
An Autonomous Middleware Model for Essential

Services in Distributed Mobile Applications

Marcio E.F. Maia, Lincoln S. Rocha,
Paulo Henrique M. Maia, and Rossana M.C. Andrade

Group of Computer Networks, Software Engineering and Systems
Federal University of Ceara. Av. Mister Hull, s/n - Campus do Pici, Bloco 942-A,

CEP: 60455-760, Fortaleza, CE, Brasil
{marcio,lincoln,paulomaia,rossana}@great.ufc.br

Abstract. The evolution and popularization of mobile devices and wire-
less networks give rise to the creation of a new interaction paradigm,
where the devices cooperate to execute short tasks. In this scenario, the
problem of how to handle environment changes, which may increase the
complexity of distributed mobile applications management and mainte-
nance, needs to be addressed. This paper presents an autonomous and
evolutionary model to permit a prompt adaptation of essential services
(i.e. message exchange, service description service discovery, service coor-
dination, mobility support and security) to context changes. To validate
it, a mathematical model describing the time complexity to diffuse an
efficient implementation of an essential service (strategy) taking into ac-
count the number of devices is proposed. Finally, the diffusion approach
is implemented in a simulator to reason about its impact on the overall
efficiency of the essential services and, consequently, the performance of
the application.

Keywords: Mobile Middleware, SOA, Autonomic Computing.

1 Introduction

The popularization of mobile devices and wireless communication technologies
has influenced the architectural design of networks and applications. Networks
evolved from centralized, static and cable-based to mobile and wireless [1]. In
addition, the communication between mobile applications that use different net-
work interfaces simultaneously has become common.

Although it increases flexibility and robustness, it can make the development
and management of these applications more complicated. The core of this prob-
lem is that application-level protocols are designed considering a limited subset
of information from the executing environment. While protocols designed to ar-
chitectures like Wi-Fi and cellular networks may use centralized approaches,
protocols developed to ad-hoc networks are fundamentally decentralized [3].

Throughout this paper, application-level protocols will be called essential ser-
vices. They are key services used to create service-oriented mobile applications,

N. Venkatasubramanian et al. (Eds.): Mobilware 2011, LNICST 93, pp. 57–70, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

58 M.E.F. Maia et al.

such as message exchange, mobility support, service description, service dis-
covery, service coordination and security. For instance, a chat application may
require that message exchange, service description and discovery are available
and a museum guide running on a PDA might also need service coordination.

To implement essential services, application developers can rely on abstrac-
tions provided by middlewares [2]. Here, these implementations are called strate-
gies. For example, remote method invocation and tuple-based are two strategies
for implementing message exchange. The strategy to be used in the application
is defined at design time and coded using middleware libraries. Although it may
reduce development time and complexity, it may also produce a rigid design that
is unable to cope efficiently with changes in the execution environment.

Changes in the execution environment occur in two levels: network and ap-
plication. An example of the former is the use of a different network interface
or variation in the communication latency. Changes in the latter may be the
unavailability of a centralized server or the use of a different language to de-
scribe services. The consequences of binding the application and middleware at
design-time may vary from loss in performance to application crashing.

This paper presents AMESMA, an autonomous and evolutionary middleware
model for essential services in distributed mobile applications. It promptly selects
the best strategy (most efficient) for an essential service according to changes
in the environment. Here, efficiency is described by a quality of service (QoS)
descriptor, which depends on the application and essential service. For instance,
service discovery efficiency can be measured by the number of services discovered
or the average time to discover one service. Thus, by autonomously choosing the
most efficient strategies, the model tries to improve the overall performance of
the essential services. It also permits new strategies to be incorporated on-the-fly,
with a minimum effort to maintain the essential services.

The benefits of this approach are threefold: firstly, strategies for an essential
service can be replaced more easily, according to their efficiency. Secondly, an
autonomous layer, placed between the applications and the strategies, rapidly
defines which strategy should be used when changes in the environment are
detected. Thirdly, instances of the model running on different devices cooperate
to define efficient strategies. As devices interact and the efficient strategies are
identified, these strategies are diffused throughout the network. After a short
period of time, the strategies being used should converge to one or a small set of
efficient strategies, increasing the overall performance of the essential services.

