A Framework for Building and Operating
Context-Aware Mobile Applications

Aaratee Shrestha, Bettina Biel, Tobias Griebe, and Volker Gruhn

University of Duisburg-Essen, Gerlingstrasse 16, 45127 Essen, Germany
{aaratee .shrestha,bettina.biel,
tobias.griebe,volker.gruhn}@paluno.uni-due.de

Abstract. A context-aware mobile framework must support and
handle complex context data which is dynamically manipulated in the
distributed mobile network. Research in this area has focused on the
efficient design of such a framework. However, there are still key prob-
lems such as dynamic adaptation, reusability, interoperability, high en-
ergy and memory consumption. Our approach to solve the problems of
Context-Aware Mobile Applications (CAMA) is to design a framework
architecture by using Service Oriented Architecture (SOA). The reusable,
loosely-coupled local and external services allow CAMA to communicate
with the CAMA Framework, OS and external service providers using
minimum interfaces. The framework supports interoperability, dynamic
adaptability and context handling in a frequently changing environment.
In this work-in-progress paper, we define SOA, usability and testing re-
quirements for a prototype CAMA and the CAMA Framework. We con-
clude that our approach will enhance mobile framework architecture to
provide solutions to the key problems of CAMA.

Keywords: context-awareness, context-aware mobile applications
(CAMA), service oriented architecture (SOA).

1 Introduction

Mobile technology has been broadly adapted in business and entertainment do-
mains with increasing demand. Users can access context data, workflows and
systems anywhere anytime. A robust mobile framework that can handle differ-
ent context data, process it and make it accessible to lightweight applications for
users without time, place and network restrictions is an important requirement.

Context is the “situational information of entities such as person, places or ob-
jects, that are relevant to the interactions between a user and an application” [6].
We define CAMA as context-aware mobile applications where context data and
services are manipulated in dynamic environments. We agree with Pauty [I5],
that “the services are aware of the current context of the user and self-adapt to
context changes”. Thanh [I9] states, that mobile services are realized by com-
bining different SOA services. SOA features are essential in an environment de-
pending on non-robust connections and multi-device user access to services [1§].
Also, SOA provides the advantages of flexibility, implementation abstraction and

N. Venkatasubramanian et al. (Eds.): Mobilware 2011, LNICST 93, pp. 135-[[42] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

136 A. Shrestha et al.

interoperability [I3JI7J2], that are very important in dynamic mobile computing
platforms. SOA can address multiple client devices in distributed environments
where the client heavily relies on the interaction with a server system. The server
exposes only one interface to various clients and acts as provider of autonomous
interfaces [16]. Because of these advantages over traditional mobile web services,
our framework is motivated to implement SOA.

In this work-in-progress paper, our first step towards a solution is to intro-
duce the example of a Calendar-Location-Weather (CLW) application and then
summarize its requirements. We explain how our framework is designed to over-
come the general challenges and problems of context-aware frameworks. Our
framework supports key SOA features such as reusability, interoperability, loose
coupling as well as dynamic adaptability and context handling in dynamic envi-
ronments. The contribution of this paper is an architecture design by using the
CLW example of a CAMA, usability and testing requirements. The structure of
this paper is as follows. Section [2] covers the CLW application scenario, followed
by a summary of requirements of the CAMA framework in section [8l We present
the current architecture design in section] and compare it to related work in
section Bl A conclusion and future work is found in section [Gl

2 The Calendar-Location-Weather (CLW) Application

Imagine a user wants to be woken up in the morning to travel from Essen to
Berlin to attend a meeting. He opens the CLW application, enters the event’s
name, date, time, location, means of transportation (train) and saves it. Weather
forecast and related services are enabled by him as well. The CLW will wake
him up on time, give weather information and, if it rains, it reminds him to take
an umbrella. In case the train is late, it will inform him and provide a list of
alternatives (e.g., other trains, buses, renting a car). The CLW application will
alarm the user when it is time to go to catch the train at Essen main station.
The CAMA framework stores the event data in the Context Database and
communicates with external provider’s databases. The framework checks the

Reminder: Reminder.

