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Abstract. The widespread and ubiquitous nature of mobile devices
makes them attractive as providers of information collected from their
rich equipment of sensors (camera, microphone, GPS, etc.), and also
from external sensors (placed on persons, or in the environment). Thus,
we envision large-scale sensor networks that use mobile devices as raw
data sources, but also aggregated information producers - merging basic
data coming from sensors distributed in the environment.

In this paper we propose an architectural framework for agile devel-
opment and deployment of mobile cloud applications, harvesting hetero-
geneous sensor data. The novelty of the architecture is the possibility to
dynamically manage multiple internal and external sensors, and generate
graphical user interfaces to collect user inputs and present semantically
integrated information, in a cloud-based personalized fashion.

Keywords: context-aware networking, cross platform development, mo-
bile cloud.

1 Introduction

Recent years have seen the relentless market success of mobile devices (PDAs,
smart-phones, MIDs, PMPs, net-books, etc.), whose ever increasing capabilities
make them attractive to a growing number of network applications in business
and infotainment domains, that now can be fully experienced in mobility.

At the same time, the widespread and ubiquitous nature of mobile devices
makes them attractive as providers of information collected from their rich equip-
ment of sensors (camera, microphone, accelerometers, compass, GPS), and also
from external sensors (placed on persons, or in the environment). Thus, we en-
vision large-scale sensor networks that use mobile devices as raw data sources,
but also aggregated information producers - merging raw data coming from sen-
sors distributed in the environment. There are several important challenges in

N. Venkatasubramanian et al. (Eds.): Mobilware 2011, LNICST 93, pp. 219–232, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



220 M. Picone et al.

realizing such types of distributed applications, e.g. providing efficient meth-
ods for sensor nodes to make their data available to the network, allowing data
access from potentially disconnected and highly mobile devices, ensuring that
privacy constraints are met, and allowing application developers to build mod-
ular, service-oriented applications.

With the growing of the mobile application market, new solutions for soft-
ware distribution have been recently introduced, with the dominance of online
application stores (such as AppStore and Android Market). These virtual mar-
ketplaces have solved many problems to developers and common users, allowing
for easy dissemination and installation of apps with specific security and update
management policies. If on one hand this approach allows for widespread dis-
tribution of applications, on the other hand it appears to quite unsuitable for
highly dynamic scenarios where application needs may change very frequently
within a week or even the same day, according to user credentials, location or
purposes [5].

In this context, we propose an architectural framework for agile development
and deployment of mobile cloud applications, harvesting heterogeneous sensor
data. The novelty of the architecture is the possibility to dynamically manage
multiple internal and external sensors, and generate graphical user interfaces to
collect user inputs and present semantically integrated information, in a cloud-
based personalized fashion.

The proposed architecture is characterized by two main functional modules,
namely the service platform and the mobile platform. The former is charac-
terized by a semantic service engine, that allows for dynamic composition of
sensed data, to be presented to mobile users in a personalized fashion. The
latter is a lightweight mobile application that is able to manage sensors and
interact with the service platform for storing/retrieving data. The mobile plat-
form is designed for running over different mobile operating systems (such as
iOS, Symbian/RIMM, Windows Mobile and Android) and tolerating the rapid
obsolescence of technologies and, consequently, of devices that are frequently
substituted by models with different features and functionalities. Its flexibility
support the ”install once, run forever” paradigm, thus solving the previously
discussed software distribution issue.

The paper is structured as follows. Section 2 presents the state of the art in
the field of sensor-based mobile architecture. Section 3 specifies the proposed
architecture. Section 4 introduces two example scenarios and describes the first
prototype of a demo application we are developing. Finally, section 5 concludes
the paper summarizing achieved results and proposing some future develop-
ments.

2 State of The Art

Integration of mobile devices and sensor networks for context awareness is a
hot topic in the field of distributed systems. Context-aware computing is a mo-
bile computing paradigm in which applications can discover and take advantage
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of contextual information (such as user location, time of day, nearby people
and devices, and user activity). In their recent work [12], Soylu et al. integrate
and extend fundamental and promising theoretical and technical approaches for
the development of adaptive, context-aware software systems. Moreover, they
present an interesting view point for context-aware pervasive application devel-
opment, particularly based on higher abstraction where ontologies and semantic
web activities, also web itself, are of crucial importance. The long and short of it
is that perception, adaptivity, interoperability and standard compliance are key
enablers of pervasive computing.