AMESMA was evaluated according to an analytical model that described the
time to diffuse one strategy to all devices. That time is affected by the probability
of diffusing an strategy (fanout factor). A higher fanout factor means a faster
diffusion, but at a higher cost. The analytical model described how to adapt this
factor, minimizing the cost on the network with an acceptable diffusion time.
The second evaluation investigated in a simulator how the overall performance
of the essential services varied as efficient strategies are diffused.

The rest of this paper is organized as follows. Section 2 gives a brief overview
on the background of essential services. Section 3 details the AMESMA model

AMESMA 59

and an analytical model used to describe the strategy diffusion, while section
4 presents some simulation results. Section 5 compares our approach to some
related work and, finally, section 6 presents the conclusions and future work.

2 Essential Services for Mobile Applications

Service orientation (SOA) permits applications to be decomposed in atomic parts
called services [6], facilitating their deployment and management. SOA-based ap-
plications require mechanisms to describe, find, access and compose these parts
in a secure, fault-tolerant and context-aware manner. Here, these mechanisms
are called essential services. Due to space restrictions, this paper only describes
service discovery strategies, since this is the essential service implemented to
validate the proposed model.

2.1 Service Discovery

Service discovery allows services to be discovered and accessed when available,
permitting the creation of loosely-coupled and robust applications, since service
information is accessed at runtime. Service discovery strategies can be divided
according to how service information is published and how it is stored [3].

There are two strategies to publish a service: push-based, where information
is published when the service becomes available, and pull-based, which publish
information when requested. The former has a lower discovery latency and a
higher cost on the network. The latter has a higher latency and a lower cost.

How service information is stored refers to the number and location of ser-
vice registries and can be implemented by three strategies: centralized, totally
distributed and hybrid. Centralized strategies publishes information in a single
registry. It is easy to implement and less resilient to failures. In totally dis-
tributed strategies, every device is a registry, which increase failure resilience. In
hybrid strategies, few devices act as service registries. This strategy is harder to
implement than the other two strategies, but has a lower cost on the network
than the distributed strategy and is more resilient to failures than the centralized
strategy.

3 AMESMA

AMESMA is an autonomous and evolutionary middleware model to increase the
performance of mobile applications by autonomously monitoring and searching
for more efficient strategies. The main characteristic of the model is try-and-
error, from evolutionary computing, in which new solutions are generated and
tried in the environment and efficient solutions out live inefficient ones. The goal
is to allow a rapid adaptation of the essential services to momentary conditions of
the execution environment, along with minimizing coupling between application
and middleware, facilitating the maintenance of the essential services.

60 M.E.F. Maia et al.

Different strategies for an essential service are monitored at runtime and dy-
namically chosen based on information collected from the application layer. To
use an essential service, an application informs its quality of service (QoS) de-
scriptor, a particular metric relevant to that application. In a service discovery
essential service, the QoS descriptor may be the number of services discovered
or the average number of sent messages necessary to discover one service.

When new strategies are discovered in a nearby device, the efficiency level of
the remote strategies is compared to the efficiency level of the equivalent local
strategies. More efficient remote strategies are deployed locally. Strategy moni-
toring and substitution is performed transparently to the applications. When an
application requires the execution of an essential service, it invokes an interface
associated to that service. The actual strategy used is defined by the model using
the QoS descriptor informed by the application and the efficiency values of the
strategies. The most efficiency strategy is used to invoke this essential service.

3.1 Middleware Architecture

Figure 1 divides the architecture of the middleware model into essential service
interfaces, which are packed with the application at compile-time, and mid-
dleware core, responsible for managing the essential services, i.e., the strategy
selection and evolution. The middleware core is deployed in each device and is
divided into QoS and context management and Middleware management. We
discuss theses modules of the architecture in more details below.

Fig. 1. Middleware architecture

Essential Services Interfaces. Applications invoke the essential services using
an interface for each service, compiled with the application. Strategy selection
is performed by the middleware management module based on QoS descriptor
and context information received from the QoS and context module.

This separation between interface and execution is possible if different strate-
gies are accessed equally. Considering the service discovery essential service, re-
gardless whether the strategies and centralized, distributed or hybrid, they have
similar service discovery messages. The fields in this message can be summurized

AMESMA 61

in 1) ID, that uniquely identifies a device/application; 2) available or required
resources; 3) service description, that contains information about a service (Pull
model) or search parameters (Push model); 4) Time to Live, number of times a
message can be retransmitted and 5) amount of time message remains valid.

