
Mobility-Tolerant, Efficient Multicast

in Mobile Cloud Applications�

Ju Wang1, Hui Chen1, Kostadin Damevski1, and Jonathan Liu2

1 Virginia State University, Petersburg, VA 23806, USA
2 University of Florida, Gainesville, FL

jwang@vsu.edu

Abstract. Interactive mobile applications require a highly available
multicast service for information dissemination and collaboration, while
being able to withstand mobility-induced network connectivity problems.
However, efficient and reliable wireless multicast has remained a difficult
challenge. We propose a novel wireless multicast scheme that allows more
efficient and mobility-proof multicast in mobile cloud environments. Our
scheme uses a distributed caching and deferred acknowledgement (ACK)
technique to reduce delivery ACK traffic during a multicast session. Pack-
ets with pending ACK are cached in selected network nodes to provide
fast re-delivery. A distributed multicast tree construction algorithm is
also utilized to provide fast topology repair under dynamic network con-
ditions. The tree maintenance requires each node to keep track of its
2-hop neighborhood connectivity. Our scheme’s ability to overcome fre-
quent network topology changes leads to a low message exchange over-
head to correct local topology errors.

Keywords: multicast, mobile cloud, reliability, mobility, fail-recovery,
MAC protocol, wireless network.

1 Introduction

Cloud computing with mobile devices [10–12] enables many new exciting appli-
cations that were unavailable in the past. For example, a mobile cloud could
be made of smart phones to process real-time data (e.g., video and audio feeds,
GPS coordinates). Other mobile cloud applications might involve realtime con-
trol/actuation (e.g., to physically turn on a ventilating fan) in wireless powered
sensor networks. Such new applications need a capable and reliable communica-
tion infrastructure (both wireless and wired portions) to move large amount of
data between mobile nodes in a timely manner.

One challenge in the intersection of mobile and cloud computing is the lack of
mobility-tolerant middleware services. Reliable wireless multicast service would
greatly enhance many mobile cloud applications. For instance, a mobile ap-
plication utilizing a cloud of street video cameras can support a wide range

� This material is based upon work supported by the National Science Foundation
under Award No.1040254.

N. Venkatasubramanian et al. (Eds.): Mobilware 2011, LNICST 93, pp. 167–180, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

168 J. Wang et al.

of image-based searching tasks (e.g. missing children, terrorist suspects). Such
applications would depend on a reliable multicast service to distribute target
pictures to all cloud nodes. Other wireless-based applications can also benefit
from the service tremendously. Network-wide information dissemination, such as
distributing new program/firmware across a re-programmable sensor network,
could be performed more efficiently.

However, multicast in wireless mobile networks is expensive and significant
network resource and energy must be committed to overcome a wide range of
communication problems, from device failures, short term link lost, to packet
delivery failures due and node movements. The fundamental challenge of mul-
ticast reduces to the efficient construction and maintenance of a multicast tree.
The problem has been studied by many researchers [1, 3, 6] for both wired
and wireless networks as an instance of the Minimum Connected Dominant Set
(MCDS) problem, and recent work focuses on distributed multicast protocols
[7]. Distributed solutions are attractive since localized decision making is more
adaptive to a changing mobile environment.

When reliable packet delivery is added to the requirement, the problem be-
comes even more challenging. An intuitive solution requires all target nodes to
acknowledge the receipt of each multicast packet. The multicast source is forced
to schedule retransmissions until all nodes confirm a packet reception. If the
multicast network contains more than one level of relay structure, the ACK
traffic must be relayed back to the source node through the same network (but
in reverse direction). To further complicate the matter, node movements during
the multicast session will cause topology change and possibly interrupt the ACK
process. The ACK from a moving node might have to be relayed to its origi-
nal parent node to avoid unnecessary retransmission. All scenarios considered,
significant amount of network traffic would be induced to an already congested
network.

We observed that multicast traffic is sessional by nature: multicasting a video
frame at the application layer will result in a stream of multicast packets from
the same source node. Such traffic pattern is utilized in our design to im-
prove reliability at a moderate message cost. Our solution consists of two key
techniques:

1. We use a distributed caching and deferred ACK protocol to reduce the re-
quired ACK messages while still providing reliable tracking of data delivery.
Multicast packets are cached throughout the network to provide a swift
retransmission of dropped packets. The readily available of large flash mem-
ory in today’s mobile devices provides significant cache benefit. Specifically,
we are able to save significant ACK-related messages through the deferring
scheme.