Perception means (especially) sensing the environment. In [4], Bednarz et
al. present a multi-sensor XML-based communication protocol, called Human
System Integration Protocol (HSIP). Hard-wired or wireless sensors are assumed
to be connected to a data server to which, after registration, they to transmit
information.

Sensor networks consist of tiny low-powered computing devices with extremely
restricted computational, communication and battery capabilities. Each device
may be equipped with a physical sensor for reading temperature, sound, pressure
or other physical phenomena and can operate both as a sensor and a wireless
router. One of the major tasks of sensor networks is the distributed collection
and processing of sensor readings over extended periods of time. Scalability, self-
configuration, ease of deployment and low cost have made sensor networks a very
attractive solution for a wide range of environmental monitoring, distributed
surveillance, healthcare and control applications. In many situations, collecting
data at a certain fixed location is neither possible nor practical. Having mobile
collectors (that collect data and transfer messages between individual sensors
[8]) can be the only way to solve the problem - a thesis that we support in this
paper.

Another approach, suggested by Kansal et al. [9], is to implement a sensor
network of mobile phones, to be provided as a shared system, as opposed to
a system where a single application owns and uses a dedicated set of mobile
devices carried by users or vehicles. Using mobile devices as sensors has a signif-
icant advantage over unattended wireless sensor networks in that deploying the
sensing hardware and providing it with network and power is already taken care
of. Secondly, mobile phones can provide coverage where static sensors are hard
to deploy and maintain. Thirdly, each mobile device is associated with a human
user, whose assistance can sometimes be used to enhance application functional-
ity. For instance, a human user may help by pointing the camera appropriately
at the target object to be sensed.

On the problem of creating device-independent interfaces, in literature we
found some interesting works. Among others, in [10] Nichols et al. present the
Personal Universal Controller (PUC), an approach for improving the interface
to complex appliances by introducing an intermediary graphical or speech inter-
face. A PUC engages in two-way communication with everyday appliances, first
downloading a specification of each appliance’s function, and then automatically
creating an interface for controlling that appliance.



222 M. Picone et al.

3 Proposed Architecture

We propose a mobile device -centric approach for sensor-based distributed ap-
plications. The main idea (sketched in figure 1) is that mobile nodes collect data
from sensors (their own ones, or those placed in the surrounding environment),
and share such data within the network, by means of cloud services [7]. Au-
thorized users can visualize data thanks to mobile web applications (that are
independent from the mobile platform) and dynamically compose the user inter-
face according to currently selected data visualization services, to context and
to user profiles.

Fig. 1. Mobile device -centric approach

As we know, mobile terminals such as smart-phones and tablets allow to col-
lect a huge amount of data from local and external inputs and sensors connected
by multiple interfaces such as Bluetooth, WiFi or USB. Concurrently, user in-
puts may contribute to enhance the quality and effectiveness of the application,
by enriching collected data before they are shared within the network.

Such a mobile device -centric approach has a number of advantages over the
centralized approach for sensor data collecting, namely:

– Energy efficiency In a mobile scenario, sensors will store data locally and
provide them to mobile collectors. Data can be sent directly when the ap-
propriate connection is available, or in a subsequent time, according to user
preferences and always trying to preserve sensor battery lifetime.

– Improved availability of sensor networks Mobile devices may act as gate-
ways for sensor networks that, for some reasons, are disconnected from the
Internet.

– Ubiquity Users can query the network and collect data from any location.

Figure 2 illustrates the global architecture, where the following elements are
highlighted:

– Mobile Device (MD) - Is the principal entity of the system, interacting with
external sensors to collect data, exchanging them with the cloud, and allow-
ing user to enter extra information.
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– The Cloud - Provides personalized environments with services for storing
information generated by MDs, as well as mobile Web user interfaces (UIs).

– External Modules (EMs) - Represent external software entities that, accord-
ing with their authorization level, can interact with the Cloud to consume
its services, or to provide new ones, for example to integrate multi-source
data and provide new information.

– MD Communication Layer - Allows the communication between the Cloud
and the MD in terms of login procedures, data exchange, UI specification
transmission and notifications pushing to the device.

– EM Communication Layer - Allows the communication between the Cloud
and EMs to transmit and receive data.

Fig. 2. The proposed architecture

In the following we describe the mobile platform that runs over the MD, and
the service platform used by the Cloud and EMs.

3.1 Mobile Platform

On the mobile side, there is the necessity to communicate with different types
of external sensors and to generate a rich user interface to collect user input. To
these purposes, a cross-platform solution (e.g. HTML-based, such as PhoneGap
[11]), for the development of the mobile engine, may not be efficient (not provid-
ing thread management and synchronization mechanisms). Similarly, a mobile
code solution, where software pieces are transferred between systems (i.e. trans-
ferred across a network or via a USB flash drive) and executed by the recipient
on a local system, has several issues, related to runtime generation of the user
interfaces on multiple platforms, and also to the management of different sensors.