Different strategies from devices distributed in the network communicate us-
ing the service discovery message. Amongst its fields, the service description is
application-dependent. Instead of standardizing service description to guarantee
interoperability, it should be defined by each application to promote flexibility.

QoS and Context Manager Module. This module manages QoS require-
ments from the application. When an application invokes an essential service, it
informs its QoS descriptor for that service. That descriptor helps to define which
strategy should be picked from a local strategy repository and to compare two
strategies to define the most efficient.

This module stores information about strategy efficiency in different contexts.
Upon context change, it informs the middleware management module of this
new context. Based on context information received from the QoS and context
manager, the middleware management module decides whether or not to change
the strategy being used.

Context information may be acquired by different sources. It can be accessed
using sensors presented in the device itself or from context provision services
present in the environment.

Middleware Management Module. Autonomy and evolution are imple-
mented in the middleware management module. It autonomously monitors, de-
tects and diffuses efficient strategies and receives essential service invocation.
Upon receiving an invocation, the middleware management module access the
QoS and context management module to define which strategy is the most ef-
ficient at that specific moment. Applications only invoke an interface for an
essential service and are unaware of which strategy will be used. Additionally,
evolution is accomplished by diffusing efficient strategies and minimizing the
presence of inefficient ones.

3.2 Middleware Internals

The mechanisms executed by the middleware are: essential service invocation
and strategy diffusion. To invoke an essential service, an application informs
its QoS descriptor, its ID and the parameters of the required essential service.
Since this invocation is unblocking, the application can continue its execution
and access the result later, using an object returned to the application. That
invocation triggers an event to the middleware management module, which de-
fines the correct strategy to be executed using the QoS descriptor and context
information, accesses the strategy repository and executes the selected strategy.

The QoS descriptor is also important in a distributed execution of a strategy.
For instance, a service discovery based on a distributed strategy is executed by
numerous devices throughout the network. The service discovery message carries

62 M.E.F. Maia et al.

the QoS descriptor, which is used to select the correct strategy. This approach
allows all devices to struggle to provide a higher efficiency according to the
required QoS metric.

Simultaneously to the essential service invocation, the middleware manage-
ment module periodically contacts a subset of its neighbors searching for more
efficient strategies. If efficient strategies are found, a compatibility test is per-
formed to define whether that remote strategy can be deployed locally.

The number of neighbors chosen to compare the strategies is called fanout
factor. A lower fanout factor means that strategies will be diffused slower, with
a lower cost on the network. On the contrary, a higher fanout factor means faster
diffusion and higher cost on the network. Therefore, it is relevant to understand
how the fanout factor impacts on the strategy diffusion time and cost on the
network.

3.3 Strategy Diffusion Analytical Model

The dynamic nature of mobile networks requests quick adaptation of essential ser-
vices to network conditions. Hence, it is important to understand how long diffus-
ing one strategy takes and how it impacts on the overall efficiency of the essential
service. This analytical model is based on a paper published by Groenevelt [13],
which analyzes the mean time to diffuse a message to an specific node. However,
our goal is to understand when all nodes receive the message. Furthermore, our
model allows nodes to leave the network, creating a birth-death model.

Suppose there are N nodes in the network, moving independently according to
the random way point mobility model [26], with a limited connection range. Each
node has its own strategy si, i ∈ E, where E is the set of strategies. Moreover,
initially only one node has the most efficient strategy, called se. Whenever that
node contacts another node, that strategy is diffused. This approach is called
contact-and-infect or epidemic diffusion [25].

Strategy Diffusion Delay. Assume that the system is in state k whenever
there are k nodes using strategy se. The system starts at state 1 and reaches an
absorbing state N . Figure 2 shows a Markov Chain for the states the system can
enter. Once the system enters state i, it never returns to state i− 1, since there
is no strategy more efficient than se and this model assumes that all nodes do
not leave the network during the diffusion process.

Fig. 2. Strategy diffusion Markov chain

Instead of diffusing the strategies to all nodes it meets, one node chooses
a subset of these neighbors to compare their strategies. The fanout factor v
represents the percentage of neighbors chosen to compare their strategies.

AMESMA 63

That approach tries to minimize the number of messages being exchanged with-
out compromising the diffusion time.

