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Abstract. We present a framework for automatically suggesting high-
profit bundle discounts based on historical customer purchase data. We
develop several search algorithms that identify profit-maximizing prices
and bundle discounts. We introduce a richer probabilistic valuation model
than prior work by capturing complementarity, substitutability, and co-
variance, and we provide a hybrid search technique for fitting such a
model to historical shopping cart data. As new purchase data is collected,
it is integrated into the valuation model, leading to an online technique
that continually refines prices and bundle discounts. To our knowledge,
this is the first paper to study bundle discounting using shopping cart
data. We conduct computational experiments using our fitting and pric-
ing algorithms that demonstrate several conditions under which offering
discounts on bundles can benefit the seller, the buyer, and the economy
as a whole. One of our main findings is that, in contrast to products typ-
ically suggested by recommender systems, the most profitable products
to offer bundle discounts on appear to be those that are occasionally
purchased together and often separately.

1 Introduction

Business-to-customer retail sales account for nearly four trillion dollars in the
United States annually, and the percentage of this shopping done online increased
three-fold between 2002 and 2007 [25]. Yet, despite the increased computational
power, connectivity, and data available today, most online and brick-and-mortar
retail mechanisms remain nearly identical to their centuries-old original form:
item-only catalog pricing (i.e., take-it-or-leave-it offers). These are the default of
B2C trade and are used by massive online retailers like Amazon, Best Buy, and
Dell. However, they are fundamentally inexpressive because they do not allow
sellers to offer discounts on different combinations, or bundles, of items.

Recently, some electronic retailers have started offering large numbers of
bundle discounts (e.g., motherboards and memory at the popular computer hard-
ware site, New Egg, and songs or albums on music sites), and brick-and-mortar
retailers often offer bundle discounts on select items, such as food and drinks.
Such discounts make the item-only catalog more expressive, and can be viewed
as part of the general trend toward increased expressiveness in economic mech-
anisms. Increases in expressiveness have been shown to yield better outcomes
in the design of general economic mechanisms [6], and in a number of specific
domains such as sourcing auctions [23] and advertisement markets [7, 28].
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Researchers in economics, operations research, and computer science have
studied issues surrounding choosing prices and bundles in various types of catalog
settings for decades. However, this work has either been i) largely theoretical
in nature rather than operational (e.g., [1, 3, 13, 20, 24]), ii) focused on specific
types of customer survey data which are not available in many settings (e.g.,
[15, 17, 22]), or iii) focused on specific sub-problems (e.g., pricing information
goods [4, 9, 16, 19, 29], item-only pricing [5], or unit-demand and single-minded
customers [14]). Despite the ability to collect substantial amounts of data about
actual customer responses to different pricing schemes, retailers in most domains
are still lacking practical techniques to identify promising bundle discounts.

In this paper, we introduce an automated framework that suggests profit-
maximizing prices, bundles, and discounts, the first, to our knowledge, to attempt
bundle discounting using shopping cart data. Our framework uses a pricing algo-
rithm to compute high-profit prices and a fitting algorithm to estimate a customer
valuation model. As new purchase data is collected, it can be integrated into the
model fitting process, leading to an online technique that continually refines prices
and discounts.

In Section 4, we conduct computational experiments that test each compo-
nent of our framework individually and one set that tests the framework as a
whole. Our results reveal that, in contrast to the products typically suggested by
recommender systems, the most profitable products to offer bundle discounts on
appear to be those that are only occasionally purchased together and often sep-
arately. We also use data from a classic shopping cart generator [2] to estimate
the gains in profit and surplus that can be expected by using our framework in
a realistic setting. We conservatively estimate that a seller with shopping cart
data like that of the generator, who already has optimally priced items, can in-
crease profits by almost 3% and surplus by over 8% using only bundles of size
two (even if he has a thousand items for sale). All of our results taken together
suggest that this line of work could have material practical implications.