“Its time to go” “Its time to take a taxi"
Travel
f T f t {— Time
6am 7am 8am 9am 10am
Station A Station B
User receives a wake-up alarm and is informed about
train delays and a new time-table.

Location information

(——F— w\ Location

a b ¢ d
Source Station A Station B Destination

Based on frequently updated location information
delays can be estimated, other routes might be offered,

~
Tan b

} f } } Weather
15°C 10°C

Source Destination

Weather information are provided

Fig. 1. The CLW application integrates three types of context information

A Framework for CAMA 137

date whether it matches the calendar date in the Context Database using
the Inference Rule Set. The Inference Rule Set supplies commands to update
the data of the CLW application and queries location and weather updates,
e.g., the German railways or a weather forecast. When the context changes, it is
displayed at the current location map and the weather information.

3 Requirements of the CAMA Framework

Mobile SOA. Using SOA for mobile architectures is an emerging area and
several researches have been done in different aspects of context-awareness. In
this research, we analyzed the specific problems related to CAMA while using
SOA, which was considered during the design of framework architecture. High
level requirements based on business goals and the usage context are: instant ac-
cess to relevant applications, services and data required by mobile device users
through a highly usable unified user interface of composite CAMA. These are
not supported by traditional framework approaches as explained by IDC Re-
search Report [11]. Monitoring of the mobile context of user and environment is
frequently needed, as it changes continuously. In traditional frameworks, this is
difficult for the reasons of tight coupling, non-interoperability and modes of op-
eration as described by Ennai et al. [7]. Interoperability and reusability of local
and remote context data and services are often required by mobile device users
such that a large number of CAMA are using the same context data and services
multiple times. Transferring large amounts local context data is difficult when
there arise any problems with the device such as network, memory, battery. In
present mobile devices, storage space and computing capability are increased.
Yet, problems exist to deploy large complex applications and data on a mobile
device as explained by Tergujeff et al. [I8].

Usability of CAMA. CAMA running in our proposed framework should be
highly usable. Usability is closely related to other qualities, such as performance,
robustness, fault-tolerance, security, modifiability and adaptability. Hence, we
decided to design the framework architecture using the Software ArchiTecture
analysis of Usability Requirements realizatioN (SATURN) method [I]. During
this research, the method is applied in an iterative architecture-based develop-
ment process with alternating analysis and design activities.

In SATURN, requirements are expressed through scenarios, which are de-
scribed and/or selected from pattern-based knowledge base of generic scenarios.
Regarding usability, we selected the scenarios Canceling Commands, Feedback,
Context- Aware Interaction, Positioning and added Fvaluating the application.

Evaluating the scenarios, the open questions are (1) which structure and be-
havior of components and interfaces can realize the use cases of a scenario; and
(2) how responsibilities can be distributed between the CLW application, the
CAMA framework and the mobile platform.

Testing CAMA. Due to the high dynamics of changing context and service
topology, testing CAMA imposes a novel set of requirements to the design of the

138 A. Shrestha et al.

CAMA framework, the design of test cases and the testing process. CAMA de-
pend on multiple internal and external services whose availability may change at
any moment, either inducing a service discovery process or rendering the applica-
tion inoperative. Test engineers must design functional test cases and sufficiently
control the CAMA’s execution environment including context data. Rather than
concentrating on the system under test, the testing of a CAMA requires the test
environment to produce and manipulate context data on demand.

As it is complicated to artificially reproduce context information for testing
purposes, the design of the CAMA framework needs to implement features to
facilitate testing of CAMA. The key questions regarding an integrated testbed
in the architecture design are: (1) how context information can be generated;
(2) how test cases need to be designed to react properly to changing context
information; and (3) what test coverage criteria need to be applied.

Test cases require the artificial setting of position data and the creation of
weather, traffic and travel information. Besides the local sensor readings, most of
this information is derived from the context-aware system of the CAMA frame-
work which in turn consumes data from external sources. Hence, the CAMA
framework needs to employ a testing mode which allows the artificial provision-
ing of context information, overriding the actual context data, to create a valid
and reproducible test environment.

