is halved, the probability of winning the lottery remains constant
(see Eq. 2).

For this reason, we perform a delayed update of the exchange rate r, which
enables the PEV agents to transiently increase the probability of having its
charging spot selected. In this way, a PEV that needs urgent charging may try
to improve the probability of actually being allowed to charge. Analysing Eq. 1,
we can distinguish three cases:

1. When the actual exchange rate r is lower then m/g, it means that the ex-
change rate is being adjusted towards the “true” exchange rate as a reaction
to the expansion of the monetary base performed by the PEV agent. In this
case, the update step function α plays a central role. A value of α close
to 0 considerably delays the inflationary adjustment. On the other hand, a
value of α close to 1 implies an almost instantaneous inflationary adjust-
ment, which in practice impedes the inflationary agent to actually increase
its probability of being able to charge. In this work, we implement a relative
update step function. With this function, the update step increases with the
expansion of the monetary base (see Eq. 3). The minimum update step is
set to a constant value β ∈ (0, 1], while the degree of increase is determined
by another constant parameter ρ ∈ R+
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α(mt,mt−1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β if 0 <
mt

mt−1
≤ 1

1− (1− β)e
ρ−ρ

mt

mt−1 if
mt

mt−1
> 1

(3)

Additionally, when r < m/g the Heaviside function H (·) returns 1, which
implies that the adjustment that is done towards the “true” exchange rate
is raised to a power exponent that depends on the ratio between the overall
monetary base of all the agents (M t) and the total base commodity (G). This
exponent penalises excessive inflation, which in turn makes the monetary ex-
pansion not effective4. The constant parameter η implicitly determines from
which extent the overall expansion of the monetary base starts to be detri-
mental for the inflationary agents, actually reducing, rather than increasing,
their probability of winning the lottery.

2. When the actual exchange rate r is greater then the “true” exchange rate
m/g, it means that the exchange rate is being reduced towards the “true”
exchange rate, as a reaction to an eventual deflation of the monetary base
performed by the PEV agent. In this case, α(mt,mt−1) is constant and equal
to β, and the Heaviside function returns 0, so as the adjustment is raised to
the power of 1.

3. When the actual exchange rate r is equal to the “true” exchange rate m/g
no adjustment takes place.

6 Experimental Evaluation

In this section, we empirically evaluate our proposed mechanism. The objective
of the experiments is assessing allocative efficiency of the resource management
mechanism, as well as the social welfare of the PEV agents.

The allocative efficiency (φ) refers to how close to satisfy the aggregated
demand is the resource management mechanism. The demanded electricity is
represented by the overall capacity of the PEV batteries. Given that only one
PEV can charge in a single time slot, satisfying the aggregated demand is not
always possible, since it depends on the number of PEVs. Let smax be the maxi-
mum feasible supply, which can be computed by a centralised scheduler with full
knowledge of the aggregated demand and the arrival and departure time slots5.
Finally, let s be the supply provided by the resource management mechanism,
given by the summatory over the state of charge of the PEV batteries at the end
of the time window. The allocative efficiency is therefore φ = s/smax.

4 In fact, expanding the monetary base is effective only if a certain subset of the PEV
agents acts in that way.

5 Due to lack of space, we omit the detail of the optimal computation of smax.
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There are manifold measures of social welfare, given some utility function ui,
to assess the overall quality of an allocation [2]. Let bi be the battery state of
charge at the end of the time window, and ci the demanded electricity, i.e., the
capacity of the battery. We define the PEV utility as ui = bi/ci. The social wel-
fare metrics we use are the utilitarian social welfare, σu, and the Nash product,
σN (Eq. 4). The utilitarian social welfare is simply the average of the utility
gained by each PEV. The Nash product is the product of the utilities of each
agent. This notion of social welfare favours both increases in overall utility and
inequality-reducing redistributions.