2. For route construction, we use a modified Distributed Local-Gain-Maximizing
(DLGM) algorithm [17] to form a decentralizedmulticast tree that avoids net-
work flooding. The scheme utilizes a multicast session concept so that multi-
cast packets belongs to the same session can be handled with efficiency by
reusing the routing path of a previous packet. Our DLGM-s algorithm, short

Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications 169

for DLGM-with-Session, is designed to handlemulticast failure caused by node
movements and reuse routing decision from previous packets. The uniqueness
of our algorithm is that the multicast tree is formed during the media access
stage and the algorithm is executed by all nodes to determine whether or not
it should relay, delay, or ignore a new multicast packet. The algorithm is in-
herently distributed and adaptive to topology changes. Each node’s local de-
cision takes into account a dynamic multicast-gain calculated from the local
connectivity and relaying activities at nearby nodes.

The rest of this paper is organized as follows: Section 2 provides a summary of
related work; Section 3 shows the architecture of the proposed scheme and its
packet delivery performance; Section 4 provides a qualitative analysis of relia-
bility against device mobility for the relevant methods; Section 5 concludes this
paper.

2 Related Works

Cloud computing [8] originates from service-oriented computing where hardware
and software resources are provided as services and applications are regarded as
consumers. Recently, the cloud computing model is extended to utilize mobile
devices (such as smart phones) as hardware farms [13] at the cloud side to aug-
ment its computing capabilities. Mobile cloud applications can leverage all of the
advantages from the conventional cloud concept, such as computation offloading
to data centers [11]. In [14], an Android based smart phone and the Elastic Com-
pute Cloud service of Amazon Web Services (http://aws.amazon.com/ec2/) is
used to create a mobile cloud traffic light detector application. The smart phones
are used mainly as video capture devices, and Amazon’s cloud receives and pro-
cesses the video frames.

Reliable multicast in a traditional network requires two all-to-one transmis-
sions per packet: the Confirm-To-Send (CTS) stage and the ACK stage. Both
consume considerable network resources. Several solutions were proposed in the
past to use certain delay strategies to avoid CTS/ACK collision, or use selective
CTS/ACK replying to reduce the problem to a manageable scale. However, most
of this work is performed within a single hop network and there is no consid-
eration to support multicast session. We observe that many practical multicast
tasks would consists of many packets from the same source. We thus believe
that, instead of replying ACK immediately, a deferred ACK scheme at the ses-
sion level could allow a node to reduce ACK traffic without compromising the
overall network trackability.

On the routing side, many existing multicast protocols construct a multicast
tree through network flooding. However, simple flooding is known for its low
efficiency due to many overlapped transmissions. Traditional multicast protocols
are mostly best-effort type of services without delivery confirmation to save
bandwidth.

The construction of the multicast tree can be formulated as an instance of
the Connected Dominant Set (CDS) problem. CDS is known as an NP-complete

170 J. Wang et al.

problem and many heuristic algorithms have been discussed [5], some of which
are distributed solutions for ad-hoc networks [4, 6, 7]. The method by Wieselth-
ier et al.[15] shows that discovering the minimum-size multi-point relay set
(MSMRS) is NP-hard. Qayyum et al. proposed MRP (Multipoint Relay
Protocol)[3] where each relay node must select some of its 1-hop neighbors to
further relay the multicast packet. A source-initiated CDS is thus formed as the
broadcast packet is relayed throughout the multipoint relays.

The algorithm discussed in [5] is based on a generalization of Chvatal’s greedy
algorithm for the set cover problem. The algorithm obtains a dominant set S first,
then it grows the dominant set by searching S’s neighbor nodes and including
vertexes of the highest degree. The MCDS algorithm requires the global knowl-
edge of the network topology, which is expensive to implement in a distributed
environment. Wan [4]shows that at least O(nlogn) messages are required.

