
Running Android Applications

without a Virtual Machine

Arno Puder

San Francisco State University
Computer Science Department

1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

Abstract. Android has gained significant popularity in the smartphone
market since its introduction in 2007. While Android applications are
written in Java, Android uses its own virtual machine called Dalvik.
Other smartphone platforms, most notably Apple’s iOS, do not permit
the installation of any kind of virtual machine. App developers who want
to publish their applications for different platforms are required to re-
implement the application using the respective native SDK. In this paper
we describe a cross-compilation approach, whereby Android applications
are cross-compiled to portable C code. With this approach it is not nec-
essary to have a Dalvik virtual machine deployed on the target platform.
We describe different aspects of our cross-compiler, from byte code level
cross-compilation, memory management, to API mapping. A prototype
of our cross-compiler called XMLVM is available under an Open Source
license.

1 Introduction

Android is a software stack for mobile devices initially developed by a company
called Android, Inc. before being bought by Google in 2005. Since 2007, mem-
bers of the Open Handset Alliance (OHA) collaborate on the development of
Android which nowadays has become one of the main development platforms
for smartphone applications. Although Android employs Java as a programming
language as well as a subset of the standard J2SE API, it does not make use of
Oracle’s (formerly Sun Microsystem’s) virtual machine technology for technical
and political reasons. Android features its own virtual machine, called Dalvik
[5], for running Android-based applications. In contrast to the Oracle virtual
machine, Dalvik is based on a register-based byte code instruction set. Running
Android applications therefore requires the Dalvik virtual machine on the target
platform.

Developers targeting smartphones ideally want their applications to be avail-
able on as many platforms as possible to increase the potential dissemination.
Given the differences in the way applications are written for smartphones, this
incurs significant effort in porting the same application to various platforms. The

N. Venkatasubramanian et al. (Eds.): Mobilware 2011, LNICST 93, pp. 121–134, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



122 A. Puder

Dalvik virtual machine is not available on all smartphone platforms of interest.
In particular, Apple explicitly forbids the use of virtual machine technology on
their iOS devices, making it impossible to run applications that rely on Dalvik.

In this paper, we introduce a cross-compilation approach, whereby an Android
application can be cross-compiled to portable C code. The solution we propose
not only cross-compiles on a language level, but also maps APIs between different
platforms. Since C is allowed for iOS development, Android applications can
therefore be cross-compiled to Apple’s devices. The benefit of our approach is
that only skill set for the Android platform is required and only one code base
needs to be maintained for both devices.

This paper is organized as follows: Section 2 provides an overview of Android
and iOS as well as the deficiencies of previous work. Section 3 presents our
cross-compilation framework that can cross-compile Android applications to iOS
devices. In Section 4, we discuss our prototype implementation of this framework
as well as a monitoring application that was cross-compiled using our toolchain.
Finally, Section 5 provides a conclusion and an outlook to future work.

2 Background

We first provide a brief overview of Android and iOS from a programmers per-
spective highlighting the differences in their programming models (Section 2.1)
followed by a discussion on the shortcomings of previous work (Section 2.2).

2.1 Overview of Android and iOS

Although smartphones are relatively similar with respect to their hardware ca-
pabilities, they differ greatly in their native application development models.
Android is a mobile operating system running on the Linux kernel. Android is
not exclusively targeting smartphones, but is also available for netbooks and
settop boxes. Next to Android, Apple claims a firm position in the smartphone
market with their proprietary iOS platform. Its user interface is called Cocoa
Touch which is an extension of the Cocoa framework that is used on Apple
desktop and laptop computers.

Targeting Android as well as iOS devices requires significant skill sets and
overhead.Whereas Android uses Java as the development language, Cocoa Touch
uses Objective-C. Those two languages are radically different. While Java fea-
tures strong typing and garbage collection, the version of Objective-C used on
iOS devices supports dynamic typing, but no garbage collection.

Similarly, differences exist in the APIs and programming models defined by
Android and Cocoa Touch. An Android application consists of a set of so-called
activities. An activity is a user interaction that may have one or more input
screens. An example for an activity is to select a contact from the internal
address book. The user may flip through the contact list or may use a search
box. These actions are combined to an activity. Activities have a well-defined
life cycle and can be invoked from other activities (even activities from other



Running Android Applications without a Virtual Machine 123

applications). Besides a variety of widgets, Android also allows the declarative
description of user interfaces. XML files describe the relative layout of a user
interface which not only simplifies internationalization but also allows to render
the user interface on different screen resolutions.

