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Abstract. Cognitive Radio (CR) has been proposed as a promising
technique to solve spectrum scarcity problem in wireless communica-
tions. For the implementation of CR, one major challenge is to design
distributed spectrum sharing, which needs to efficiently coordinate CRs
in accessing the spectrum opportunistically based on only local infor-
mation. To address this problem, in this paper, we make use of the
heterogeneity among users in cognitive radio networks (CRNs) and pro-
pose a distributed cooperative game with classified players. A prioritized
CSMA/CA technique is adopted so that CRs select channels and their
priority to access channel based on their satisfaction history, a public sig-
nal for CRs to collaborate to achieve the Correlated Equilibrium (C.E.).
A no-regret learning algorithm is adopted to learn the C.E. Simulation
results show that the proposed C.E. based classified game (CECG) can
achieve up to 40% better performance compared to the unclassified one.

Keywords: Cognitive radio, distributed spectrum sharing, classified
game, correlated equilibrium, no-regret learning.

1 Introduction

With more and more wireless services emerging in the market, the spectrum
scarcity problem arises as the bottleneck for the future development of wireless
communications. However, based on Mitola’s research [1], most fixed allocated
spectrum is severely under-utilized. Cognitive Radio (CR) which smartly utilizes
spectrum is thus proposed as a promising technology to alleviate the increasing
stress on the fixed and limited radio spectrum. In such networks, CRs are sec-
ondary users to the spectrum. Namely, they must obey certain interference con-
straints so that its transmission will not interfere the communication of Primary
Users (PUs), the licensed users of the spectrum. In this way, they are envisioned
to be aware of the physical environment and capable to adjust their transmission
accordingly.

In cognitive radio networks (CRNs), a major challenges is to achieve the
coordination among CRs to share the spectrum effectively. However, centralized
approaches are deemed to be impractical in CRNs, due to the complexity and
cost to setup a Common Control Channel and to exchange control information.
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Distributed approaches are thus proposed. The key issue in designing distributed
spectrum sharing is that the decisions of spectrum allocation should be made
independently by each radio based only on its own information. Some research
works have been done in literature. In [2], a biologically-inspired algorithm was
proposed, which enabled the CR to eventually learn the appropriate spectrum
band and adapt the probability to select a channel. In [3], a non-cooperative game
model was used to obtain the spectrum allocation among a primary user and
multiple secondary users. The problem was formulated as an oligopoly market
competition, and Nash equilibrium (N.E.) is considered as the solution of the
game. The Correlated Equilibrium (C.E.), which is more general than the Nash
equilibrium, was considered for dynamic spectrum access in [4] and [5]. In [4] and
[5], CSMA/CA was adopted as the sharing technique, which allocated channel
to CRs equally. However, by considering the heterogeneity of CRNs, in terms of
the channel conditions, the application-based channel requirements among CRs,
and the time-varying channel availability, sharing channel equally may result in
low resource utilization efficiency.

Inspired by prioritized CSMA in IEEE802.11e [6] [7], in this paper, we intro-
duce a priority to classify CRs to improve the network performance, in terms
of the number of satisfied CRs by allocating different portion of the channel
to CRs based on their demands. A new algorithm to estimate the number of
CRs in different priority levels is also proposed. In the channel allocation pro-
cess, each CR jointly determine its channel selection and priority based on its
possible satisfaction and the loss it may introduce to other CRs. Such tradeoff
between satisfaction and cost results in a distributed cooperative game which can
maximize the satisfaction of the whole network. No-regret learning algorithm is
adopted to reach the C.E. of the proposed game. Simulation results show that the
C.E. based classified game (CECG) can achieve up to 40% better performance
compared to the unclassified game in highly heterogeneous networks.

The rest of this paper is organized as follows: In Section 2, we present the
system model and utility function. In Section 3, we study the C.E. and an no-
regret learning algorithm. Simulation results are shown in Section 4 and finally
conclusions are drawn in Section 5.