The setting we consider involves a seller with m different kinds of items who
wishes to choose a set of prices to offer on different combinations of those items
to one customer at a time. However, we generalize our framework to consider
settings with more than one customer by measuring expectations for profit and
revenue, which implies that item prices cannot depend on the identity of the
customer. We also consider the special case where a seller can only offer discounts
on bundles and must hold the item prices fixed for some exogenous reason (e.g.,
due to existing policies or competition). We assume the seller has a cost function
that can be approximated by assigning each item a fixed cost per unit sold (in
the case of digital goods, which have no marginal cost to produce, we assume
the seller can estimate some form of amortized cost), and his goal is to maximize
expected profit (revenue minus cost). The seller chooses a price catalog, π(b),
which specifies a take-it-or-leave-it price for each bundle, b, of items. In an item-
priced catalog, the price of a bundle is the sum of its parts. (We will be studying
richer price catalogs than that, but we still will not be pricing each bundle
separately in order to keep the process tractable.) The customer has a valuation,
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v(b), for each bundle b and chooses to purchase the bundle that maximizes her
surplus (valuation minus price). We make the usual assumption of free disposal
(i.e., the value of a bundle is at least as much as the value of any sub-bundle).
We measure expected values of revenue, seller’s profit, surplus, and efficiency
(buyer’s surplus plus seller’s profit).

Using this model, we can easily prove that an item-price-only catalog is arbi-
trarily inefficient for some valuation distributions. This follows from our recent
application-independent theory that proves an upper bound on efficiency based
on the expressiveness of the mechanism [6].

2 Searching for Profit Maximizing Prices

To study the impact of the item-only price catalog’s inexpressiveness in prac-
tice, we first develop pricing algorithms that can determine the seller’s profit-
maximizing prices for a given type of catalog, cost function, and distribution
over customer valuations. Each of our algorithms takes as input an estimate of
the buyer’s probability function, P̂ , the seller’s cost function, c(b), a set of price-
able bundles, B̂ (determined by the type of catalog), lower and upper bounds on
the price of each bundle, L(b) and U(b) (also determined by the type of catalog,
and can be used to ensure certain prices are fixed), and a seed price catalog,
π(0) (which need not be intelligently generated). We assume that the algorithm
can choose any arbitrary prices for the different bundles as long as the price of
a bundle is no greater than the sum of prices for any collection of sub-bundles
that contain all of its items.1 The algorithms each call P̂ repeatedly with can-
didate catalogs in order to identify the one with the highest expected profit:
maxπ

∑
b∈B P̂ (b|π)× (π(b)− c(b)).

Exhaustive Pricing (EX): For each priceable bundle, b̂ ∈ B̂, this algorithm

discretizes the space between L(b̂) and U(b̂) into k evenly-spaced prices and
checks the expected profit of every possible mapping of prices to priceable bun-
dles. It finds an optimal solution (subject to discretization), but is intractable
with more than two items and even with two items if k is too large. For a
fully expressive catalog (i.e., one where each bundle is priced separately) with
m items, this algorithm calls P̂ with k2

m−1 different catalogs, and P̂ can, itself,
be costly to compute. Thus, we propose this algorithm be used primarily as a
tool to compare results with the other algorithms on small instances.

Hill-Climbing Pricing (HC): Starting with the seed catalog, this algorithm
computes the improvement in expected profit achieved by adding or subtracting
a fixed Δ from each priceable bundle, which involves 2|B̂| calls to P̂ , in each step.
It updates the catalog with the change that leads to the greatest improvement,
and repeats this process until there are no more improving changes. The resulting
catalog is returned, and, since the catalog is only updated when an improvement
is possible, it is guaranteed to have the highest observed expected revenue.

1 This ensures the catalog is consistent so that a customer cannot get a better price
on a bundle by purchasing its components in some other combinations.
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Gradient-Ascent Pricing (GA): Starting with the seed catalog, this algo-
rithm computes the gradient, or partial derivative, of the expected profit func-
tion, which involves |B̂| calls to P̂ in each step. The partial derivative, d(b),
of the expected profit function with respect to a bundle, b, is estimated by
measuring the change in expected profit when a fixed Δ is added to π(b). The
resulting vector of derivatives, d, is normalized to sum to one, and the algorithm
updates its best candidate catalog by adding d(b)×Δ to the price of each price-
able bundle. The algorithm continues this process until no more improvements
in expected profit are possible. The resulting catalog is returned, and, as with
the hill-climbing algorithm, it is guaranteed to be the one with the highest ex-
pected revenue that was explored throughout the search. In our experiments,
this algorithm achieved near-optimal expected revenue on most instances, while
performing poorly on a few, with a relatively few number of calls to P̂ .