Wu and et.al. [1] [2] use a two-stage algorithm that takes an opposite ap-
proach. Their algorithm initially obtains a relative redundant CDS by choosing
nodes whose neighbor sets are not completely overlapped. This is followed by a
prune process to eliminate as many locally redundant nodes as possible while
maintaining the required connectivity. The mark process and the original two
prune rules require N2 neighbor knowledge and is a purely discrete algorithm.
Wang et.al, [17] use a concurrent CTS method to reduce the CTS overhead and
DLGM algorithm to construct a hidden routing tree. The work presented here
could be considered as an extension of this work in multicast session scenarios.

3 Overview

We assume a hybrid ad-hoc wireless network architecture that consists of three
types of nodes: (1) A central node (C-Node) for monitoring and controlling
purpose; (2) a set of stationary relay nodes (R-node) whose sole purpose is to
facilitate routing and packet forwarding; (3) and a dynamic set of mobile nodes
(M-node) who provide application specific computing, sensing, and actuating
resources needed in mobile cloud applications. The concept of R-node is com-
monly used in the Wireless Sensor Network (WSN) community to alleviate the
packet routing problem, similar to wireless access point in WLAN or base station
in cellular networks. In addition to the fixed R-nodes, any M-node could claim
itself as an R-node based on its position in the topology. Compared to other
work, one distinct difference of our network architecture is that M-node assume
a critical role in packet routing and delivery confirmation. As will be demon-
strated later, such design greatly enhances the network’s ability to operate even
in high node mobility situations. Figure 1 shows a mobile cloud application at
our institute where the proposed network architecture will be used to create a
smart high-tunnel greenhouse. The demonstration network consists of wireless
sensor devices, both static and mobile, to collect crop growth information and
control irrigation/ventilation/pesticide delivery.

Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications 171

Fig. 1. Smart High-tunnel Mobile Cloud Demonstration Network

3.1 Problem Description

Many events can interrupt packet delivery during a multicast session: a node
might be temporary out of reach, a packet might be dropped due to interference,
or a node might experience hardware failure. To simplify our discussion, we
exclude situations when packet delivery is physically impossible, which translates
to the assumption that all nodes are connected and there is no permanent node
loss. It is further assumed that all nodes are aware of the existence of some
other nodes in the network and their ID, though the global network topology is
unknown.

To achieve reliable multicast, the network must have a proper packet tracking
ability and retransmission mechanism. Traditionally multicast packets are not
cached other than in the source node, thus all packet delivery confirmations
must be forwarded to the source node. If some packets need to be retransmitted,
the process will start from the source node and possibly go through the entire
network again even if many nodes might have already received it. In our scheme,
the problem is solved by using dedicated multicast cache (M-cache) at all nodes
for packet caching. Given that today’s mobile device have access to gigabyte-
level inexpensive flash memory for secondary storage this caching mechanism is
practically achievable. The wide availability of cached copies of multicast packets
is what makes the proposed scheme reliable and efficient.

3.2 Node Behavior: Deferred ACK

The rationals behind a deferred ACK scheme is the assumption that the mul-
ticast session might consist of many packets. Since a previous packet could be
acknowledged through a piggy-back ACK from a later multicast packet (of the
same session), it is unnecessary for all nodes to ACK for every new packet.

172 J. Wang et al.

With carefully designed ACK and caching policy, it is possible to save much
of ACK related network traffic. In the following discussion, we will use a dot
notation when a specific field of the signalling packet is mentioned, e.g., RTS.seq
represents the seq field of the RTS message.

The deferred ACK protocol is based on a modified RTS-CTS MAC layer
function to regulate transmission activities in a given 2-hop cell. To relay a
multicast packet, an R-node r needs to first transmit an RTS message to start
acquiring the wireless channel. In a conventional multicast protocol, all nodes
neighboring with r should reply with an CTS message to complete the channel-
reservation process. If the R-node does not receive all CTSs, a data packet will
not be transmitted to avoid collision. In our new protocol, the RTS packet will
contain an ctslist field to specify m representative nodes for reply. If an M-node
is selected, its CTS packet should be transmitted at a time slot indicated in
the the corresponding RTS message. The CTS message will also function as a
piggy-back ACK for its expected data packet. We hence use the term CTSACK
for the modified CTS message.