For these reasons, in our opinion the mobile platform need to be developed
using native programming languages - such as Java, C++ or Objective-C - for
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each platform, and provided with the ability to automatically generate, starting
from a standardized UI Specification Language, all user interfaces for interacting
with available sensors in the environment, and accessing remote services. This
approach allows for reduced complexity of the mobile platform dissemination
and update process, too (the mobile platform needs to be downloaded once, for
example from an app store). This approach is also highly scalable, allowing for
real-time, context-driven adaptation of the application, e.g. taking into account
user location, environment settings, etc.

Fig. 3. The Mobile Platform

Figure 3 describes the mobile platform, whose main components are:

– Mobile Engine - The intelligent core of the mobile platform, interacting with
other mobile modules to send and receive data from local and remote sources,
and dynamically generating the GUI that allows the user to enrich sensor
data with other useful knowledge.

– Sensor Communication Layer - Middleware enabling the communication with
internal and external sensors/inputs through different channels, according to
the device profile.

– Service Communication Layer - Middleware allowing the interaction with
the Cloud to discover services, test their QoS, send/retrieve data, etc.

Aggregated sensor data are presented to the user on his mobile device by the
service platform in a personalized fashion, by means of a Web-based application.

3.2 Service Platform

Mobile devices exchange data with the Cloud, that is enabled by a service plat-
form (illustrated in figure 4) provided with the following components:

– Semantic Service Engine - The core of the service platform, managing all
available modules in order to provide different types of services to final users.
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– Database Communication Layer - A middleware for storing and retrieving
data and information from system databases.

– Service Ontology - A Web 3.0 knowledge base encompassing all the charac-
teristics of each service, user, sensor and inputs.

– Client Communication Layer - A middleware that enables mobile devices to
connect transmit and receive data.

– Security Layer - A middleware that provides protocols for securing the com-
munication between service platform and mobile clients.

– Web Interface Builder - A component that builds dynamic Web pages for
showing real-time or cached data in personalized fashion, according to user
needs, profile and credentials.

Fig. 4. The Service Platform

Services exposed by the Cloud have specific input parameters (representing
sensor data). The Mobile Engine discovers such information at runtime. A service
can be used only if the Mobile Engine is able to provide all needed sensor data.
The service description should be something like:

– Service. Defines a specific functionality with different UI sections and a list
of required sensors with the following parameters.
• Name: Unique identifier of the service.
• Storing Type: Defines the storing procedure of input and sensor data.
The service may enable immediate or delayed data transmission (the
latter would require that the Mobile Engine temporarily stores data in
a local file) - possible parameters being REMOTE and LOCAL. This dual
opportunity allows the user, once the service description has been re-
trieved, to execute the service offline, by caching data and uploading the
locally stored file later, when connectivity is available.

• Storing Location: In case of a remote storage procedure, this tag contains
the service endpoint; otherwise, in case a local storage on the mobile
device, it contains the filename.
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– UI-Section: Defines a single section of service’s UI allowing the designer
to divide data entry in different slices, that may be either mandatory or
not, and may contain labels and figures to show useful information, or input
fields.
• Name: Unique identifier of the section.
• Description: Short text containing general information about presented
data, or the instructions about required data.

• Mandatory: Boolean field to specify whether the section can be skipped
or not.

– Input: Represents a generic input for the data entry.
• Name: Unique identifier of the field.
• Type: Defines the type of requested data, e.g. string, numeric, list, boolean
etc. According to the input type and to the specific platform, the Mobile
Engine will properly generate the UI to simplify data collection.

• Mandatory: Boolean field to specify if the section must be filled or not.
– Label: Represents a text label with an associated image.

• Name: Unique identifier of the label.
• Text: Label’s text.
• Image: Associated image.

– Sensor List : Contains the list of sensors required by the service.
– Sensor

• Type: Defines the sensor type according to the Service Ontology. By
means of this field, the Mobile Engine can search among already discov-
ered and bound sensors to verify if service needs can be satisfied.

• Mandatory: Boolean field that specifies whether the sensor must be avail-
able or not.

• Working Frequency: Specifies the sampling rate of the sensor’s data.
• Reading Limit Type: Defines if the sampling of sensor data will stop after
a specific time, or upon reaching a specific number of collected samples
(possible parameters are TIME and SAMPLES).