2 System Model

Consider an overlay CRN. The primary users have a strict priority on the spec-
trum access while CRs can only access spectrum not being utilized by PUs. As
we focus on the competition and collaboration among CRs in spectrum shar-
ing, we ignore the cost and faults from spectrum sensing. Namely, each CR is
equipped with a perfect spectrum sensing technique, which can alway detect
the presence of PUs instantly. We consider a simple CR transceiver which can
be tuned in a wide range of spectrum, but can operate only on one channel at
any time. All CRs are in the interference range of each other, and thus have
to compete for the idle channels. CSMA/CA is used as the sharing technique.
To improve the efficiency by considering network heterogeneity, we introduce
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priority mechanism to differentiate users with respect to their specific transmis-
sion requirements and channel qualities. Since applying multiple (> 2) priorities
may introduce high complexity with marginal improvement on performance, as
shown in simulation results, we consider two priority levels in our algorithm.

2.1 Network Structure

Assume that there are N channels in the system, represented as a channel set
{CN}. Each channel is licensed to a PU and total I CRs seek for channel access
opportunistically. CRs belongs to two different classes, i.e., class 1 and class
2, with low and high priority to access channels, respectively. Time is divided
into slots and we label them as t = 1, 2, .... In a slot, both PUs’ activities and
CRs’ strategies keep unchanged. Each CR’s action consists of tow parts: channel
selection and priority selection. At the beginning of any slot t, each CR i, i =
1, 2, ..., I, knows the following:

1) rreqi ∈ R+: the demand of CR i (in bits per time slot) to satisfy its QoS
requirements, where R+ denotes the set of positive real numbers.

2) Ct
i,n ∈ R+: the channel quality in terms of transmission rate in bits per

time slot for CR i on channel n at time t.
3) At

i,n ∈ {0, 1}: the availability of channel n for CR i at time t, which
is determined by PUs’ activities and the locations of both PUs and CR i.
At

i,n = 1, if channel n is available for CR i at time t; otherwise, At
i,n = 0.

At
i = (At

i,1, ..., A
t
i,N )T is the channel availability vector for CR i.

4) Act−1
i : the action of CR i in the last slot t − 1. Act−1

i = (Xt−1
i , P t−1

i ) is
chosen from the action set

Ωt−1
i = St−1

i × Spt−1
i (1)

In (1), St−1
i is the channel allocation decision space and can be represented as

St−1
i = {Xt−1

i ∈ (0, 1)c : Xt−1
i

T
(1 −At−1

i ) = 0,
∑

n∈CN

Xt−1
i,n ≤ 1} (2)

where Xt−1
i = (Xt−1

i,1 , ..., Xt−1
i,N )T is the channel allocation decision of CR i. As

indicated in (2), CR i can only select one available channel n with Xt−1
i,n = 1.

Spt−1
i is the priority space of CR i

Spt−1
i = {1, 2} (3)

We have P t−1
i ∈ Spt−1

i . P t−1
i = 1 stands for low priority, while P t−1

i = 2 stands
for high priority.

5) rt−1
i ∈ R+: the achieved average channel rate for CR i in the last slot

t − 1, which is determined by the number of CRs in the allocated channel and
their priorities in the last slot, i.e., by CR i’s action Act−1

i and all other users’
actions, denoted as Act−1

−i . This data can be acquired from the amount of data
transmitted in the last time slot.
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6) N1t−1
n

∗
and N2t−1

n
∗
: the estimated number of users of class 1 and class 2 in

the last slot t− 1 on the selected channel n, respectively. An estimation method
will be discussed later.

Based on the aforementioned information, each CR i makes its decision Acti
for slot t. Note that CRs make their decisions based on local information only,
which allows decentralized algorithms.

2.2 Prioritized CSMA/CA

CRs share channels using a prioritized CSMA/CA scheme. By allocating less
waiting time on average to CRs with higher priority, these CRs have a higher
chance to capture the channel than others.

We introduce following definitions for protocol description:
1) subslot: the time needed for a CSMA attempt. We assume K subslots con-

stitute a slot which are denoted as t1, t2, ..., tK . Note that the length of subslots
are not equal and so is the length of slots.