After the RTS stage, the R-node will wait for m + 2 time slots to collect
CTSACKs where the first m slots are reserved for the polled M-nodes, and the
last two slots are open to any new nodes that just joined the current cell. Each
CTSACK message also contains a source ID field so the R-node can update
its local topology as well as the delivery status for cached packets. The R-node
also interprets CTSACK.seq + 1 as the next expected packet of the respective
M-node. If the CTSACK.seq+1 is less than the sequence number of the current
pending packet, an implicit retransmission requests would be entered for the cor-
responding packet into transmitting queue. Finally the R-node decides whether
the current DATA packet should proceed, or a the RTS must be repeated.

The M-node behavior after receiving a RTS is fairly straightforward:

On Receiving an RTS

1. If the sender is not my uplink node, skip,
2. If the sender is not in my neighbor list, prepare a CTSACK message with

subtype TU (topology update) and content for one of the two free CTS slots.
3. Otherwise, if the local node ID is listed in the ACK responder field of the

received RTS, prepare CTSACK and transmit it at the designated slot. The
current expected packet sequence number is included in the CTSACK.

For both R-node and M-node, a newly arrived multicast packet will be added to
the local M-cache. For each entry in the M-cache, a node v maintains two lists: a
ACK list and a CTS list to keep track of the status of its M-nodes. The ACK list
contains all M-nodes that are associated to v. The CTS list will be changed if a
node change its association or is not interested to a particular multicast packet.
The ACK list is initialized to CTS list and updated accordingly when an CTS
packet is observed. The pseudo-code in Figure 2 described the detailed protocol
of the R-node to manage the multicast cache and determine its retransmission
activity.

Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications 173

R-Node Protocol
st ∈ {READY , mRTS, rRTS, DATA, IDLE
T0 : timer; recvcount : integer; WSIZE : integer

(st==READY) and (have new packet in M-cache)
send RTS
set T0 = m+ 2 CTS slot and start T0

��� st := mRTS
(st == mRTS) and (T0 not expired) and (received a CTSACK packet)

seq = CTSACK.seq
if cache[seq+1] does not exist

insert rtxUP event
else

insert rtxlocal event
src = CTSACK.src
cache[seq]->ack[src] = 1
cache[seq]->ackcount ++
if (cache[seq]->ackcount > 1/2 * N) mark replaceable flag
CTScount++
if (CTScount > 1/2 * m)

��� st := DATA
(st==DATA)
send data packet
st:=IDLE

(T0 expired)
if (CTScount < 1/2 m)

��� st = rRTS
TUTrigger -=1

else reset TUTrigger
(st == rRTS)

determine the new list of ACK[wait] list
append the code ids in
the MRTS packet.
reset T0 and re-send MRTS packet
st:= mRTS

st==IDLE & rtxlocal event
select the oldest packet from
cache that is marked for retranmission

remove its retx flag
add the packet into tranmission buffer
st := READY

st=IDLE & rtxUP event
compile the missing packet ids

and send request to upstream.
st=IDLE TUtrigger==0

broadcast topology update ’hello’ message

Fig. 2. R-node behavior. N is the size of local cell. m is the length of ACK list field.
The protocol requires at least 50% of polled nodes to ACK.

174 J. Wang et al.

3.3 Routing Behavior

Defining cell N(v) as node v’s neighbor set, the multicast routing problem is
formulated to a MCDS problem [4, 6, 7]. Denoting graph G(V,E) for the under-
lying network and s ∈ V the multicast source node, the problem of seeking the
optimum multicast tree is to find the smallest tree T , such that

⋃

v∈T

N(v) = V

and
s ∈ T

We now discuss how a distributed multicast scheme would be constructed by
maximizing the local multicast gain.

Since a distributed routing solution can’t assume the knowledge about the
global topology G(V,E), we seek to maximize the number of newly covered
nodes per transmission during a multicast session. The basic routing method
is the DLGM (Distributed Local Gain Maximum) algorithm in [17]. The main
modification here is the mechanism to reuse past routing decisions. For clarity,
we summarize some of the key features of DLGM.