Suppose there are i nodes with strategy se, then it leaves state i to i + 1 at
a rate λi(N − i)v (I), where λ represents the meeting rate and dependends on
the average node speed, mobility pattern, area and antenna range. That meeting
rate follows an exponential probability distribution [13]. If Si represents the total
time the process spends in state i, then Si =

1
λi(N−i)v .

Let TS be the time the process reaches state N (diffusion time) , then

E[TS] =

N−1∑

i=1

Si =

N−1∑

i=1

1

λi(N − i)v
=

2

λvN
[log(N − 1)+γ+ o(

1

N − 1
)], where

γ is the Euller constant.

Birth and Death Model.The previous model assumed that nodes do not leave
or arrive in the network. This restriction is now relaxed by considering that one
node leaves the network at a rate μ and another node enters the network at the
same rate. It keeps the number of nodes constant but varies the number of nodes
using the efficient strategy.

Fig. 3. Strategy diffusion Markov chain with departure

Figure 3 shows the strategy diffusion Markov chain with node departure. The
process leaves state i to i + 1 when an efficient strategy is diffused at a rate
i(N − i)λv and from state i + 1 to i when an node with an efficient strategy
leaves the network at a rate iμ. It is important to highlight that this analysis
assumes that λv > μ, or otherwise the strategies would not be diffused. From
that, the diffusion time expectation is E[TJ] =

2
λvN−μ [log(N − 1)+γ+ o(1

N−1)].

Graphics. The main objective is to understand how the number of neighbors
chosen to compare the strategies impact on the strategy diffusion time. Figure
4 shows the strategy diffusion delay for both scenarios, without departure on
Figure 4a, and with departure on Figure 4b.

In the graphic without departure, when the number of nodes is less than 20
nodes, a fanout factor of 0.5 has a similar delay as if all neighbors were chosen.
When the number of nodes increases, even a fanout of 0.3 behaves similarly as
the fanout factor 1.

In Figure 4b, the node departure was considered, and the fanout factor cho-
sen was 0.3. This value was chosen to analyze the impact of the node departure
rate, and it presents a good trade-off between diffusion time and cost. When the
number of nodes is smaller than 20 nodes, the diffusion time increases consider-
ably and the fanout factor must be increased. However, as the number of nodes
raises, the departure rate gradually loses its influence.

64 M.E.F. Maia et al.

(a) (b)

Fig. 4. (a) Strategy delay without departure varying the number of nodes. (b) With
departure varying the number of nodes.

The fanout factor may be adapted based on the number of neighbors known
at a given moment. According to [15], if davg is an estimate for the average
number of neighbors and n the total number of nodes, then davg = π lnn. Thus,
using this estimate and the number of 20 nodes from Figure 4b as an adaptation
parameter, the fanout factor can be adapted as follows:

v =

{
0.5 If davg < 9,
0.3 Otherwise

This estimate makes assumptions about the node density and mobility pattern.
Since the goal is to obtain an approximation to guide the adaptation process
instead of knowing the exact number of nodes, and the maximum and minimum
number of neighbors is of the same magnitude as the average number of neighbors
[15], this estimate gives an acceptable adaptation guide.

4 Simulation Results

AESPmob was implemented in the Jist/Swans [16] network simulator to verify
how the strategy diffusion mechanism impacts on the overall performance and
cost on the network. Simulation parameters are shown in Tables 1 and 2.

Table 1. Simulation parameters Table 2. Model parameters

AMESMA 65

The simulation aims to analyze how the overall performance behaves as the
strategies are diffused, varying the number of devices and the fanout factor. The
number of nodes ranged between 20 and 100, and the fanout factor from 0.2 to
0.8. Each scenario was simulated 500 times, with the average values shown.

Three important concepts about the simulation must be understood. The first
one is the service discovery strategies that were implemented. In this work, four
strategies have been implemented: a Flooding-based, a probabilistic gossip-based
[18], a reliable push-based, called RAPID [19], and a hybrid strategy [3].

The second one is the QoS metric used to evaluate the efficiency of the strate-
gies: 1) number of services discovered, where strategies that find more services
are diffused, 2) ratio between number of services discovered and number of mes-
sages sent, where a higher ratio defines the strategies that are diffused and 3)
average latency time, where a lower latency means a higher efficiency.