2) minislot: the time needed by CR to determine whether another station has
accessed the medium.

3) SIFS (Short Interframe Space): the smallest period between packets. It has
a duration at least enough for CR to sense the channel clear and switch between
receiving and transmitting modes.

4) AIFS (Arbitration Interframe Space): the smallest waiting time before send-
ing a packet. It depends on the corresponding priority class and is larger than
SIFS.

5) RTS/CTS: Request to Send frame/ Clear to Send frame.
6) DATA/ACK: Data frame/ Acknowledgment frame.
7) CW: Contention Window which depends on the corresponding priority

class.
Fig. 1 shows the protocol of prioritized CSMA/CA. As illustrated in the figure,

in any subslot tk, for CR i wishing to send data, it generates its backoff time
τi(tk) according to a uniform distribution within the interval (0, CW [P t

i ]). The
backoff counter starts decreasing after detecting that the channel is idle for an
AIFS[P t

i ]. Upon expiry of the backoff counter, the CR sending an RTS to initiate
its data transmission if the channel is still sensed clear. Only one radio with the
smallest waiting time WTi = τi(tk) + AIFS[P t

i ] will transmit successfully on

AIFS[1]

AIFS[2]

CW[1]

CW[2]

CW (counted in
minislots)

RTS

ACK

SIFSSIFSData

CTSSIFS

DataSIFSSender

Receiver

subslot

ACK

SIFS

Fig. 1. Multiple backoff in Prioritized CSMA/CA
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channel n in subslot tk. The values of AIFS and CW are set to guarantee that
CRs in class 2 can have a smaller expectation of WT than those in class 1, so
that they are more likely to take a smaller waiting time. Thus, CRs in class 2
have a higher priority to access the channel. The probability for CR i to catch
channel n is

if P t
i = 2

Probi,n = δ
CW [2] ×

∫ δ

0 ( τ
CW [2] )

N2n−1
dτ+

∫ CW [2]

δ ( τ
CW [2] )

N2n−1
( τ−δ
CW [1] )

N1n
dτ

(4)

if P t
i = 1

Probi,n = (1− δ

CW [2]
)
N2n

×
∫ CW [1]

0

(
τ

CW [1]
)
N1n+N2n−1

dτ (5)

where δ = AIFS[1]−AIFS[2], and

N1tn =

I∑

i=1

{Xt
i,n = 1}{P t

i = 1} (6)

N2tn =

I∑

i=1

{Xt
i,n = 1}{P t

i = 2} (7)

Each CR will determine its own priority based on its utility, a function of its
demand and satisfaction. The utility function will be discussed laster.

2.3 Decision-Feedback-Reaction Model

At the beginning of the t-th slot, each CR makes its decision based on the
information about the network and its satisfaction, and hold this decision for the
whole period of this slot. Note that channel catching probability and contention
probability for CR i at slot t − 1 are determined by all CRs on channel n, and
they are known to CR i before slot t from channel catching results in the last
slot. Hence, such probability can be seen as the feedback of CR i’s action in the
(t−1)-th slot. In realistic application, the number of subslots in a slot should be
large enough to provide an accurate feedback. Based on this feedback, CR can
make estimation of N1t−1

n
∗
andN2t−1

n
∗
, predict its future utility, and update its

action in the next slot.
We introduce a simple estimation method for N1t−1

n
∗
and N2t−1

n
∗
as follows.

For CR i, if P t
i = 2, the probability for CR i to successfully catch the channel

after waiting a period in the range of (AIFS[1], AIFS[2]) is

Pcat21i,n =
δ

CW [2]
×
∫ δ

0

(
τ

CW [2]
)
N2n−1

dτ (8)

Obviously, Pcat21i,n is only determined by N2n, and could be acquired from
CR i’s competition results. Hence, N2∗n can be estimated from Pcat21i,n by, for
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example, maximum-likelihood estimation [8]. Then, substituting N2n in (4), we
can have the estimated value of N1n.