Unlike other routing methods where each node must maintain a list of neigh-
bor node for local relay, DLGM rely on each nodes making individual decision
based on a locally calculated gain factor. To maximize multicast coverage, the
self-nominated relaying nodes should cover as many new nodes as possible. Mean-
while, the relaying nodes should be sufficiently separated each other to allow par-
allel relaying actions. Such design has obvious advantageous in a highly dynamic
environment where the bulk of effort for routing tree update could be spared.

The DLGM algorithm requires that each nodes keep track of multicast status
in its neighbor area. For each node v ∈ V , we denote its direct neighbor set by
N(v). At each node v, we maintain (1) N(v), and (2) N(u) for each u ∈ N(v).
That is, each node knows the network topology of its 2-hop neighborhood. The
2-hop neighbor set surrounding v is denoted by N2(v) = N(v)

⋃
i∈N(v) N(i).

The modified DLGM algorithm will be executed by all nodes when receiving
a data packet to decide whether the received packet will be relayed, delayed or
discarded (the protocol behavior is based on an arbitrary node v). The algorithm
utilizes previous relaying experience to accelerate decision making. For a new
packet from node u, node v will examine weather the N2 neighbor of u has
been changed since last relay. If nothing has been changed, v will delay the same
dbackoff slot before MRTS. The assumption is that other nodes in N(u) will
make a similar decision to use their old delay slot. Since there is no conflict
among the delay selection in the previous packet, the probability of no collision
is high with the local topology unchanged.

Distributed Local Gain Maximizing with Session (DLGM-S)

– For each node i ∈ N(v), define a multicast gain function g(i) as the number
of nodes in N(i) that are not marked. Initially all nodes are not marked,
thus g(i) = |N(i)|.

Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications 175

– When receiving an MRTS packet from a node u, mark all nodes in N(u) as
received.

– For each node i ∈ (N(v)
⋂

N(u))/v, update their g(.) function accordingly.
Particularly, g(u) will become zero.

– If there exists a node i ∈ (N(v)
⋂

N(u))/v such that g(i) >= g(v), node v
will mark a delay flag. and wait.

– wait for the data transmission from node u to complete.
– If N2(u) topology is intact, and the past packet from u is relayed

without collision
• wait dbackoff slot as determined in the previous multicast packet.
• enter MRTS stage for the pending packet.
• If MRTS collision, redraw dbackoff and mark collision flag.

– if N2(u) changed since last packet, or there were MRTS collision in the last
relay attempt
• backoff a random period from dbackoff = [1 g(u)] slots;
• otherwise send an MRTS to relay the multicast packet.

3.4 Protocol Analysis

In this section, we demonstrate some properties of the DLGM algorithm by
proving two facts: (1) the deferred ACK algorithm is correct, in the sense that
all nodes will receive the multicast packet as long as the network is connected,
and (2) the DLGM-S algorithm provides the local greedy propagation.

Proposition 1: Let G(V,E) be the graph representation of a wireless network
under consideration, S be the multicast source node and M be the data packet;
then for ∀v ∈ V , v will receive M in a finite period of time.

Proof: The proof for a stationary network is given in [17], hence we focus on
the scenario where node v missed a packet after its movement or other topology
change. Assume that v is associated to a new upstream node u, and u has com-
pleted broadcasting of p before v join. According to the deferred ACK protocol
in Fig 2, node u employ a round robin selection for its ctslist, which imply that
each of its neighbor, including v, will be selected to CTSACK at some time.
Since node v’s CTSACK.seq field serve as the last received packet at node v,
this gives node u a chance to lookup its local cache and schedule a future re-
transmission (see the rtxlocal and rtxUp state in Fig 2. If the local cache in u
does not contain such packet (due to replacement), the retransmission request
will be passed up to node u’s upstream until the request can be served. �
Proposition 2: Let node S be the multicast source node andM the data packet.
LetN(S)1 be S’s neighbor andN(S)2 be S’s two-hop neighbor set. After S sends
out M , the next relaying node r must have the largest degree in N(S)2−N(S)1.