The only official language offered by Apple for iOS devices is Objective-C. Sim-
ilar to C++, Objective-C is an object-oriented extension of the C programming
language. Analogous to Smalltalk, an object can be sent any message. Since the
version of Objective-C used for iOS devices does not integrate a garbage collector,
the programmer has to use a low-level reference counting mechanism for memory
management. The design of Cocoa Touch makes extensive use of Objective-C’s
dynamic typing. Cocoa Touch offers a variety of UI elements. However, unlike
Android, Cocoa Touch offers no layout manager: all UI elements have to be
positioned in terms of absolute coordinates on the screen at design time.

2.2 Previous Work

We have worked on cross-compilation in the past [10]. Our cross-compiler, called
XMLVM, translates Java byte code instructions represented in XML to a high-
level programming language. In the past, the exclusive target for cross-compiling
Android applications were iOS devices. For this reason, Java byte code instruc-
tions were cross-compiled to the native programming language for iOS devices,
namely Objective-C. XMLVMmapped Java classes to Objective-C classes.While
this proved to be a simple mapping, it also led to various problems. For one,
Objective-C allows overriding but not overloading of methods. Since Java sup-
ports both, method names need to be name mangled with their signature when
generating Objective-C method names. While name mangling solves the prob-
lem of method overloading in Objective-C, the one-to-one mapping of the object
models leads to other problems. E.g., Objective-C does not allow to override
instance members, so the following Java program cannot be cross-compiled with
the Objective-C backend of XMLVM:

1 // Java

2 class Base {

3 int x;

4 }

5

6 class Derived extends Base {

7 int x;

8 }

Another shortcoming stems from the fact that Apple did not include a garbage
collector in the version of Objective-C used for iOS applications. XMLVM’s
backend make use of iOS’ reference counting mechanism by inserting retain
and release instructions into the generated Objective-C code. One issue with
this approach are cyclic data structures which cannot be reclaimed via ref-
erence counting. In order to avoid memory leaks, it is the programmer’s re-
sponsibility to break cycles by using java.lang.ref.WeakReference. Instances



124 A. Puder

of WeakReference are ignored by the garbage collector when constructing the
reachability graph. Another problem is caused by multi-threaded applications:
because it is impossible to know what other threads are doing with individual
objects, the inserted reference counting instructions need to be conservative and
retain objects for the duration of their use. This leads to significant overhead be-
cause the majority of the generated code is related to the retaining and releasing
of object references.

Because of these shortcomings we decided to replace the Objective-C backend
with a code generator for the C programming language. Since C is a strict subset
of Objective-C, the cross-compiled code can still be targeted for iOS devices.
Generating C code also allows support for the full Java language as well as
compile-time optimizations. The following section gives a detailed overview of
the C code generator in XMLVM.

3 Cross-Compilation Framework

In this section we introduce XMLVM, a flexible, byte code level cross-compiler,
that allows to translate an Android application to iOS devices. In Section 3.1
we give an overview of the XMLVM toolchain. Section 3.2 explains our byte
code level cross-compiler to the C programming language. In Section 3.3 we
outline the API mapping and finally in Section 3.4 we discuss the integration of
a Garbage Collector.

3.1 Toolchain

We chose Android as the canonical platform. This means that a developer only
needs to be familiar with the Android system and can then cross-compile an
Android application to other smartphones. There are several reasons for choos-
ing Android. First of all, we believe that there is a wide skill set for the Java
programming language and there are powerful tools to develop for Java. We view
this as an advantage over Objective-C.

The design of Android itself offers various advantages. For one, Android was
not exclusively designed for smartphones, but for a wide range of mobile devices.
Android’s API allows to explore the device’s capabilities to give the application
the chance to adapt accordingly. Android offers layout managers that can adapt
to different screen resolutions at runtime. Cocoa Touch on the other hand expects
the programmer to position every widget in terms of absolute coordinates. Since
Apple offers with the iPhone 3GS, iPhone 4, and iPad three devices with different
screen resolutions, the burden is placed on the programmer who has to manually
design three UIs. Since Android applications can more easily adapt to different
devices, it makes them ideal candidates to be cross-compiled to other platforms.