σu =
1

|V| ·
∑

i∈V
ui σN =

∏

i∈V
ui (4)

6.1 Experimental Setup

In the experimental setup we assume that charging occurs within a fixed time
window of 12 hours (e.g., from 8PM to 8AM of the next day), divided in time slots
of Δ = 1 min. Therefore, the set of time slots is T = {1, 2, . . . , 720}. The local
distribution network is equipped with fast charging spots that provide a power
of 40kW (400V@63A), which is a common standardised socket in European
three-phase networks. A PEV is connected to each charging spot, with a battery
capacity uniformly drawn from 15− 25kWh. This implies that each PEV needs
22.5−37.5 min of charging. For each PEV, the arrival time slot a is drawn from a
half-Gaussian probability distribution over the interval [1, 720], with mean equal
to 1 and standard deviation of 60 time slots. Similarly, the departure time slot d
is drawn from a half-Gaussian probability distribution over the interval [a, 720],
with mean equal to 720 and standard deviation of 60 time slots. This means that
68.2% of the PEVs arrive in the first hour of the time window (e.g., from 8PM
to 9PM) and departure in the last hour (e.g., from 7AM to 8AM).

As said in section 5.2, at the beginning of each time slot a PEV agent must ac-
cept or refuse to participate in the lottery. After receiving the call for lottery

message, the PEV agent checks the state of charge of its battery and if the bat-
tery is not full it sends an acceptmessage, which includes the reported monetary
base. The real decision making of the PEV agent relies on the selection of the
monetary base included in the accept message. In this evaluation, we conceive
two different strategies: Zero-Intelligence and Some-Intelligence.With the
Zero-Intelligence (ZI) strategy a PEV agent simply submits the monetary
base that was set in the registration phase. With the Some-Intelligence (SI)
strategy the PEV agent inflates its monetary base with a certain probability pd:

pd =

(

1− d− t

d

)

(5)

where t is the time slot at which the lottery is taking place and d is the departure
time slot. The rationale of the probability pd is that the closer the PEV is to
the departure, the higher the probability of inflating the monetary base, trying
to increase the likelihood of winning the lottery.
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(a) Allocative efficiency (b) Demand and supply

Fig. 2. Efficiency metrics

We perform experiments for different values of β, ρ and η for the exchange
rate update step function, and different compositions of the set of PEV agents,
according to their strategies. For each experimental configuration, we run 100
trials and we compute average values of the metrics of interest. All error-bars
denote 95% confidence intervals.

6.2 Results

Fig. 2(a) shows the allocative efficiency of the resource management mechanism.
These results have been obtained for β = 0.1 and ρ = 0.5, although similar
dynamics have been obtained with different combinations of these two values.
It is noticeable how the mechanism guarantees a quite high allocative efficiency.
Furthermore, as the number of PEVs increases, the allocative efficiency tends
to 1, since the highest feasible supply is reached when more than 25 PEVs are
connected to the distribution grid (see Fig. 2(b)). To evaluate the allocative
efficiency we used a population entirely composed of ZI agents. We remark that
the specific strategy followed by the PEV agent does not affect the value of the
aggregated demand that is satisfied, but rather how the aggregated demand is
individually satisfied among the agents.

Additional interesting insights can be derived from the analysis of the social
welfare metrics. In these experiments, we are interested in determining how
the utility of an allocation is distributed among the agents, depending on the
strategies followed by PEV agents. Therefore, we run experiments with different
percentages of SI agents of the total population of PEVs, while the rest of the
agents follow the ZI strategy.

Fig. 3(a) to 3(d) plots the utilitarian social welfare for different compositions
of the set of PEV agents. These results have been obtained for β = 0.1, ρ = 0.5
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Fig. 3. Utilitarian social welfare

Fig. 4. Nash product

and η = 10−27. It is possible to notice how the SI strategy is not beneficial
when 50% of the agents use that strategy. If too many agents opt to play the
SI strategy, the excessive inflation of the overall monetary base makes playing
that strategy detrimental, since inflating the monetary base actually decreases
the probability of having the PEV’s spot selected for charging.