Proof: Since the extension in DLGM-S is concentrated on the determination
of waiting slot. It inherit most of the features in DLGM, including the logic
to determine local relay behavior. In particular, each node still must track the
delivery status of its neighbors, thus the proof in [17] still apply. A new cases
need to be addressed where N(u) is changed at the time of relay decision at node

176 J. Wang et al.

v. This could be argued in a similar fashion as in [17] under the assumption that
the join of a new node needs to be broadcasted from node u, thus all exisiting
neighbor of u will learn the topology change at the same time. �

3.5 Performance Evaluation

The performance of the proposed protocol stack is evaluated by simulations. The
goal is to observe and compare the performance of the proposed scheme under
different network configurations such as network size, density, and mobility.

As in [17]. our simulations consider a 1000*1000 square meters area. To ex-
clude noise of extreme topology, the testing network is generated such that a
specified network size and node density requirement are satisfied. To determine
the connectivity of a generated network, a uniform radio transmission range
R ∈ [50100] meters is assumed. Any pair of nodes is connected if their distance
does not exceed R.

3.6 Multicast Cost

We are first interested in the multicast transmissions attempts during a multicast
session in a static setting. Note the transmission number Tx does not include
the RTS/CTSACK signaling packets.

We increase the number of network nodes m from 10 to 150 in the simulated
area. Randomly generated topologies are used to test relevant multicast protocols
including MPR and the DLGM/CTSACK methods.

Figure 3.(a) shows the overall multicast transmit time for networks of different
size. The average connectivity is fixed as D = 4. The size of ctslist is denoted by
the variable beta. We set p to 0.75 and 0.4 to represent two relaying behaviors:
with beta = 0.75 representing a relatively conservative protocol where the R-node
demand 75% of its neighbors to reply. beta = 0.4 being a moderate aggressive
protocol where the R-node only require 40% of its neighbors to transmit data
packet. Our DLGM with p = 1 achieves another 5% reduction in the total delay
time. The size of ctslist offers an effective control of protocol behavior over
large dynamic range. A small beta value allow a R-node to quickly enter to data
transmission stage, but might suffer increased probability of collision since other
R-nodes might also have collected its needed CTS votes. With beta = 1 the most
stringent media reservation policy is enforced, and the collision is minimized.

3.7 Transmission Energy Expenditure

To study the protocol behavior over different network topologies, we take a close
look at the transmission number Tx, which has strong correlation to the total
energy expenditure in a multicast session and how fast multicast can be done.
Figure 4 shows Tx of the proposed scheme for two network topologies of different
node density. One topology has a node density of D = 4 and contains m = 30
nodes, and the second topology has D = 4 and m = 60. The result set for

Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications 177

0 50 100 150
5

10

15

20

25

30

35

40

45

node number: N

T x
overall transmission attempt when D=4

beta=.75
beta=0.4
MPR

20 40 60 80 100 120 140

0

2

4

6

8

10

12

node number: N

rtx
 c

ou
nt

retransmissions @ D=4

MPR
beta=0.75
beta=.40

Fig. 3. transmission cost (a)tx attempt for D=4 ,(b) rtx for D=4

each case represents 500 randomly generated network topologies of the specified
average network density.

Figure 4.(a) shows Tx-vs-topology for the first result set. It is observed that
the performance of the multicast protocol varies significantly from topology to
topology even when the total node number and degree are the same. The lowest
transmission cost is observed at topology #27 with Tx as three time slots. This
best-case topology is isomorphic to a degree 4 complete tree. It is worth noticing
that Tx = 3 is the lowest transmission cost achievable for a network with d =
4,m = 30 (since 2 < log4(30) < 3). The longest transmission delay observed in
this set of simulations is 20 time slots. Topologies with long delay usually have a
long single chain and a cluster of nodes forming a clique. The existence of clique
increases the average node degree, while the long single chain causes the long
multicast time.

Figure 4.(b) shows the distribution of Tx. The observed distribution approx-
imates a well-defined Gaussian function with a mean multicast time Tx of 12.
Figure 4.(c) and (d) show the results for networks with 60 nodes (N = 60). The
corresponding best scenario result is 7 time slots, and the worst case result is 36
time slots. A similar Gaussian distribution is observed.