The XMLVM toolchain is a byte code level cross-compiler. The output of a Java
compiler is first translated to an XML document to allow easy transformations



Running Android Applications without a Virtual Machine 125

based on XSL stylesheets, as will be shown in the following subsection. XMLVM
makes use of Android’s Dalvik virtual machine [5] for representing byte code
instructions. Dalvik is based on a register-based virtual machine which allows
for the generation of more efficient code in the target language compared to
Oracle’s stack-based virtual machine instructions [8]. On the basis of the inter-
mittent XML representation we generate code in the target language, which in
our case is C. In the following examples we focus on the register-based format
of XMLVM as the starting point of the cross-compilation. The following three
subsections explain in detail the cross-compilation process, the API mapping via
a compatibility library as well as memory management via garbage collection.

3.2 Byte Code Level Cross-Compilation

A unique property of our toolchain is that we cross-compile from byte code to
high-level programming languages. We make use of the byte code instructions
introduced by the Dalvik instruction set to allow more efficient code generation.
In a previous project we have used a similar approach to cross-compile byte code
to JavaScript for AJAX applications [9]. Using byte codes has several advantages.
For one, byte codes are much easier to parse than Java source code. Several
high-level language features such as generics are already reduced to low-level
byte code instructions. The Java compiler also does extensive optimizations to
produce efficient byte codes. To illustrate our approach, consider the following
simple Java class:

1 // Java

2 public class Account {

3 int balance;

4 boolean overdraftProtection;

5

6 // ...

7

8 void deposit(int amount) {

9 balance += amount;

10 }

11 }

Class Account has a method called deposit() that adds a given amount to
the balance of an account. The source code is first compiled to a Java class file
via a regular Java compiler. The binary class file is then fed into our XMLVM
tool. The first transformation performed on the resulting XMLVM is to convert
the stack-based byte code instructions to register-based instructions introduced
by Dalvik [5]. The conversion from a stack-based to a register-based machine has
been researched extensively [3,11]. Internally, XMLVM generates the following
XMLVM document based on class Account:



126 A. Puder

1 <vm:xmlvm ...>

2 <vm:class name="Account" ...>

3 <vm:field name="balance" type="int" />

4 <vm:field name="overdraftProtection" type="boolean" />

5 <vm:method name="deposit" ...>

6 <vm:signature>

7 <vm:return type="void" />

8 <vm:parameter type="int" />

9 </vm:signature>

10 <dex:code num-registers="3">

11 <dex:iget class-type="Account" field="balance" vx="0" vy="1" />

12 <dex:add-int vx="0" vy="0" vz="2" />

13 <dex:iput class-type="Account" field="balance" vx="0" vy="1" />

14 <dex:return-void />

15 </dex:code>

16 </vm:method>

17 </vm:class>

18 </vm:xmlvm>

The reason our tool is called XMLVM is because the structure of the class
file as well as the byte code instructions of a virtual machine are represented via
appropriate XML tags. On the top-level, there are tags to represent the class
definition (line 2), field definitions (lines 3 and 4), method definition (line 5), and
the signature of the method (line 6–9). The children of tag <dex:code> (line
10) represent the byte code instructions for method deposit(). The attribute
num-registers denotes the number of registers required to execute this method.

In the following we give a brief overview of the byte code instructions gener-
ated for method deposit(). Upon entering a method, the last n registers are
automatically initialized with the n actual parameters. Since method deposit()

has three registers labeled 0 to 2, register 2 will be initialized with the one actual
parameter of that method (the amount). The implicit this-parameter counts as
a parameter and will therefore be copied to register 1. The byte code instruc-
tions read and write to various registers that are referred to via attributes vx,
vy, and vz, where vx usually designates the register that stores the result of the
operation. The first instruction <dex:iget> (instance get) loads the content
of field balance of the account object referenced by register 1 into register 0
(line 11). The <dex:add-int> (add integer) instruction in line 12 will add the
integers in registers 0 (the current balance) and 2 (the actual parameter) and
store the sum in register 0. This instruction performs the operation vx = vy+vz.
The <dex:iput> (instance put) instruction in line 13 performs the opposite of
<dex:iget>: the content of register 0 is stored in field balance of the object
referenced by register 1.