Pivot-Based Pricing (PVT): This algorithm generalizes hill-climbing by
searching for the best adjustment to the current prices of up to k bundles at
a time. For each k-or-less-sized combination of priceable bundles, β, this algo-
rithm measures the change in expected profit from simultaneously adjusting all
the prices in β. Each price can be incremented by Δ, decremented by Δ, or not
changed. At each step, the algorithm tests all of those possibilities and selects the
one that increases expected profit the most. The hill-climbing algorithm above
is a special case of this where k = 1. However, for larger values of k it general-
izes that algorithm to consider more complex types of price adjustments. This

process involves
(|B̂|

k

) × (3k − 1) calls to P̂ at each step. Even with k = 2, our
early tests show this is the only one of the algorithms (other than the exhaustive
one), that achieves optimal expected revenue on nearly every instance.

3 Estimating a Rich Customer Valuation Model

The problem of estimating a customer valuation model from historical purchase
data is an essential part of our bundling framework because it allows us to use
the pricing algorithms presented in the previous section in a practical setting.
It is also a problem of interest in its own right, as it extends the classic market
basket analysis problem first introduced by Agrawal et al. [2]. Market basket
analysis is a commonly studied data mining problem that involves counting the
frequencies of different bundles in a collection of customer purchase histories.
Simply counting these occurrences can be challenging when there is a large
set of items and each customer buys several of them at once. Almost all of
the work on this problem has focused on building recommender systems that
suggest products frequently purchased together. Many algorithms have been
developed for finding bundles with such statistical properties, including one that
was developed and patented by Google co-founder Sergey Brin and others [8].
However, as our experiments in Section 4 show, our framework predicts that the
most profitable items to bundle are those with the opposite profile.

The valuation modeling problem that we consider extends the market basket
analysis problem to involve predictions about what would happen to the purchase
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frequencies under different price catalogs. (There has been significant recent
progress on inferring valuation distributions from bids or other indications of
demand in a variety of applications [17, 18, 21, 26], but that work typically used
bids in auctions or survey information.)

The inputs to the two problems are essentially the same, although in the case
of our valuation problem we include the price catalogs that were on offer at the
time of purchase, which can provide additional information about sensitivities
to price changes. The close relationship between these two problems allows us to
use a classic data generator for the market basket problem in our experiments.

3.1 Deriving the Maximum Likelihood Estimate

For the valuation modeling problem, we are given a set of historical purchase
observations, D = {〈b1, π1〉, 〈b2, π2〉, . . . , 〈bn, πn〉}, where each observation, i, in-
cludes a bundle that was purchased, bi, by a distinct customer, i, and the prices
of all bundles at the time, πi. We assume that these purchases are made based
on each customer’s surplus-maximizing behavior with valuations drawn from an
underlying valuation model. We also assume that each purchase is independent
of all others since we consider each observation to be from a distinct customer.
Under these assumptions, it is relatively straightforward to show that the maxi-
mum likelihood estimate (i.e., model that maximizes the likelihood of the data)
for the customer valuations yields a P̂ that matches the observed purchase fre-
quencies as closely as possible. (Details omitted due to space constraints.)

3.2 Fitting the Valuation Model to Purchase Data

The valuation model we will fit allows for normally distributed valuations on
each item, pair-wise covariance between valuations for items, as well as normally
distributed terms for complementarity (or substitutability in case such a term is
negative). This model significantly generalizes prior ones [10,11,24,27] by allow-
ing for heterogeneous complementarity and substitutability between products.

Specifically, our model parameters include a mean and variance for each price-
able bundle in B̂ and covariances between individual items’ valuations. While
the draw, x{i}, from the distribution of an item i represents that item’s val-
uation, v({i}), to the customer, a draw from the distribution for a bundle b
of two or more items represents a complementarity bonus (or substitutability
penalty if negative). The valuation for a bundle is then the sum of the draws of
all the bundles (including individual items) it contains: v(b) =

∑
b′⊆b xb′ . Under

this model, a customer’s valuation can be thought of as a hyper-graph where
each (hyper-)edge is associated with a real-valued random variable representing
the valuation bonus or penalty for receiving a bundle containing the items con-
nected by the (hyper-)edge. This allows us to model any possible distribution
over valuations (without loss of generality), and can be viewed as a probabilistic
generalization of the classic k−wise valuation model introduced by Conitzer and
Sandholm for combinatorial auctions [12].
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To go from a valuation model to the probability function, P̂ , we use a Monte-
Carlo method to sample customers (10,000 in our experiments) according to
the valuation distribution, and, for a given catalog, we simulate their surplus-
maximizing purchasing behavior (taking into account that disposal is free). This
simulation is relatively straightforward since items that are not connected by a
complementarity or substitutability edge can be considered independently.