• Reading Limit Value: Represents the amount of seconds or the number
of samples after which the sampling of sensor data will stop.

The Mobile Engine reads and shows to the user the list of available services.
Once a service has been selected, the operator can choose among available and
bound sensors which he/she wants to use for the service. If more than one sensor
of the same type are available, the user can select which of them must be used.
Similarly, if one or more mandatory sensors are no more available, the engine
shows an error message and prevents next interaction. After the sensor selection
phase, the Web Interface Builder dynamically generates the required UI accord-
ing to service description allowing the user to add manual inputs associated with
the data that could be retrieved from the sensors.

Dynamic UI generation for data visualization is provided by the Web Interface
Builder of the service platform, and published to the mobile client as a person-
alized Web interface. Using platform-specific CSS sheets, such a Web interface
can be customized. Finally, the Security Layer allows to visualize information
only to users that are provided with the right credentials.
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3.3 QoS and QoI Management

In the proposed mobile device -centric architecture, quality of service (QoS)
management is very important. Each service may specify a minimum guaranteed
quality of service, defined in terms of transmission rate, packets error, computa-
tional power, connection type, etc. During the connection establishment phase,
the server could ask to the client to check if it is able to send data with the
requested QoS. This kind of test could be also repeated periodically during the
data delivery phase, to identify possible lowering of performance and QoS.

Another important aspect we took into account is the quality of information
(QoI), that refers to the ability to figure out if available information coming from
sensors is fit-for-use for a particular service. Let us consider a scenario in which
several PDAs want to use services that require sensors provided by a Wireless
Sensor Network (WSN). Each service has to execute tasks that need resources
from the network. QoI management provides mechanisms for investigating new
task admission and resource utilization, for controlling the individual QoI pro-
vided to new and existing tasks. This can be done using real-time feedback-based
monitoring systems. The QoI can be characterized by a set of quality attributes,
such as accuracy, latency, and spatio-temporal relevancy. To this purpose, as
suggested in [13], we can consider three key design elements: (a) the QoI satis-
faction index of a task, which quantifies the degree to which the required QoI is
satisfied by the WSN; (b) the QoI network capacity, which expresses the ability
of the WSN to host a new task with specific QoI requirements without sacrificing
the attained QoI levels of other existing tasks, and (c) an adaptive, negotiation-
based admission control mechanism that reconfigures and optimizes the usage
of network resources in order to optimally accommodate the QoI requirements
of all tasks.

4 Analyzed Scenarios and Prototype

In this section we analyze two appealing scenarios that perfectly match with
our dynamic architecture. The first scenario is related to an industrial environ-
ment where one or more operators make an inspection of different production
line, whereas the second one is associated to an e-Health system that collects
information about patients through sensor interaction and user feedbacks. The
important aspect is that both scenarios can be realized with the same mobile
engine implementation, without specific development or efforts on the mobile
side, thus reducing costs, focusing on service characteristics and increasing scal-
ability. We have started the development of applications for both scenarios. In
the last subsection we describe those being implemented for the industrial one.

4.1 Industrial Scenario

Mobile applications have become an important means for improving industrial
service processes [2] [3]. Since their increasing complexity should not reduce
usability, the personalized UI approach we propose appears to be highly suitable.
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Let us consider a small/medium company whose core business is to bottle any
type of drink, from water to wine. A large amount of this business is based on
the perfect functioning of the production line, that is costly in terms of safety
and security. Periodic controls and ordinary maintenance are very important to
prevent accidents and to assure the correct working of the system.

Each industrial machine endows one or more sensors that collect status in-
formation, allowing to detect potential problems all along the production line.
Traditional plants have pipelined machines, each one being cabled with a com-
puter that stores data sent by the machine, and operates on the machine’s actu-
ators. Usually the software running on master machines is not standard-based,
for which it is difficult to collect and integrate data from several machines, unless
they are made by the same vendor.

Our approach would require a unique server running the Service Platform, and
a set of mobile devices running the Mobile Engine. Company operators would
perform machine maintenance according to the following procedure:

– collect sensor data using a smartphone;
– check bottlers’ status by evaluating received data;
– eventually discover any change in the composition and structure of the ma-

chines;
– make interviews with workers of the warehouse, to investigate any question-

ing or difficulty concerning machines, and to enrich gathered data;
– immediately update all collected information.