Once an XML representation of a byte code program has been generated,
it is possible to cross-compile the byte code instructions to arbitrary high-level
languages such as C, by simply mimicking the register machine in the target
language. Individual registers are mapped to variables in C. Since a register can



Running Android Applications without a Virtual Machine 127

contain different data types, we introduce a C-union that reflects these data
types:

1 // C

2 typedef union {

3 JAVA_OBJECT o;

4 JAVA_INT i;

5 JAVA_FLOAT f;

6 JAVA_DOUBLE d;

7 JAVA_LONG l;

8 } XMLVMElem;

Registers can only store object references, integers, floats, doubles, and longs.
Shorter primitive types such as bytes and shorts are sign-extended to 32-bit inte-
gers. With the help of the union XMLVMElem, it is possible to use XSL stylesheets
[12] to produce code in the target language. In the following we show how the
aforementioned byte code instruction <dex:add-int> is mapped to C source
code:

1 <!-- XSL template -->

2 <xsl:template match="dex:add-int">

3 <xsl:text> _r</xsl:text>

4 <xsl:value-of select="@vx"/>

5 <xsl:text>.i = _r</xsl:text>

6 <xsl:value-of select="@vy"/>

7 <xsl:text>.i + _r</xsl:text>

8 <xsl:value-of select="@vz"/>

9 <xsl:text>.i;</xsl:text>

10 </xsl:template>

Register variables are always prefixed with r followed by the register number.
The definition of these helper variables are based on union XMLVMElem. These
variables are automatically generated by other XSL templates during the code
generation process. With the help of these variables, the effect of individual byte
code instructions can easily be mapped to the target language. Applying all XSL
templates to the XMLVM of class Account shown earlier yields the following C
source code:

1 // Generated C

2 void Account_deposit___int(JAVA_OBJECT me, JAVA_INT n1)

3 {

4 XMLVMElem _r0;

5 XMLVMElem _r1;

6 XMLVMElem _r2;

7 _r1.o = me;

8 _r2.i = n1;



128 A. Puder

9 _r0.i = ((Account*) _r1.o)->fields.balance;

10 _r0.i = _r0.i + _r2.i;

11 ((Account*) _r1.o)->fields.balance = _r0.i;

12 return;

13 }

The code in line 10 was generated by the XSL template for the<dex:add-int>
instruction explained earlier. Every method of a class is mapped to a C function
whose name is mangled from the class and method name as well as the method’s
signature. For each class, a so-called Type Information Block (TIB) is generated
(see Figure 1). The TIB contains all relevant meta-data about a class such as fully
qualified name, base class, all implemented interfaces, etc. When a class is instan-
tiated, enough memory is allocated for all the instance members plus a pointer to
the TIB. Since XMLVM cross-compiles byte code to C, there is no notion of dy-
namic class loading as usually found in a Java VM. A particular challenge poses
the Java reflection API. In order to support dynamic method invocations via the
reflection API, XMLVM creates method dispatchers for each class.

Fig. 1. Type Information Block

Since XMLVM cannot load classes dynamically at runtime, all classes that
are needed for an application need to be known at compile time. XMLVM per-
forms a static dependency analysis to determine the transitive closure of all
referenced classes. Since XMLVM operates under the Closed World Assump-
tion (i.e., all referenced classes are known a priori) it is possible to perform
powerful compile-time optimizations, especially for method invocations. Java
distinguishes between two different dynamic method invocations on byte code
level: <dex:invoke-virtual> is used for calling methods on an object, where



Running Android Applications without a Virtual Machine 129

as <dex:invoke-interface> is used to invoke methods via an interface type.
The reason for two different invoke instructions has to do with the fact that Java
allows single inheritance for classes but multiple inheritance for interfaces. For
the former it is possible to build a so-called vtable which essentially is an array of
function pointers. An <dex:invoke-virtual> instruction references a vtable
index to the appropriate implementation of a method. Because of the Closed
World Assumption it is known at compile-time whether a method is overridden
in a derived class or not. If a method is not overridden, it can be called directly
without the need of allocating an entry in the vtable.