In order to identify the model parameters that maximize the likelihood of
the observed data, we use a hybrid search technique. It begins by performing
a tree search over the variance and covariance parameters. A range for each of
these parameters is given as input that is discretized into a specified number of
values (in our experiments we use six values per parameter). At each leaf node,
a local search is performed to find the means that maximize the data likelihood
given the values of the variance parameters at that leaf (see Figure 1).2 In our
experiments, we use a pivot-based search, as described in Section 2, for this step.
The parameter settings resulting in the highest overall likelihood are returned,
and in the case of a tie an even mixture of all the tied models is used (i.e.,
simulated customers are sampled from each with equal probability).

σa=1 σa=2 σa=3
... ...

...
Σab=-1 Σab=0Σab=0Σab=0Σab=0Σab=0 Σab=1

Local search 
over means

... ...

Tree search over variances

PDF of x{a} PDF of x{b}

Item draw, x{i}

Covariance = Σab 

PDF of x{a,b}

Bundle draw, x{a,b}

σab

μ=
{.6,.7,.3}

μab

Fig. 1. Illustration of the search technique we use for estimating a customer valuation
model from historical purchase data. We use a tree search over variances and a pivot-
based search over means. Leaves are evaluated based on how closely the corresponding
model predicts the observed data and (optionally) how closely the model’s optimal
profit matches the profit achieved by existing prices.

Most existing shopping cart data involve only a single catalog and do not
include information about customers’ surplus-maximizing behavior under alter-
native prices. Thus, this data tends to be under-specified for the purposes of
inferring a valuation model. To address this, on such instances we utilize the
existing item prices as an additional piece of information to fit our model. Specif-
ically, among models that fit the observed purchase data (approximately), we
prefer models whose profit under the optimal item-pricing for that model is close
to the profit of the existing item prices under the model. Our algorithm does
this test once at every leaf of the search tree (after the best model for the leaf

2 We found empirically that choosing standard deviations with tree search and means
with local search yielded better results due to the tight relationship between the
appropriate means and standard deviations.
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has been computed as described above). If there are still several leaves that are
(approximately) as good at explaining the purchase data and the existing prices,
we use an even mixture over those models (we use at most the top five models).

4 Empirical Results

We will now discuss the results from several sets of compuational experiments
that test our pricing and fitting algorithms and reveal some interesting economic
insights that emerge as a consequence of our customer valuation model. The next
two subsections focus on pricing and fitting two-item instances. The third set
of results provides an estimate of the potential achievable by offering bundle
discounts on pairs of items from a seller with a thousand items and realistic
shopping cart data.

4.1 Results with Pricing Algorithms

The first set of experiments involves using the search techniques described in
Section 2 to find high-profit prices on a generic class of instances similar to the
models used in prior work [10,11,24,27]. We compare the results and performance
of the pricing algorithms on symmetric two-item instances where the customer’s
valuation for each item is drawn from a normal distribution with mean 0.5 and
standard deviation 0.5. We vary the pairwise covariance from −.25 to .25 and
we vary the mean of the pair-wise complementarity (or substitutability when
negative) term from −1.5 to 0.5 (the standard deviation for this term is held
constant at 0.5). Each algorithm (other than the exhaustive one) uses an item-
only catalog with all prices set to 0.5 as a seed and a step size Δ = 0.05 to price
fully expressive catalogs. The EX algorithm considers k = 15 different prices for
each bundle and finds the optimal prices subject to this discretization. The PVT
algorithm considers all possible gradients for two item instances.

The following table reports each algorithm’s average fraction of the highest
expected profit, efficiency, and surplus, as well as the average number of calls to
P̂ over five instances with a fully expressive catalog for each parameter setting.
The best value in each column is in bold.

Algorithm E[prof.] E[eff.] E[surp.] P̂ calls

PVT 99.99% 97.88% 86.92% 267.25
EX (k = 15) 99.24% 97.70% 88.28% 3375.00
GA 97.57% 99.14% 90.78% 49.61
HC 89.76% 93.73% 96.32% 4.08

Other than the unscalable exhaustive algorithm, the pivot-based algorithm is
the only one to achieve optimal profit on every instance. Therefore, it is the
algorithm we use in the rest of the paper for pricing. (Gradient ascent also
performed well and may scale better for larger instances.)