Similarly, if P t
i = 1, the probability for CR i to contend on the channel after

waiting a period in the range of (AIFS[1], AIFS[2]) is

Pcon11i,n = 1− (1− δ

CW [2]
)
N2n

(9)

which is also only determined by N2n. Thus we can similarly estimate N2∗n from
Pcon11i,n and then estimate N1n by substituting N2n in equation (5).

In this paper, accurate estimates of N1n and N2n are considered, i.e., N1∗n =
N1n and N2∗n = N2n. However, as shown in the simulation, even up to 30%
estimation error will not affect the performance of the proposed algorithm sig-
nificantly.

3 Optimization Problem and Game Formulation

For a scenario with strict QoS requirement, for instance, voice transmission, a
meaningful global system object should aim to guarantee as many CRs’ satis-
faction as possible. Here, the satisfaction means that the achieved average rate
should be no less than the required one. Hence, we adopted a utility function
different from the best effort utility functions in [5] to better match the scenar-
ios with strict QoS requirements. As a decentralized scheme is required, a local
utility function is defined to guide the allocation decision of each CR. In follows,
we will first introduce the global optimization problem, and then discuss the
distributed game and utility function in details.

3.1 Global Optimization Problem

The global object is to maximize the number of satisfied users. As the optimiza-
tion problem is held for any time t, we ignore the index t for simplicity. Let
Ac = (Ac1, ..., AcI) be the joint action of all radios. The optimization problem
can be formulated as:

max
Ac

I∑

i=1

(G(ri, r
req
i )) (10)

s.t.
Ac ∈ Ω = Ω1 × ...×ΩI (joint action set of all radios) (11)

where
ri =

∑

n∈CN

Xi,nri,n ≤ 1 (12)

ri,n = Probi,nAi,nCi,n (13)
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ri,n is the achievable rate for CR i on channel n. Probi,n is the probability for
CR i to catch channel n, as defined in (4) and (5). G(a, b) is a logic function to
check whether CR i is satisfied, i.e.,

G(a, b) =

{
1 , a ≥ b
0 , a < b

(14)

Note that once CR’s QoS is satisfied, it has no intention to further increase its
achievable rate.

3.2 Distributed Game and Local Utility

Each CR tries to access channel to satisfy its QoS requirements, while at the
same time such access may cause loss to other CRs on the same channel, as
it decreases other users’ probability to catch the channel. Intuitively, if each
CR tries to satisfy itself, and at the same time limits the loss it causes to other
CRs, more CRs in the system could be satisfied. That is to say, CRs should select
channels with good channel condition and less users on it. Thus for a cooperative
distributed game which aims to improve the global performance, the local utility
for each CR should be a tradeoff between its satisfaction and other CRs’ loss.
Then, from the game theory point of views, the satisfaction acts as the income
while other CRs’ loss as the price.

Note that the local utility function is only an estimation from the last slot.
For instance, since the reward of each CR’s action is determined by other CRs’
actions, the estimated achievable average rate calculated at the beginning of a
slot may differ from the exactly achieved one. However, our simulation indicates
that the proposed algorithm converges after a number of rounds.

We define a distributed game as follows:
CRs are players in the game. Acti, the action of CR i in slot t, is selected from

action set Ωt
i defined in (1). Since any CR’s utility is determined not only by

itself but by other CRs’ actions, the local utility for CR i is defined as:

Ui(Ac
t
i, Ac

t
−i) = U1

i (Ac
t
i) + αU2

i (Ac
t
i) (15)

where Act−i represents all other CRs’ action.
In (15)

U1
i (Ac

t
i, Ac

t
−i) = G(rti , r

req
i ) (16)

stands for the satisfaction, where rti is defined in (12), and

U2
i (Ac

t
i, Ac

t
−i) = −P t

i (α1N1t−1
n

∗
+ α2N2t−1

n
∗
) (17)

stands for the cost, i.e., the loss of all other users in the channel n with Xi,n = 1.
Since it is hard to learn the real decrement on the channel rates for other users, a
rough estimation is adopted. Note that if CR i choses to act with higher priority,
it may induce more loss to all other CRs in the same channel, and thus it should
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pay more. Thus, if a CR can be satisfied with low priority, there is no motivation
for it to select the high priority in the same channel.