Similar optimizations can be done for <dex:invoke-interface>. Here
XMLVM computes an itable (analogous to the vtable) for interface methods. Be-
cause of the ClosedWorld Assumption it is possible to compute an itable that can
be indexed via one indirection. The technique is known as selector coloring and
is described in [4]. The overhead of performing an <dex:invoke-interface>
is identical to performing an <dex:invoke-virtual>.

The following code excerpt shows how a method invocation in Java (line 2) is
represented in XMLVM (lines 5–10) and how it is mapped to C code. If method
deposit() is not overridden in a derived class, it can be invoked via a direct
function call (line 13). Otherwise method deposit() needs to be invoked via a
vtable (lines 16–17). First, FPTR is defined as a function pointer of the proper type
that reflects the signature of method deposit(), then the vtable is accessed via
the TIB. In this particular example the function pointer for method deposit()

is stored at vtable index 11.

1 // Java

2 account.deposit(amount);

3

4 <!-- XMLVM -->

5 <dex:invoke-virtual class-type="Account" method="deposit" register="0">

6 <dex:parameters>

7 <dex:parameter type="int" register="1" />

8 <dex:return type="void" />

9 </dex:parameters>

10 </dex:invoke-virtual>

11

12 // C (direct)

13 Account_deposit___int(_r0.o, _r1.i);

14

15 // C (via vtable)

16 typedef *(void (*)(JAVA_OBJECT, JAVA_INT)) FPTR;

17 (FPTR ((Account*) _r0.o)->tib->vtable[11])(_r0.o, _r1.i);

3.3 API Mapping

Any Java program builds upon external API. The most common are the APIs
defined as part of J2SE such as data structures. XMLVM leverages the Open
Source project Apache Harmony for these purposes. Since much of the J2SE API



130 A. Puder

is itself written in Java, we simply cross-compile this to C as well. On system-
level, Apache Harmony uses native Java methods to access functionality of the
underlying operating system. In XMLVM we have implemented those native
methods based on the Posix API. E.g., the Java thread API is mapped via the
native methods to pthreads.

Other APIs such as the one defined by Cocoa Touch are platform specific.
Such API needs to be accessible from a Java application. E.g., if a Java-based
iOS applications needs to place a label on the user interface, a Java-based API of
class UILabel is required. The following shows the Java version of class UILabel
that is part of the XMLVM library:

1 // Java

2

3 package org.xmlvm.iphone;

4

5 class UILabel extends UIView {

6 //...

7 void setText(String label) { /* Ignored */ }

8 }

We call classes such as UILabel wrapper classes since their only purpose is
to provide a Java API against which the developer can implement an applica-
tion. For that reason, the method implementation of wrapper classes can be left
empty. Wrapper classes are treated special by XMLVM’s cross-compiler. The
implementation of a method in a wrapper class is ignored and instead special
comment markers are emitted. The programmer can inject manually written
code between these comment markers. The following code excerpt demonstrates
this concept for method UILabel.setText():

1 // Objective-C (generated with injected code)

2

3 void org_xmlvm_iphone_UILabel_setText___java_lang_String(JAVA_OBJECT me,

4 JAVA_OBJECT n1)

5 {

6 //XMLVM_BEGIN_WRAPPER

7 NSString* text = toNSString(n1);

8 org_xmlvm_iphone_UILabel* thiz = me;

9 UILabel* label = thiz->fields.wrappedObject;

10 [label setText:text];

11 [text release];

12 //XMLVM_END_WRAPPER

13 }

Note that while the generated wrapper code is C, the code injected by the
developer between the comment markers (lines 6–12) is Objective-C. This is
necessary because the wrapper effectively wraps an Objective-C object. The



Running Android Applications without a Virtual Machine 131

code above essentially converts a java.lang.String instance to an Objective-C
NSString via a helper function (line 7) and retrieves the wrapped Objective-C
UILabel instance (line 9). The field wrappedObject is part of the UILabel in-
stance and points to the native Objective-C object. Next, the setText:message
is sent to the Objective-C object (line 10) and finally the NSString instance is
released (line 11).