4 Fault Recovery and Handoff Processing

Node failures/mobility might cause packet delivery problems to an extended
network portion for ongoing and consequent multicast sessions. As shown in
[17], packet loss could be caused by the poor handling of node movement even
the network is physically connected. Ramani et.al, [16] reported that the break-
and-reconnect period of 802.11 networks in infrastructure mode could be several
seconds. Large portion of the delay is due to DHCP exchanges between the
moving node and the new R-node. During the handoff period, a node will be
unable to receive any packets (the decoding of overheard packet require the
knowledge of the encryption key).

A more complicated scenario is that an R-node itself goes through a handoff
process. As a relay vehicle moves away from its own gateway, the uplink channel
quality will degrade and eventually the node needs to re-establish a connection

178 J. Wang et al.

0 50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

14

16

18

20

topology index

to
ta

l x
m

it

N=30, d= 4

(a) −5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

hi
st

og
ra

m

xmit

N=30, d= 4

(b)

0 50 100 150 200 250 300 350 400 450 500
5

10

15

20

25

30

35

40

topology index

to
ta

l x
m

it

N=60, d= 4

(c) −5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

hi
st

og
ra

m

xmit

N=60, d= 4

(d)

Fig. 4. (a) transmission attempts for D=4, m=30; (b)histogram of transmission time
for D=4, m=30; (c) transmission attempts for D=4, m=60;(b) histogram of transmis-
sion time for D=4, m=60;

to a new gateway. This might force all downstream vehicles to execute a sec-
ondary handoff procedure. The aggregated delay will be far too long for certain
applications, such as unmanned aerial vehicle control.

For simplicity, our analysis only consider the topology changes caused by the
movement of one node. The node detected the topology change is denoted as
node x, and the node that causing the topology change is denoted as y. To keep
the multicast tree intact, the recovery protocol must satisfy two conditions: (1)
the current 2-hop neighbor of node x must be reconnected, and (2) node y must
be covered by some other nodes.

4.1 Recovery Analysis for MPR

In the worst case, MPR protocol would have to recalculate the entire MPR set
whenever there is a topology change. Thus theoretically MPR is capable of self-
healing to topology change and fault-tolerant. The retransmission policy could
be integrated to MPR for dropped packets.

When node y moves out of its current position, all nodes that use y as MPR
relaying node must update their MPR set, including x. These nodes will solicit to
their current neighbor to obtained new 2-hop information. They will then execute
the MPR algorithm to establish a new local MPR set to assure connectivity. This
procedure requires a message cost ofD.M2 whereD is the maximum node degree
and M is the maximum size of 2-hop neighbor.

Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications 179

To reconnect y to a new R-node, y will broadcast a ”request-to-join” packet
to its new neighbors. All nodes that receive this packet will execute the MPR
algorithm to include y in their multicast tree, which will count for another D.M2

message exchange.

4.2 Recovery Analysis for DLGM-s

The handoff procedure for DLGM is briefly described in [17], here we reexamine
the basic mechanism and provide some recent results. Still assuming that node
y leaves its current neighbor, the method in [17] could not fix the topology error
until some packet delivery failures in y’s neighbors. This is because the DLGM
algorithm does not specify a fixed R-node among mobile nodes, hence there is
no fixed upstream node for any nodes. According to RTS/CTSACK signaling
procedure, y’s upstream node x will find that node y fails to respond to the
MRTS packet and thus can determine y’s absence. However with the deferred
ACK and reduced ctslist in the R-node, it would take several packets drop before
x realized that y is missing. A improvised procedure allow y’s neighbor to act
at the earliest time to reduce the packet drops in the transient period:

– let node z ∈ N(x) share a non-empty neighbor as y: N(y)
⋂
N(z) �= ∅.

– If ∃w ∈ N(y)∩N(z) such that seq(w) < seq(local) + 1, node z can presum-
ably decide x’s absence.

– x will remove y from N(z).
– X broadcast y’s absence.
– For each node u in N(x), y will be removed from the N() of u’s neighbor

N(u).

The above procedure will generate exactly M(x) messages where M(x) is x’s
degree. The M(x) messages will trigger updating process in the original N2(x)
neighbor. It can be shown that the N2 information around x’s two-hop neighbors
will remains consistent after this procedure. Compare to the procedure in [17],
the topology repair occurs almost immediately after a node left. Re-connecting
y to its new neighbors remain the same. This stage of updating requires 2 ∗
M2 +M + 1 packets. Thus the overall message complexity is still in the order
of O(M2) per single node topology change.