The third one is how the efficiency information is collected. The more precise
this information is, the higher the probability that more efficient strategies are
diffused. The first approach called local view decides which strategy is more
efficient based only on information locally collected. The second approach is the
cooperation view and uses a combination of information locally collected with
information obtained from devices nearby. While the third approach is called
global view and the decision about which strategies are more efficient is based
on information shared by all devices.

4.1 Overall Efficiency

The overall efficiency of an essential service is the sum of the efficiencies of
all strategies. For instance, the overall efficiency of a service discovery essential
service is the total number of services discovered in a period of time by all
devices. The individual efficiency is the number of services discovered by one
strategy in the same period.

The Y-axis in Figure 5 shows how the overall efficiency of the service discovery
essential service varies during the execution as the strategies are diffused. The
X-axis represents the simulation time.

The global view has a higher chance of making correct decisions. This was
confirmed by simulation, since the global view was the most efficient in all sce-
narios simulated. However, distributed global information is hard to collect and
update. Moreover, it usually introduces an overhead that very often prohibits
its use. The cooperation view is not as efficient as the global view, but has a
considerable lower impact. Decisions based on local information are less reliable,
but it has the lowest cost.

Figure 5a and 5b shows the overall efficiency varying as the strategies are
diffused according to the QoS metric called number of services found. The over-
all efficiency of the global view approach increases until the execution time of
approximately 160 seconds, when the most efficient strategy is totally diffused
and all devices are using the same strategy. After that, the overall efficiency is
constant.

66 M.E.F. Maia et al.

The cooperation and local view increase the efficiency at a lower rate. It
happened because they are not as reliable as the global view, and inefficient
strategies were diffused. However, despite inefficient strategies may eventually
be diffused, the strategies that performed better are diffused after all. These two
approaches presented a better performance that the scenario without diffusion.

Figure 6 shows how the ratio between the number of services discovered and
messages sent varies as strategies are diffused. All approaches with diffusion
presented an efficiency gain. The difference between the Global View and Co-
operation View is smaller. This happened because strategies based on flooding
and gossiping send more messages than the other two strategies. It makes the
value of the ratio to decrease and facilitates the identification of the efficient
strategies, which are the other two.

Figure 7 shows the QoS metric that considers the average time to discover
one service. As the simulation happens, services requests sent at the beginning
of the simulation arrive, which makes the average time to discover one service
to increase. The no diffusion approach initially behaves more efficiently, but
as time passes, the other three approaches with strategy diffusion behave more
efficiently. This happened because initially, even using the global View approach,
inefficient strategies were diffused. After a while, the average time started to
become constant, or decrease in the case of the global view. This means that the
time to discover one service is actually decreasing, since services requests sent
at the beginning are still arriving (higher discover time), but the average time
is being kept constant, or decreasing a little, which shows again that the overall
efficiency is indeed increasing (smaller time to discover one service).

4.2 Diffusion of Efficient Strategies

Initially, the four strategies were randomly assigned to the nodes according to
an uniform probability distribution. During simulation, the number of strate-
gies used may increase or decrease according to their efficiency. The goal is to
maximize the number of efficient strategies and to minimize inefficient ones.

(a) 20 nodes and a fanout factor of 0.4 (b) 60 nodes and a fanout factor of 0.2

Fig. 5. Number of services discovered during the simulation

AMESMA 67

(a) 80 nodes and fanout factor of 0.6 (b) 60 nodes and fanout factor of 0.8

Fig. 6. Ratio between the number of services discovered and messages sent

(a) 40 nodes and fanout factor of 0.2 (b) 60 nodes and fanout factor of 0.6

Fig. 7. Average discovery time

(a) Global View (b) Local View

Fig. 8. Number of each strategy for 100 nodes and a fanout factor of 0.4

Figure 8 shows the number of each strategy during simulation, using the num-
ber of services found to guide the diffusion. Figure 8a shows how the number
of each strategy varies using the global view and Figure 8b presents the local
view. The Hybrid strategy has a better performance than the other strategies,

68 M.E.F. Maia et al.

and it is diffused. The global view (Figure 8a) diffuses this strategy faster than
the Local view (Figure 8b). Approximately at 160 seconds, all nodes are using
the Hybrid strategy in the global view approach and all other strategies are
eliminated. While in the local view, the Hybrid strategy is not totally diffused,
and there are a few nodes left using the other strategies at the end of simulation.