In (15) and (17), α, α1, α2 are user-defined tradeoff factors. Since the actual
effect of CR i’s action on the global utility is unknown, these weights are ad-
justable.

4 Correlated Equilibrium and No-Regret Learning

In this section, we adopt the concept of C.E. and introduce a no-regret learning
algorithm as a distributed adaptive learning algorithm to solve the optimization
problem defined in the previous section.

4.1 Correlated Equilibrium (C.E.)

A C.E. is a solution concept that is more general than the well known N.E. [9].
Given a public signal (in this paper, that is the satisfaction history of CRs),
a strategy consists of recommendatory actions to every possible observation of
the public signal a player can make. Thus, strategies of users are related to the
public signal. Players reach the C.E. if no player would want to deviate from a
recommended strategy. Note that N.E. corresponds to the special case of a C.E.
The C.E. considers the interaction among players to make decision and thus
could achieve better performance than N.E..

In the proposed distributed game, the C.E. is defined as: if and only if, for all
player i, with Aci ∈ Ωi as its action, a probability distribution Pr(Aci, Ac−i)
satisfies

∑

Ac−i∈Ω−i

Pr(Aci, Ac−i)[Ui(Ac
′
i, Ac−i)− Ui(Aci, Ac−i)] ≤ 0,

∀Ac′i, Aci ∈ Ωi

(18)

where Pr(Aci, Ac−i) is the correlated strategy.

4.2 No-Regret Learning

No-regret learning (also called regret tracking, regret matching) is a kind of
adaptive learning algorithms with fast convergence [10]. In no-regret learning,
the probability to conduct an action is proportional to the regret for not having
played other actions, and the stationary solution of the learning algorithm ex-
hibits no regret. This algorithm will almost surely converge to C.E., as proved
in [10].

For the action of CR i in slot t, Acti ∈ Ωt
i , we denote actions in the state space

as j ∈ {0, 1, 2, ..., 2N} for simplicity, i.e.: if ∃Xt
i,n = 1, j = 2n+P t

i −2; otherwise
j = 0.

Each CR i executes the following steps:
1) Initialize arbitrarily probability of taking action for CR i. Set θi,0 = 0.
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2) Generate regret matrix Hi with elements

Hi
jk = I{Acti = j} × (Ui,n(k,Ac

t
−i)− Ui,n(j, , Ac

t
−i)) (19)

which stands for the regret of not using action k, other than the real action j,
in slot t.

3) Set a regret value

θi,t+1
jk = θi,tjk + ε(Hi

jk − θi,tjk ), 0 < ε << 1 (20)

which stands for the average gain that CR i would have received had he chosen
action k in the past (from time 0 to t) instead of j. Here, ε is the learning rate.

4) Update action
CR i updates action Act+1

i = k with probability

P (Act+1
i = k|Acti = j) =

⎧
⎨

⎩

max(θi,t+1
jk , 0)/μi , k �= j

1−
∑

i�=j

max(θi,t+1
jk , 0)/μi , k = j (21)

In (21), μi is an arbitrary updating rate that is sufficiently large, i.e.,

μi > (NAci − 1)(umax
i − umin

i ) (22)

where NAci is the number of actions for CR i, umax
i is the maximum achievable

utility, and umin
i is the minimum utility for CR i. In our work, we set μi =

(NAci + 1)(umax
i − umin

i ).
Note that the algorithm requires that CR i knows what utility it would have

received for each action, even if that action was not taken. This puts a request to
know the number of users of each class on each channel. In fact, a modified regret
tracking algorithm can be used without such information [5] [11]. However, the
convergence is far too slow.

5 Simulation Results

We focus on slightly congested systems, with total capacity of channels slightly
less than the total user demand to highlight the effect of spectrum sharing al-
gorithms on the resource utilization efficiency. For each CR, some randomly
selected channels are set to be unavailable to reflect the occupation of PUs. For
CRs’ channel condition and required rate, we adopt randomly generated data
following Gaussian distribution for simplicity to introduce heterogeneity among
CRs.