Exposing the Cocoa Touch API in Java is the prerequisite for our Android
Compatibility Library (ACL). The purpose of the ACL is to offer the Android
API to an application while using the Java-based Cocoa Touch API for its own
implementation. The ACL is therefore written in Java and maps the Android
API to the Cocoa Touch API. It offers the same API to the application as
Android does but is implemented using the Cocoa Touch wrapper classes. The
following code excerpt shows how an Android TextView is mapped to a Cocoa
Touch UILabel:

1 // ACL (Java)

2 package android.widget;

3

4 public class TextView {

5 private UILabel label;

6 // ...

7 public void setText(String text) {

8 label.setText(text);

9 }

10 }

Therefore, an application using an android.widget.TextView is effectively
using a UILabel on iOS devices via the ACL. The above code excerpt is also
cross-compiled to C and is part of XMLVM’s implementation of the ACL. In
other cases, such as Android’s layout manager, we cross-compile source code from
the Android project that is available under an Open Source license. This way
the layout manager can be used on iOS devices. Other UI idioms cannot easily
be mapped such as Android’s physical “Back” and “Menu” buttons. Mapping
those features is left for future work.

3.4 Garbage Collector

XMLVM makes use of the Boehm Garbage Collector [1]. The Boehm GC is
a conservative garbage collector using a mark-and-sweep algorithm. It allows
finalization code to be invoked when an object is collected. Whenever a class
is instantiated, the GC MALLOC() function of the Boehm GC is used to allo-
cate memory thereby registering the new object with the GC. Making use of
GC MALLOC() is therefore all that is necessary in terms of memory management
for self-contained Java applications cross-compiled to C.

However, special attention needs to be given to wrapper objects such as UI
widgets from Cocoa Touch. Although version 2.0 of the Objective-C program-
ming language introduced a garbage collector, Apple decided to remove this



132 A. Puder

feature for iOS devices. Apple’s reason for doing so is most likely related to
the undeterministic behavior of a garbage collector that might disrupt the user
experience. Instead of garbage collection, an iOS developer has to resort to a
reference counting mechanism for memory management.

Base class NSObject of the Cocoa Touch library offers methods retain and
release, that increment and decrement respectively the reference count of an
object. Objects are created with reference count of 1 and when the reference
count drops to 0, the Objective-C runtime automatically deallocates the object.
It is the iOS developers responsibility to retain and release objects according to
the object ownership rules of Cocoa Touch.

Wrapper classes such as the aforementioned UILabel act as a bridge between
the generated C code and native objects from Cocoa Touch. In the following we
refer to the term “C object” as the cross-compiled version of a Java object. As
depicted in Figure 2, each Objective-C object that needs to be accessible from
Java (such as UILabel), needs to be wrapped by a C object. The C object will
retain the Objective-C object to claim ownership and register a finalizer with
the GC. When the C object is destroyed by the GC, the finalizer will release
the wrapped Objective-C object as well. Special attention needs to be paid
to associations between Objective-C objects. Whenever a wrapped Objective-C
object holds a reference to another wrapped Objective-C object, the association
needs to be mirrored among the wrapping C objects as well (see Figure 2). If
this were not the case, the GC could not construct a correct reachability graph
since it is unaware of Objective-C associations.

Fig. 2. Wrapper objects

4 Prototype Implementation

We have implemented a prototype based on the ideas described in this paper. We
make use of BCEL [2] and JDOM [6] to parse Java class files and build up the
XMLVM files. Saxon [7] is used as the XSL engine to apply the stylesheets that
are responsible for the code generation. The implementation of the Java to C
cross-compilation is fully Java compatible including garbage collection, thread-
ing, and reflection API. Our tool does not offer the same kind of completeness for
the API mapping. Considering that both the Android and the Cocoa Touch API
consist of thousands of methods, XMLVM currently maps approximately 30%
of the API. However, the currently supported API already allows for complex
applications.



Running Android Applications without a Virtual Machine 133

Fig. 3. Layout mapping example

XMLVM has been used to cross-compile Android applications to the iOS by
various companies. In the following we highlight one of these applications to
demonstrate the power of cross-compilation. A German consulting company im-
plemented a monitoring application for IBM datapower devices. A datapower de-
vice is a SOA appliance that can be monitored via SOAP requests over HTTPS.
The monitoring application was written for Android and cross-compiled to iOS
devices using XMLVM. The Android version makes extensive use of layout man-
ager, Android-specific UI widgets as well as custom widgets, HTTPS requests
and XPath queries to SOAP replies. All this functionality was successfully cross-
compiled to iOS devices.