4 Mobile Framework

The framework architecture is designed to support the customized CAMA devel-
opment for different mobile platforms and features service-oriented functionality.
Its design is focused on the dynamic adaptability to frequent and unpredictable
changes in context and user requirements to provide continuously available ser-
vices. The integration of context-aware data and services is executed in real-
time. Therefore, our framework architecture as seen in Fig. [2 is designed to
fulfill some of the requirements to solve the above addressed problems and chal-
lenges. Mobile applications act as clients and may heavily rely on context data
and context-aware services. Different components of the architecture play a vital
role for accessing the requested data. The components of our mobile framework
are briefly discussed as follows.

The Service Provider creates a mobile service and publishes its interface in
Fig. [label (2) and access information to the Service Registry. The Service
Provider sends the context data (21) received from the Context Interpreter to
the Service Consumer. The sub-components of Service Provider such as Publish-
ing Manager, Service Interface Handler and Service Manager helps to publish
service interfaces. The Publishing Manager is responsible for publishing the ser-
vice interface of different services. Service Manager decides in which category
the service should be listed in the Service Registry and list all potential service
recipients. It decides which service to expose, regarding the service charges and
how to make trade-offs between security and availability. It is responsible for
what Service Level Agreements (SLAs) are required to use the service. Service

A Framework for CAMA 139

Operating System / Virtual Machine
1Invoke Context
5 Request Context

Calendar-Location-Weather (CLW)Application

4 Discover Service

CAMA-Framework

Reply Service

Y
SOA Service | 3 Maintains_ _|

Regist Updates

2 Publish Service
interface

21 Sendl Context
Tata | SOA Service
.| Provider

Request Service Infomation

A
6 Request| (20 Reply

Context-Aware System

Context 19 Send Context Data

Interpreter
Inference
Rule Set

7 Requests
Send [Command

8a Check Context
Rule Matching

Rule Checker

8b Request!
Context
Transformer
9 Requesty & 16 Reply

Context
Classifier

%
o
18 Stores

Context
Database

13 Request
Context || 14 Reply External
| Data Aggregator [Q Service Provider/

Request /| External Database
Reply

15 Get data for
‘context classificati

11 Request| |12 Reply

S —
Request / Repl
Authentication |« cquestIReply
Database

Fig. 2. CAMA Framework Architecture and CLW Application

—» Control Flow

Interface Handler acts as an interface for the service contract request between
service provider and service consumer using the SLA.

The Service Consumer (e.g., CLW Application) of a client locates entries in
the Service Registry with the help of a find-bind mechanism (1,2,3,4) and re-
quests the Service Provider to invoke one of its services. After the discovery
of a service in the Service Registry, the Service Consumer sends a service re-
quest (5) that is executed by the Service Provider. The Service Registry is a
reference database containing information about services, service definitions, in-
terfaces and parameters. The Service Descriptor is a database containing data
and metadata maintained and updated (3) by the Service Registry.

The Service Provider, Service Consumer and Service Registry utilize SOA for
using the services from the Context Database. For the communication and the
request /response mechanism of SOA, the framework uses HT TP based Represen-
tational State Transfer (REST) protocol, which has advantages on the client side
in mobile communication compared to the SOAP/WSDL protocol like in tradi-
tional frameworks as discussed by [7] where communication is more focused be-
tween multiple backend systems. According to [14] REST implementation of the
data transmission proved to be more efficient compared to SOAP. Our CAMA
framework utilizes the REST implementation as it features lightweight, flexible
contracts and interfaces — a uniform way to interconnect with web resources and
a balance between security and usage of resources.