Fig. 4(a) to 4(d) plots the Nash product for the same experimental config-
uration. Again, the SI strategy does not perform well when 50% of the agents
(or more) play that strategy. Therefore, given the parametrisation used in these
experiments, there exists a particular splitting of the agent into two groups, ZI
agents and SI agents, which represents an equilibrium condition, under which
the utility gained by the SI agents must equal the utility gained by the ZI agents.

6.3 Learning to Select the Best Strategy

As highlighted by the social welfare analysis of the previous section, it is clear
that PEV agents are faced with the problem of selecting a suitable strategy.
Let’s suppose the restricted case in which each agent must pick on of the two
strategy, ZI or SI, when the PEV is plugged to the charging spot. If we consider
a one-shot encounter (i.e., a single charging period, from 8PM to 8AM of the
next day), it is hard for a PEV agent to speculate about the best strategy. In
fact, playing the SI strategy may not be beneficial if many other PEV agents do
the same, as a sort of minority game [1].

Therefore, we setup a learning scheme that is used by the agents to select,
at the beginning of each charging time window, the strategy to follow. Let u(y)
be the current estimate of the agent utility that is obtained if strategy y ∈ Y
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Fig. 5. Learning to pick the best strategy

is followed, where Y is the set of possible strategies. When the PEV is plugged
to the charging spot, the PEV agent selects the charging strategy according to
the Boltzmann probability distribution π (see Eq. 6), where T ∈ (0, 1] is the
“temperature” parameter used to enforce convergence over time.

π(y) =
eu(y)/T

∑

y′∈Y
eu(y

′)/T
(6)

After having selected strategy y, we assume that for the entire duration of the
time window the PEV agent will adhere to this strategy. At the end of the time
window, the PEV agent computes the utility that it obtained and updates the
estimate using the formula:

u(y) = u(y) +
1

w + 1

(
b

c
− u(y)

)

(7)

where w is the number of times the strategy y has been selected so far, b is the
battery state of charge at the end of the time window, and c is the available
capacity.

To evaluate the outcome of such a learning scheme, we simulate a scenario
with 40 PEVs, whose strategy space is Y = {ZI,SI}. At the beginning, each PEV
agent is assumed to play the ZI strategy. We also assume that for each PEV agent
the initial estimate is u(y) = 1 ∀y ∈ Y. As before, we set β = 0.1, ρ = 0.5 and
η = 10−27. The temperature T is initialised to 1 and reduced geometrically by
0.9 every time window.

The result of the experiments are shown in Fig. 5. Using the simple learning
scheme described above, the PEV agents selfishly learn to pick the best strategy.
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The result is that they split into two groups, with approximately 70% of them
playing the ZI strategy, and the remaining 30% playing the SI strategy. This
result is in line with the results of the social welfare analysis. In fact, we noticed
than when 50% of agents start to play the SI strategy, the utility that those
agents receive is lower than that received by the ZI agents. However, for every
agent that switches from ZI to SI, there is a reduction of the utility surplus. For
the particular parametrisation of the system that we used in the experiments,
the splitting 30%-70% between SI agent and ZI agents represents the equilibrium
condition.

7 Conclusions

The forecast penetration of plug-in electric vehicles into our cities is expected
to have a serious impact on the grid. In this context, we put forward a compu-
tational monetary market for the management of the charging process of PEVs.
The experimental evaluation showed how the monetary market worked as an
automatic scheduler that satisfied the constraints of the distribution network,
guaranteeing fairness and allocation efficiency. Furthermore, since it offers the
possibility of forcing a desired equilibrium between inflationary and not infla-
tionary agents, it preserved the feature of giving the PEV agents the possibility
of transiently increase their share of the disputed resource.
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