Analyzing Figure 5, it is interesting to verify that the global view presents a
peak in performance at approximately 160 seconds. This is the same time that
Figure 8a shows that the Hybrid strategy was diffused and all devices were using
the most efficient strategy. Analyzing the local view in Figure 5, the number of
services discovered increases until 160 seconds, where it remains constant. Figure
8b shows the number of the Hybrid strategy tending to remain constant after 160
seconds. At the end, strategies that are not the most efficient are still present.

5 Related Work

AdHocWS [22] allows service migration and allocation according to QoS policies
defined by the system administrator. Additionally, service migration and usage
occurs according to benefit functions. These functions consider environment con-
ditions to decide which service instance is more appropriate at that moment. The
difference is that while the AdHocWS considers application services, AMESMA
is concerned about the efficiency and evolution of essential services.

Kramer and Maggee [23] propose an architectural model composed of three
layers for self-managed systems: 1) goal management considers high-level goal
specification and system state to generate a plan; 2) change management adapts
the system architecture in response to change in the plans and 3) component con-
trol, formed by the system components providing state information to the higher
layers. This model proposed by Kramer and Maggee can be used to implement
the middleware management layer of AMESMA.

SLACER [24] self-organizes its nodes into an artificial high-cooperative P2P
social network. SLACER has the same mechanism of service evaluation and
evolution. However, while it is concentrated in P2P services, the interest of
AMESMA is on essential mobile services. AMESMA also permits application
QoS description and service execution according to Qos restrictions.

6 Conclusion and Future Work

This paper presented AMESMA, an autonomous and evolutionary model to
adapt essential services on mobile applications. It consists of a middleware layer
where different strategies are selected according to their efficiency, increasing
the probability that the most efficient strategies are used by the applications.
Our major contribution is the improvement in the overall performance of mobile
applications. In addition, our model eases the maintenance and evolution of the
essential services, since new strategies can be automatically found and deployed.

A mathematical model investigated the time it takes to diffuse one strat-
egy. That model showed how to minimize the cost on the network inserted by

AMESMA 69

AMESMA without compromising the diffusion time, by adapting the fanout
factor based solely on information collected locally by the devices.

Simulation results indicated that decisions based on global view would lead to
an efficiency gain when compared to cooperation and local view. It also showed
that any form of diffusion improves the efficiency when compared to the no diffu-
sion approach. Although global view proved to be more efficient, it is impractical,
or at least inefficient, in dynamic mobile applications due to the cost associated
to gathering and updating information. The goal is to investigate more efficient
forms of collecting information locally and regionally.

The problem addressed here is complex and needs to be thoroughly investi-
gated. Validation is performed by means of simulations, where results showed
that the general efficiency of the essential services has been improved, giving us
confidence that similar results will be obtained when the model is implemented
in real devices. We have started the development process to produce a concrete
solution of our model. Moreover, we envisage other essential services being an-
alyzed and how to improve the local and cooperation view, while keeping the
cost at an acceptable level. Furthermore, we intend to scrutinize existing QoS
description models to decide how these models can be used in our approach.

References

1. Chiani, M.: Wireless technologies. In: Bellavista, P., Conrradi, A. (eds.) The Hand-
book of Mobile Middleware, ch. 3, pp. 52–73. Prentice Hall (2006)

2. Jaroucheh, Z., Liu, X., Smith, S.: A perspective on middleware-oriented context-
aware pervasive systems. In: Ahamed, S.I., Bertino, E., Chang, C.K., Getov, V.,
Liu, L., Ming, H., Subramanyan, R. (eds.) COMPSAC (2), pp. 249–254. IEEE
Computer Society (2009)

3. Engelstad, P.E., Zheng, Y., Koodli, R., Perkins, C.E.: Service discovery architec-
tures for on-demand ad hoc networks. International Journal of Ad Hoc and Sensor
Wireless Networks 2(1), 27–58 (2006)

4. Viana, W., Andrade, R.M.C.: Xmobile: A mb-uid environment for semi-automatic
generation of adaptive applications for mobile devices. J. Syst. Softw. 81(3), 382–
394 (2008)

5. Maia, M.E., Rocha, L.S., Andrade, R.M.: Requirements and challenges for building
service-oriented pervasive middleware. In: ICPS 2009: Proceedings of the 2009
International Conference on Pervasive Services, pp. 93–102. ACM, New York (2009)