Figure 3 depicts the original Android version of the monitoring application
on the left side and the cross-compiled iOS version to the right. Apart from the
obvious mapping of labels, buttons and images, the Android version makes use of
a radio button group. The corresponding widget under iOS is called a segmented
control that serves the same purpose. Since a segmented control is wider than
higher in contrast to Android’s radio button group that is aligned vertically,
the cross-compiled layout manager places the segmented control underneath the
graph-drawing custom widget. As can be seen in Figure 3, the custom widget is
automatically stretched in the iOS version to the full width of the screen.

5 Conclusion and Outlook

The popularity of smartphones makes them attractive platforms for mobile ap-
plications. However, while smartphones have nearly identical capabilities with



134 A. Puder

respect to their hardware, they differ substantially in their programming envi-
ronment. Different programming languages and different APIs lead to significant
overhead when porting applications to various smartphones. We have chosen
Android as the canonical platform. Our byte code level cross-compiler XMLVM
can cross-compile an Android application to portable C code that can be run
on iOS devices, therefore not requiring the Dalvik virtual machine on the target
platform. We have demonstrated that a cross-compilation framework is feasible,
thereby significantly reducing the porting effort.

In the future our goal is to support debugging of cross-compiled applications.
The idea is that a Java application that was cross-compiled with XMLVM can be
debugged with any standard Java debugger such as the one integrated in Eclipse.
In order to accomplish this, an implementation of the JWDP (Java Wire Debug
Protocol) needs to be available on the target platform. We plan to use the Open
Source Maxine project that features a Java implementation of JWDP. With
the help of the Java-to-C cross-compiler we will cross-compile Maxine to C to
support debugging on any Posix compliant platform. The challenge of this task
will be to interface with the generated C code to determine the memory layout
(such as stack and heap) at runtime.

XMLVM is available under an Open Source license at http://xmlvm.org.

References

1. Boehm, H.: Bounding space usage of conservative garbage collectors. SIGPLAN
Notices 37(1), 93–100 (2002)

2. Dahm, M.: Byte code engineering. Java Informations Tage, 267–277 (1999)
3. Davis, B., Beatty, A., Casey, K., Gregg, D., Waldron, J.: The case for virtual reg-

ister machines. In: IVME 2003: Proceedings of the 2003 Workshop on Interpreters,
Virtual Machines and Emulators, pp. 41–49. ACM, New York (2003)

4. Dixon, R., McKee, T., Vaughan, M., Schweizer, P.: A fast method dispatcher
for compiled languages with multiple inheritance. SIGPLAN Notices 24, 211–214
(1989)

5. Google, Inc. The Dalvik virtual machine,
http://en.wikipedia.org/wiki/Dalvik_virtual_machine

6. JDOM. Java DOM-API (2004), http://www.jdom.org/
7. Kay, M.: Saxon: The XSLT and XQuery Processor,

http://saxon.sourceforge.net/

8. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Pub. Co. (April 1999)

9. Puder, A.: A Cross-Language Framework for Developing AJAX Applications. In:
PPPJ. International Proceedings Series. ACM, Lisboa (2007)

10. Puder, A.: Cross-Compiling Android Applications to the iPhone. In: PPPJ. Inter-
national Proceedings Series. ACM, Vienna (2010)

11. Shi, Y., Casey, K., Ertl, M.A., Gregg, D.: Virtual machine show- down: Stack versus
registers. ACM Trans. Archit. Code Optim. 4(4), 1–36 (2008)

12. W3C. XSL Transformations (1999), http://www.w3.org/TR/xslt

http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://www.jdom.org/
http://saxon.sourceforge.net/
http://www.w3.org/TR/xslt

	Running Android Applications without a Virtual Machine
	Introduction
	Background
	Overview of Android and iOS
	Previous Work

	Cross-Compilation Framework
	Toolchain
	Byte Code Level Cross-Compilation
	API Mapping
	Garbage Collector

	Prototype Implementation
	Conclusion and Outlook
	References