Context Interpreter sends the request (6) to the Rule Checker, and checks for
valid context when the Service Provider requests context data. It collects data

140 A. Shrestha et al.

from the Context Database (19) and makes it available to the Service Provider
(20). The Rule Checker checks in (8a) the Inference Rule Set whether the rule for
the specific context matches with the predefined rule. The Rule Checker sends
requests to the Context Transformer (8b). The Context Transformer sends a
request (9) to the Context Classifier to get data (15) from the Context Data
Aggregator. It uses the rule (17) from the Inference Rule Set and applies it on
the received data (16) from the Context Classifier. The Inference Rule Set is
a part of the Context Database, which consists of a set of rules and facts and
sends context update commands. It defines rules for each context. Then the
Context Transformer finally stores the data (18) in the Context Database. The
Context Database makes records about what context data the Context Inter-
preter request to it. It sends (19) the context data to the Context Interpreter
and updated context information to the Service Registry. The Context Classifier
classifies the context in different categories so that the Context Database can
store and manage it in different databases, e.g., location, weather. The Context
Data Aggregator aggregates the context data (12) from the local or the (14)
external database. The main purpose of this aggregation is to get detail infor-
mation about particular groups based on context parameters. When the context
data is requested, the Context Data Aggregator first checks if it is available in
the Local Database and then External Database. The Local Database provides a
small set of generalized data which is frequently used by CAMA, e.g., calendar
database located on the mobile device.

CAMA framework retrieves context data at first from the Context Database.
The data is processed and stored in the Context Database from the Local
Database. If data is not found in the Context Database, it searches the Exter-
nal Database and the External Service Provider as they provide more detailed
context information. The Authentication Database holds the user credentials
and manages secure login and access. The context services originate across var-
ious channels. The CAMA framework provides automatic session management
such as session-time out, secure access of external service provider and multiple
service providers.

5 Related Work

The traditional SOA framework on the client has been proposed by Tergujeff
et al. [18] does not address context-awareness. Gehlen et al. [§] present a client
proxy that executes requests and routes responses, but it does not support real-
time change of context. A mobile middleware for CAMA on rule-based data
monitoring is discussed by Costa et al. [5] but specific concerns (e.g., lack of
user context, integration of services, etc.) have not been addressed. A mobile
web service framework is described by Kim et al. [I2]. However, it does not
support hosting and migrating services in a context-aware environment. A tra-
ditional SOA framework that moves all the processing to the server and leaves
only user interactions and user interface on the client side is mentioned by Kozel
and Slaby [13]. In contrast, our solution is more focused on lightweight client-
side processing. A reflective middleware for dynamic adaptability proposed by

A Framework for CAMA 141

Ghim et al. [9] does not address SOA features and uses mobile agents instead.
A dynamic framework for context-aware mobile services by Chang et al. [4] de-
scribes a problem classification and a complexity model of context-aware mobile
services into 3D dynamic problems. Our approach uses another classification of
context, that is less complex.

CARISMA [3] mainly deals with the conflict between profiles of applications,
that are kept as meta-data of the middleware and consist of passive and ac-
tive parts. Policies are used to provide context services. CARISMA addresses
issues related to the usage of context for dynamic adaptation of applications,
but there are no application interfaces with local and external services and it
mainly focuses on policy conflicts.

SOCAM [10] middleware is built on top of the OSGi service platform, and
its architecture presents a formal context model based on ontology. It provides
support for the tasks of dealing with context by context reasoning. External or
internal context can be used by services directly or by Context Providers. The
Context Interpreter consists of the Context Reasoner and the Context Database,
which contains instances of the current ontology. The context is updated by a
triggering mechanism. SOCAM has been deployed mainly for intelligent vehicle
environment which may not be suitable for other mobile environments.

Conventional mobile distributed systems using web services have proven suc-
cessful for the design of SOA in mobility, yet they could not overcome the chal-
lenges of context-awareness. Therefore, our SOA framework for lightweight and
flexible CAMA is a more suitable solution.

6 Conclusions and Future Work

In this work-in-progress paper, we defined mobile SOA, usability and testing
requirements for our mobile framework implementing a SOA based on a spe-
cific CAMA, i.e. the CLW application expressed through a scenario. Our CAMA
framework architecture design provides a number of solutions to the problems in-
troduced by context-awareness. We showed the conceptual design of the SOA and
the context-aware mobile framework architecture. By using a SOA-architecture,
we met requirements regarding instant access to applications, services and data
and frequent monitoring of the mobile context of user and environment.