Figure 2 shows the increase in expected profit and surplus from allowing
sellers to offer profit-maximizing bundle discounts, while varying the levels of
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Fig. 2. The intensity of each dot is the increase in expected profit or surplus achieved
by profit-maximizing bundle discounts for different levels of covariance (x-axis) and
complementarity (or substitutability) (y-axis), ranging from 0% to 10%. Here, we as-
sume the seller holds the item prices fixed at the optimal item-only catalog values to
isolate the impact of bundle discounts.

covariance, complementarity, and substitutability. The values represent averages
over five runs but deviate very little.

For this set of results, we assume the seller holds the item prices fixed at
the optimal item-only catalog values to isolate the impact of offering bundle
discounts from the potential confound of our system improving the item prices
as well. We believe this also represents a practical constraint in many markets
and is a policy that sellers are likely to take when first adopting the bundle
discounts suggested by our framework. This has the effect of depressing the
seller’s expected profit gain, but it ensures that the customer surplus cannot
decrease.

For the scenarios we consider, the seller’s greatest predicted increase in
expected profit (about 4.6%) occurs when valuations are highly negatively cor-
related and the items are slightly substitutable. However, too much substi-
tutability diminishes the predicted profit benefits. Others have also identified
negative correlation and substitutability as motivators for offering bundle dis-
counts [10, 11, 27], but they did not use a rich enough valuation model to fully
explore the impact of heterogeneous complementarity or substitutability. (That
work also did not address the model fitting problem that must be solved to
operationalize this insight.)

Unsurprisingly, due to the discount-only pricing we imposed, our results also
show a large predicted increase in surplus (averaging around 9%) throughout
the parameter space. Together with the seller’s predicted increase in profit, this
leads to substantial efficiency increases.

Another set of experiments (not shown due to space constraints) demonstrates
that when our system is also free to adjust the prices of the items, additional
increases in profit are possible but usually at the expense of the customer surplus.
This may be desirable for the seller in the short term, but maintaining surplus
can be an important long-term goal if there are competing sellers.
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4.2 Results with the Fitting Algorithm

We now present experiments that use the fitting algorithm from Section 3 to
find models that predict an observed set of purchase data. We allow the search
algorithm to consider standard deviations between 0.5 to 3.5 at intervals of 0.5,
and we focus on symmetric two-item instances where both items occur with the
same frequency in the shopping cart data. (Results on asymmetric instances
were similar.) These experiments test our algorithm in the ubiquitous scenario
where shopping cart data is accompanied by a single item-only price catalog.

Figure 3 shows the predicted increases in expected profit and surplus achiev-
able by a bundle discount, assuming that the individual items are optimally
priced and that at those prices they have the same profit margin (the value of
the profit margin does not matter). As in Figure 2, we assume the seller can only
offer a discount on the existing item prices and cannot change them. (When we
relax this assumption, we find additional opportunities to increase profit at the
expense of customer surplus.) We consider instances where the item frequencies
range from 2.5% to 40% and the co-occurrence percentages from 2.5% to 87.5%.
We define co-occurrence as the fraction of baskets containing the less frequent
item (for symmetric items either can be used) that also contain the other. We
also increased our sampling frequency in an interesting area of the parameter
space where item frequency is less than 15% and co-occurence is less than 20%.
This is illustrated on each chart by a higher concentration of small points in the
bottom left corner. (Again, the values are averaged over five runs.)

These results are consistent with those in Figure 2, since the seller’s great-
est predicted increase in expected profit (about 4.6%) occurs when products
are occasionally bought together (co-occurrence probability less than 20%) and
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Fig. 3. The intensity of each dot represents the predicted increase in expected profit
or surplus achieved by profit-maximizing bundle discounts on single-catalog instances
with varying item frequencies (x-axis) and co-occurrence percentages (y-axis), ranging
from 0% to 10%. As in Figure 2, we assume the seller holds the item prices fixed at
the optimal item-only catalog values to isolate the impact of offering bundle discounts
from the potential confound of our system improving the item pricing as well.
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frequently bought separately. This set of results also predicts large increases in
surplus throughout the parameter space (averaging about 9%), as in Figure 2.