Fig. 5. Industrial scenario

Suppose that the company has started a new, more efficient bottling line.
The chief operator notifies this change to the operations centre, by adding the
sensors of the new line to the list of monitored ones, using his smartphone. The
chief operator may also collect feedbacks from workers in order to enrich sensed
information provided to the operations centre. The mobile device can also work
in offline mode, by locally storing important information and uploading them as
soon as a connection is available.
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4.2 e-Health Scenario

The proposed architecture can be used in a number of healthcare scenarios.
In particular, some diseases require to monitor the status of patients that fol-
low specific treatments, assigned by their doctors. Patient monitoring may be
very costly, when manually performed by a specialist. Our architecture can help
simplifying this process, by automating patient monitoring. Figure 6 shows a
scenario we plan to address, related to individuals with walking disabilities, pro-
vided with Ankle-foot orthoses (AFOs) to aid in their walking (we prepared and
published online an AFO demonstrative video [1]).

Fig. 6. e-Health scenario

Despite the widespread use of AFOs, their performance is not well evaluated,
because the quantitative assessment is currently limited to short-term in-clinic
observation. To better understand how AFOs perform in aiding individuals with
walking disabilities and further enhance the AFO efficacy, a continuous, non-
invasive measurement method is necessary. After a careful investigation by Gait
analysis experts, ankle angle is selected as a primary Gait parameter for assessing
the efficacy of AFO.

Our RimLab is working on a sensor-provided AFO, able to collect data about
the ankle angle. Thus, a patient could use her/his PDA to send AFO data and
insert additional qualitative information (e.g. how much the AFO is comfort-
able). The Doctor may access such collected data to monitor the patient and to
evaluate the effectiveness of the proposed treatment.

The AFO case study can be generalized, considering any set of sensors, tar-
geting different diseases. The PDA is used to access services that allow to send
sensed data, to manually insert additional information, and to get treatment
updates, doctor’s feedbacks, etc. Similarly, the doctor uses services to read in-
formation coming from sensors or user inputs, to define new inputs that the
patient has to insert, and to modify the treatment.
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4.3 Prototype

In order to evaluate our architecture and our approach we have designed and
developed a first prototype of the system and a demo application (a video is
available at [6]). Main developed components are:

– Semantic Service Engine based on PhP technology to provide the list of
available services and their description.

– Database and associated Communication Layer to parse, store and retrieve
data.

– Mobile Engine prototype on the iOS platform (namely, iOS-ME) in order to
test its scalability and usability.

Up to now we have been mainly focusing on dynamic user-friendly interface gen-
eration, data exchange, and onboard sensor interaction, while leaving external
sensor interaction as future work. iOS-ME, that has been implemented in the
Objective-C programming language, presents to the user three main ”views”
(shown by screenshots in figure 7). We recall that, in the iOS development en-
vironment, a view is a screen presented to the user.

(a) Service list. (b) Sensor discovery
and pairing

(c) Filling Machine
needed sensors

(d) Filling Machine
input fields

(e) Data exchange
interface

(f) Remote data vi-
sualization

Fig. 7. iOS Mobile Engine Prototype
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The ”Setting” tab emulates external sensor management and is used by the
Sensor Communication Layer to show discovered external devices and already
paired sensors. The ”Services” section allows to discover Cloud services, with
associated description, and to visualize them in a table structure. When clicking
on an available service, iOS-ME shows a summary of required sensors, and the
list of those that are already available or missing. The user is allowed to select
sensors that she/he wants to use for the specific service. After that, the user can
move to the next ”view” - the one devoted to data entry. As described before,
each UI-section contains both mandatory and not mandatory fields, differently
highlighted (red and black). Until all mandatory fields are correctly filled, the
engine prevents the user from moving to next view. After that, when all user
data are collected and sensors are correctly configured, iOS-ME starts the data
exchange with the server and shows a report about each operation in order
to show possible communication errors to the user. This task continues until
the user clicks the stop button, that ends the uploading procedure. The last
application tab is related to data visualization, that (as described in section 3)
is based on a mobile Web technologies, with an appropriate style sheet for each
device type.

5 Conclusion

In this paper we have illustrated a novel architecture for agile development and
deployment of mobile, sensor-based applications. The distinctive feature of such
an architecture is the mobile device -centric approach, for which mobile devices
are providers of information collected from their rich equipment of sensors (cam-
era, microphone, GPS, etc.), and also from external sensors (placed on persons,
or in the environment). We have illustrated two significant example scenarios,
and a prototype we have developed and tested.

As future work, we are going to complete the development of the Service
Platform, improving the semantic service engine. Moreover, we are going to
develop versions of the Mobile Engine for other platforms than iOS - e.g. Android
and BlackBerry.
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