In our current work, we focus on the architecture design of the context adapta-
tion and aim at realizing the usability and test requirements striving for a highly
usable unified user interfaces of CAMA. Open questions and motivational future
work comprise the data transfer on p2p interactions with near-by mobile devices,
managing network problems and processing requests without context data in the
Context Database and metadata in the Service Registry.

References

1. Biel, B., Grill, T., Gruhn, V.: Exploring the benefits of the combination of a soft-
ware architecture analysis and a usability evaluation of a mobile application. Jour-
nal of Systems and Software 83(11), 2031-2044 (2010)

142

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Shrestha et al.

Bosch, J., Friedrichs, S., Jung, S., Helbig, J., Scherding, A.: Service orientation in
the enterprise. Computer, 51-56 (2007)

Capra, L., Emmerich, W., Mascolo, C.: CARISMA: context-aware reflective mid-
dleware system for mobile applications. IEEE Transactions on Software Engineer-
ing 29(10), 929-945 (2003)

. Chang, C.-C., Tseng, J.C.R., Lin, K.-J.: A dynamic capability framework for

context-aware mobile services. In: Proc. of the 10th IEEE Conf. on E-Commerce
Tech. and the 5th IEEE Conf. on Enterprise Computing, pp. 183-189 (2008)

. Costa, P., Pires, L.F., Sinderen, M.V., Filho, J.P.: Towards a services platform for

mobile context-aware applications. In: Proc. of 1st Intl. Workshop on Ubiquitous
Computing, pp. 48-61 (2004)

. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1),

4-7 (2001)

. Ennai, A., Bose, S.: MobileSOA: a service oriented web 2.0 framework for context-

aware, lightweight and flexible mobile applications. In: EDOCW (2008)

. Gehlen, G., Mavromatis, G.: Mobile web services based middleware for context-

aware applications. In: Proc. of 11th European Wireless Conference 2005, pp. 784—
790 (2005)

. Ghim, S.-J., Yoon, Y.-I., Choe, J.-W.: A Reflective Approach to Dynamic Adap-

tation in Ubiquitous Computing Environment. In: Kahng, H.-K., Goto, S. (eds.)
ICOIN 2004. LNCS, vol. 3090, pp. 75-82. Springer, Heidelberg (2004)

Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building
context-aware services. J. Netw. Comput. Appl. 28, 1-18 (2005)

IDC. Worldwide mobile enterprise applications 2006-2010 forecast and analysis.
IDC Research (2006)

Kim, Y.-S., Lee, K.-H.: A lightweight framework for mobile web services. Journal
Computer Science — Research and Development 24, 199-209 (2009)

Kozel, T., Slaby, A.: Mobile devices and web services. In: Proc. of 7th WSEAS
Intl. Conference on Applied Computer Science, pp. 322-326 (2007)

Mulligan, G., Gracanin, D.: A comparison of soap and rest implementations of
a service based interaction independence middleware framework. In: Proc. of the
2009 Winter Simulation Conference, pp. 1423-1432 (2009)

Pauty, J., Preuveneers, D., Rigole, P.; Berbers, Y.: Research challenges in mobile
and context-aware service development. In: Proc. of Future Research Challenges
in Software and Services (2006)

Praher, C.P.: Mobile service oriented architecture in the context of information
retrieval. Master’s thesis, University of Linz (2008)

Schroth, C.;, Janner, T.: Web 2.0 and SOA: Converging concepts enabling the
internet of services. IT Professional, 36-41 (2007)

Tergujeff, R., Haajanen, J., Leppanen, J., Toivonen, S.: Mobile SOA: Service orien-
tation on lightweight mobile devices. In: Proc. of IEEE Intl Conf. on Web Services,
pp. 1224-1225 (2007)

Thanh, D., Jorstad, I.: A service-oriented architecture framework for mobile ser-
vices. Special issue on Situated Interaction and Ubiquitous Computing, 65-70
(2005)

	A Framework for Building and Operating Context-Aware Mobile Applications

	Introduction
	The Calendar-Location-Weather (CLW) Application
	Requirements of the CAMA Framework
	Mobile Framework
	Related Work
	Conclusions and Future Work
	References