Taken together, our results illustrate why new techniques are needed beyond
those used for building recommender systems, which typically identify items that
are commonly purchased or consumed together. When it comes to items that
can be profitably bundled together at a discount, our framework suggests those
with the opposite profile. Our results also explain why recommender systems
are highly popular among users: a recommendation can be viewed as a small
discount (in the form of time saved), and we see that even a small discount on
highly co-occurring products leads to a substantial increase in surplus.

4.3 Results with a Shopping Cart Generator

Our final set of experiments estimates the potential increase in expected profit
and surplus achievable by bundling products from a seller with shopping cart
data like that generated by Agrawal and Srikant’s classic generator [2]. We use
the standard parameters in the generator: for each instance, we generate 10,000
shopping carts with 100-1,000 items (N), 100-2,000 potentially popular bundles
(L) of size 2-4 (I), and an average of 2-20 purchases per customer (B). We
assume the seller had optimally priced the individual items, and that those
prices involved a uniform profit across all items.

Pricing all—or a huge number of—bundles is undesirable for several reasons:
i) presenting complex catalogs to customers may be infeasible and/or it may con-
fuse/burden them, ii) it is intractable in terms of computation and information,
and iii) even non-overlapping bundles can interact: as one bundle is discounted,
some customers might shift from buying other things to that bundle. Therefore,
we only consider discounting bundles of two items, and further narrow them
down as follows. We only consider item pairs priceable if the items are not di-
rectly or indirectly related to any other items. We consider two items related if
their joint purchase frequency is more than a fixed threshold different than the
product of their individual purchase frequencies (we use a threshold of 1% for
these experiments). We construct a graph where the items are nodes and edges
connect items that are related. Then, only connected components of size two
and pairs of isolated items are considered priceable.

The profit and surplus increases for each priceable pair are then estimated
using the results behind Figure 3 and a set of similar results on asymmetric
instances. The increase for a given pair is estimated as the average value for
the five most similar instances (based on the frequencies of the two items and
the bundle). Priceable pairs are then greedily selected to actually be discounted
based on their predicted profit increase. Once a pair is selected, all other pairs
containing either of the selected items are removed from consideration. The
following table shows the total predicted profit and surplus increases for various
parameter settings of the generator (values are averaged over five instances).
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N B L I E[prof.] inc. E[surp.] inc.

1000 20 2000 4 2.80% 8.34%
1000 20 1000 4 1.10% 3.01%
100 2 200 2 0.89% 2.65%
100 2 100 2 0.15% 0.86%

For the standard parameter settings, the first row shows almost 3% profit
increase using our algorithms to select pairs of items to bundle and discount.
This increase in profit is accompanied by more than an 8% increase in customer
surplus, and, thus, a significant efficiency increase. The table also shows that
increasing the number of items and potentially popular bundles increases the
benefits from our approach. This is because it leads to a sparser relatedness graph
and, thus, increases the number of safely priceable items for our algorithms.

These figures are conservative because they assume that the seller had already
priced the individual items optimally, only considers pairs of items where neither
item is related to any other, and offers at most one bundle per item.

5 Conclusions and Future Research

We introduced a framework for automatically mining purchase data and suggest-
ing profit-maximizing prices, bundles, and discounts. It uses a pricing algorithm
to compute high-profit prices on items and some bundles, and a fitting algorithm
to estimate a customer valuation model. New data can be integrated into model
fitting in an online manner leading to continually refined prices and discounts.

Some obvious directions for future research include less conservative meth-
ods for selecting pricable bundles, discounting bundles of more than two items,
and live experiments where the catalogs that we offer serve as demand queries
about the customers’ valuations that are then incorporated back into our model.
These experiments could be carried out similarly to the ones described by
Jedidi et al. [17], but would involve actual purchases by subjects rather than
survey data.

There are also several assumptions made here that could be relaxed in future
work. For example, we assumed that each purchase in the shopping cart data
was independent, but it may be possible to develop a model that captures repeat
purchases by the same customers. We also assumed that the cost of selling an
item could be described by a marginal unit cost. It would be interesting to extend
our work here to include considerations of non-linear cost functions (e.g., with
large start-up costs) or limited-inventory items. Finally, we assumed that the true
customer valuations were drawn from distributions that could be accurately fit
by our valuation model. However, it would be interesting to consider the effects
of mis-representing these valuations because, for example, they are drawn from
a different kind of distribution than ours (e.g., lognormal rather than normal).
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