5 Conclusion

We proposed a completely distributed, reliable MAC-layer algorithm for wireless
multicast. The uniqueness of our method is that each node decides its behavior
(to relay a message or not) based on the realtime neighborhood status. Our
simulations show that this method is more efficient than other schemes especially
when the network topology is highly dynamic.

180 J. Wang et al.

References

1. Wu, J.: Dominating-Set-Based Routing in Ad Hoc Wireless Networks with Unidi-
rectional Links. Trans. Parallel and Distributed Systems 13(9), 866–881 (2002)

2. Dai, F., Wu, J.: An Extended Localized Algorithm for Connected Dominating Set
Formation in Ad Hoc Wireless Networks. IEEE Trans. Parallel and Distributed
Systems 15(10), 908–920 (2004)

3. Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast
messages in mobile wireless networks. In: Proceedings of the Hawaii International
Conference on System Sciences (HICSS 2002) (January 2002)

4. Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dom-
inating set in wireless ad hoc networks. In: Proceedings of Infocom 2002 (2002)

5. Guha, S., Khuller, S.: Approximation Algorithms for Connected Dominating Sets.
Algorithmica 20(4), 374–387 (1998)

6. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Distributed Heuristics for Connected Dom-
inating Set in Wireless Ad Hoc Networks. IEEE ComSoc/KICS Journal on Com-
munication Networks 4(1), 22–29 (2002)

7. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination
based broadcasting algorithms in wireless networks. In: Proc. IEEE Hawaii Int.
Conf. on System Sciences (January 2001)

8. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28 (2009)

9. Pering, T., Want, R., Rosario, B., Sud, S., Lyons, K.: Enabling Pervasive Collab-
oration with Platform Composition. In: Tokuda, H., Beigl, M., Friday, A., Brush,
A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 184–201. Springer,
Heidelberg (2009)

10. Lyons, K., Pering, T., Rosario, B., Sud, S., Want, R.: Multi-display Composition:
Supporting Display Sharing for Collocated Mobile Devices. In: Gross, T., Gullik-
sen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.)
INTERACT2009, Part I. LNCS, vol. 5726, pp. 758–771. Springer, Heidelberg (2009)

11. Li, X., Zhang, H., Zhang, Y.: Deploying Mobile Computation in Cloud Service. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom. LNCS, vol. 5931, pp. 301–311.
Springer, Heidelberg (2009)

12. Chun, B., Maniatis, P.: Augmented Smartphone Applications Through Clone
Cloud Execution. In: Proceedings of USENIX HotOS XII (2009)

13. Zhang, X., Schiffman, J., Gibbs, S., Kunjithapatham, A., Jeong, S.: Securing elastic
applications on mobile devices for cloud computing. In: Proceedings of the ACM
Workshop on Cloud Computing Security, pp. 127–134 (2009)

14. Angin, P., Bhargava, B., Helal, S.: A Mobile-Cloud Collaborative Traffic Lights
Detector for Blind Navigation. In: Eleventh International Conference on Mobile
Data Management, pp. 396–401 (2010)

15. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Algorithms for Energy-Efficient
Multicasting in Static Ad Hoc Wireless Networks. Mobile Networks and Applica-
tions (MONET) 6(3), 251–263 (2001)

16. Ramani, S., Savage, S.: Syncscan: Practical Fast Handoff for 802.11 Infrastructure
Networks. In: Proc. of IEEE7 INFOCOM (March 2005)

17. Wang, J., Wang, X.: An energy-efficient,distributed wireless multicast protocol
based on concurrent CTS and N2 connectivity. Wireless Network 16, 2031–2048
(2010)

	Mobility-Tolerant, Efficient Multicast in Mobile Cloud Applications
	Introduction
	Related Works
	Overview
	Problem Description
	Node Behavior: Deferred ACK
	Routing Behavior
	Protocol Analysis
	Performance Evaluation
	Multicast Cost
	Transmission Energy Expenditure

	Fault Recovery and Handoff Processing
	Recovery Analysis for MPR
	Recovery Analysis for DLGM-s

	Conclusion
	References