6. Erl, T.: Service-Oriented Architecture : Concepts, Technology, and Design. Prentice
Hall PTR (August 2005),
http://www.amazon.ca/exec/obidos/

redirect?tag=citeulike09-20&path=ASIN/0131858580

7. Coulouris, G.F., Dollimore, J.: Distributed systems: concepts and design, 4th edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

8. Schade, S., Sahlmann, A., Lutz, M., Probst, F., Kuhn, W.: Comparing Approaches
for Semantic Service Description and Matchmaking. In: Meersman, R. (ed.) OTM
2004, Part II. LNCS, vol. 3291, pp. 1062–1079. Springer, Heidelberg (2004)

9. Andrade, R.M.C., Logrippo, L.: Morar: A pattern language for mobility and ra-
dio resource management. In: Dragos Manusecu, J.N., Volter, M. (eds.) Pattern
Language of Program Design 5, ch. 10, pp. 213–256. Addison-Wesley (2006)

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0131858580
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0131858580

70 M.E.F. Maia et al.

10. Liu, C., Peng, Y., Chen, J.: Web services description ontology-based service discov-
ery model. In: WI 2006: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, pp. 633–636. IEEE Computer Society, Washing-
ton, DC (2006)

11. IBM, An architectural blueprint for autonomic computing (2005)
12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, ch. Introduc-

tion, pp. 1–14. Springer (2003)
13. Groenevelt, R., Nain, P., Koole, G.: The message delay in mobile ad hoc networks.

Perform. Eval. 62, 210–228 (2005)
14. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1.

Wiley (January 1968)
15. Bar-Yossef, Z., Friedman, R., Kliot, G.: Rawms - random walk based lightweight

membership service for wireless ad hoc networks. ACM Trans. Comput. Syst. 26(2),
1–66 (2008)

16. Cornell, U.: Jist/swans java in simulation time/scalable wireless ad hoc network
simulator (2008), http://jist.ece.cornell.edu/

17. De Meyer, K., Bishop, J.M., Nasuto, S.J.: Small-World Effects in Lattice Stochastic
Diffusion Search. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp.
147–152. Springer, Heidelberg (2002)

18. Khelil, A., Marrón, P.J., Becker, C., Rothermel, K.: Hypergossiping: A generalized
broadcast strategy for mobile ad hoc networks. Ad Hoc Netw. 5(5), 531–546 (2007)

19. Drabkin, V., Friedman, R., Kliot, G., Segal, M.: Rapid: Reliable probabilistic dis-
semination in wireless ad-hoc networks. In: 26th IEEE International Symposium
on Reliable Distributed Systems, SRDS 2007, pp. 13–22 (October 2007)

20. Liu, J., Issarny, V.: Qos-aware service location in mobile ad hoc networks. In:
Proceedings of 2004 IEEE International Conference on Mobile Data Management,
pp. 224–235 (2004)

21. Rellermeyer, J.S., Alonso, G.: Concierge: a service platform for resource-
constrained devices. SIGOPS Oper. Syst. Rev. 41(3), 245–258 (2007)

22. Liu, J., Issarny, V.: Qos-aware service location in mobile ad hoc networks. In:
Proceedings of 2004 IEEE International Conference on Mobile Data Management,
pp. 224–235 (2004)

23. Kramer, J., Magee, J.: A rigorous architectural approach to adaptive software
engineering. Journal of Computer Science and Technology 24, 183–188 (2009)

24. Hales, D., Arteconi, S.: Slacer: A self-organizing protocol for coordination in peer-
to-peer networks. IEEE Intelligent Systems 21(2), 29–35 (2006)

25. Bailey, N.: The Mathematical Theory of Infectious Diseases and its Applications.
Griffin, London (1975)

26. Tracy Camp, V.D., Boleng, J.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

http://jist.ece.cornell.edu/

	An Autonomous Middleware Model for Essential Services in Distributed Mobile Applications
	Introduction
	Essential Services for Mobile Applications
	Service Discovery

	AMESMA
	Middleware Architecture
	Middleware Internals
	Strategy Diffusion Analytical Model

	Simulation Results
	Overall Efficiency
	Diffusion of Efficient Strategies

	Related Work
	Conclusion and Future Work
	References