In simulations, AIFS[1]=150, CW[1]=100, AIFS[2]=100, CW[2]=150, all in
unit of minislots. In the case that there is only one user in each class on the
same channel, the probability to catch channel for user in class 1 is 0.32, and for
class 2 is 0.65. Learning rate ε = 0.1, tradeoff factor α = 0.015, α1 = 1.1 and
α2 = 2 are obtained from simulation results.
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Fig. 6. N = 25, I = 100. Channel condition follow a Gaussian distribution with mean
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Fig. 2 compares the catching probability and sensitivity of users in different
classes. From this figure, we can see that for a user in class 1, if we increase the
number of users in class 2, the catching probability decreases rapidly; while for
the user in class 2, if we increase the number of users in class 1, the probability
decreases much slower and converges to a non-zero limitation. That is because,
for the catching probability of class 2, the first part in equation (4) is not affected
by N1n, and the second part in (4) converges to 0 with large N1n; while for
catching probability of class 1, with N2n in the exponent, it decreases rapidly
with increasing N2n.

Fig. 3 compares the performance if 3 other than 2 priority levels are applied.
For the 3-priority level case, we set AIFS[1]=150, CW[1]=100, AIFS[2]=125,
CW[2]=125, AIFS[2]=100 and CW[2]=150. From this figure, we can see that
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with 3-level priority, the algorithm can only provide marginal performance im-
provement, but much slower convergence rate. That is because more priority
levels will introduce a larger action set, which increases the complexity. More-
over, as in the proposed sharing algorithm, an unsatisfied CR can switch to the
channel with better channel condition and lighter competition to increase its
throughput other than continuously increasing its priority in the same channel,
the improvement from more priorities becomes insignificant. This justifies our
selection of 2 priority levels.

Fig. 4 shows the influence of estimation error. The performance of the C.E.
based unclassified game (CEUG) in [5] is adopted as a comparison benchmark.
From this figure we can see that for up to 30% estimation error, the performance
of our algorithm is just affected slightly. The reason is that users are dispersed
in all actions and the number of users with the same action is not large. Thus,
the estimation error can only change the number of users with the same action
slightly.

Fig. 5 compares the performance of the proposed CECG algorithm with
CEUG in [5]. The best response (BS) algorithm with unclassified game in [12]
is also adopted for comparison. In the BS algorithm, in every round each CR
selects the channel with largest utility, and it has been proved in [12] that the
N.E. of this unclassified game can be achieved. From the figure, performance im-
provement can be obviously observed in terms of the number of satisfied users.
The introduction of C.E. brings in about 10% improvement comparing to the
BS algorithm, as it considers the cooperation among CRs, at the cost of con-
vergence rate. Note that if all CRs chose to be in the same class, our algorithm
will degrade to that in [5]. Comparing to [5], since the proposed algorithm has
a larger action set including those in CEUG, at least we can acquire a same
performance as the CEUG algorithm.

Fig. 6 further demonstrates the influence of heterogeneity of users on the
performance where two groups of CRs with difference in demands are applied.
Comparing the results in Fig. 5 and Fig. 6, we can find that the improvement
of CECG over CEUG (about 40%) is larger in the latter case than that in the
former (about 10%). The simulation results further justify the necessity to apply
the proposed algorithm for performance improvement in CRNs, especially when
significant heterogeneity exists among CRs.

6 Conclusion

By taking into account the heterogeneity among users in CRNs, we proposed
a distributed cooperative game with classified players in this paper for efficient
spectrum sharing, where CRs select channel and their priority based on their
satisfaction history. This satisfaction history is used as a public signal for CRs
to collaborate with each other to achieve the C.E. A no-regret learning algorithm
is adopted to learn the C.E. Simulation results show that the classified game has
a better performance compared to the unclassified game, and the improvement
is determined by the heterogeneity of the network.
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