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Abstract. In dynamic spectrum sharing, Wireless Service Providers (WSPs) 
can dynamically acquire spectrum by leasing from spectrum broker and sell 
spectrum to users. In this paper, we model the interactions between secondary 
WSPs and users as a three-stage game with objective of maximizing WSPs’ 
profits. The competitive WSPs make leasing strategies in stage I and pricing 
strategies in stage II. Users follow Wardrop’s principle and choose WSP with 
respect to price and quality of service (QoS) in stage III. We analyze the static 
game by means of backward induction. Given the users’ equilibrium, the 
pricing sub-game and leasing full game for competitive WSPs both have a 
unique Nash equilibrium. The situation without complete information is also 
studied by dynamic game. The short term pricing dynamic game converges to 
the Nash equilibrium of the pricing sub-game, while the long term leasing 
dynamic game converges to the Nash equilibrium of the full game. 

Keywords: Dynamic spectrum leasing, Leasing and pricing, Nash equilibrium, 
Three-stage game. 

1 Introduction 

Spectrum is an indispensable resource in wireless communications. Spectrum has 
been statically allocated by regulatory agency (e.g., FCC in USA, Ofcom in UK) to 
prevent the signals from interfering with each other. As wireless services increase 
dramatically these years, spectrum seems to be scarce. However, recent researches 
[1], [2] show that most of spectrum bands are underutilized because demand changes 
with time and location. Dynamic spectrum access can improve the spectrum 
utilization by allowing primary Wireless Service Providers (WSPs)/users to share the 
spectrum with secondary WSPs/users. With cognitive radio technology, dynamic 
spectrum access comes true. Devices with cognitive capability can reconfigure 
themselves according to the circumstances they sensed. Based on the manners of 
spectrum acquisition, we divide dynamic spectrum access mechanisms into 
opportunistic spectrum access and hierarchical spectrum access [3]. In opportunistic 
spectrum access, secondary WSPs /users acquire spectrum by spectrum sensing. In 
hierarchical spectrum access, secondary WSPs/users acquire spectrum by leasing. 
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Recently, increasing researches focus on dynamic spectrum leasing. Literatures 
[4]-[6] have studied the secondary WSPs’ strategies of obtaining spectrum from 
spectrum owners. Concerning secondary WSPs’ competitive service providing, most 
existent works (e.g., [7], [8]) focus on pricing interaction between competitive WSPs. 
However, secondary WSPs’ leasing strategies are tightly related with service pricing 
strategies. Only a few works (e.g., [9], [10]) jointly considered WSPs’ strategies for 
spectrum acquiring and service pricing. In [9], the demand function of users is derived 
directly from economics area, which can not reflect the users’ quality of service 
(QoS) requirements in communication. A concrete wireless spectrum sharing model is 
used in [10], which causes that the result is not general. 

The key difference here is that we give an analytical study of leasing and pricing 
game for non-cooperative secondary WSPs with objectives of maximizing their own 
profit. Profit is the difference between the revenue earned by selling services and cost 
of leasing spectrum. The secondary users follow the Wardrop’s principle [11] and 
choose WSP based on price and QoS. We use a three-stage (leader-follower) game to 
model the interactions between the WSPs and users as well as the WSPs’ leasing and 
pricing decisions. Nash equilibrium of the game is solution to our problem. In the first 
stage, the WSPs lease bandwidth from spectrum broker. In the second stage, the 
WSPs make decision on service pricing to attract users. In the third stage, users 
decide which WSP to access. 

The structure of this paper is as follows. In section 2, system model is described. In 
section 3, we give the static game formulation, and solve the game by backward 
induction. In section 4, we model WSPs’ interactions as dynamic game with 
incomplete information, and analyze the convergence of the dynamic game. In section 
5, through simulation results, some insights of static and dynamic game of non-
cooperative WSPs are discussed. In section 6, conclusion is given. 

2 System Model 

As shown in Fig.1, we consider a duopoly case in which two secondary WSPs deploy 
their infrastructures in the same geography area. Secondary WSPs and users are 
equipped with cognitive capabilities. Primary WSPs put their temporarily unused 
spectrum into spectrum broker, gain extra revenue from leasing the spectrum to 
secondary WSPs and draw back spectrum after a specific period of time. Secondary 
WSPs can lease spectrum from spectrum broker and configure their infrastructures. 
Secondary users no longer have long term contract with specific WSPs and have the 
ability to choose WSP according to QoS and price. The WSPs can dynamically adjust 
their bandwidth leasing and service pricing decisions to attract users for maximizing 
their individual profit. We would like to study the behaviors of competitive secondary 
WSPs in making decisions of leasing spectrum and pricing service with the 
consideration of users’ behavior. If not special specified, we refer WSP as secondary 
WSP and users as secondary users in remnant paper. As in [9] and [12], we consider 
the case where users pay for the capacity (resources) that they use instead of the 
services they receive. 
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Fig. 1. System model 

To acquire spectrum, the WSPs have to decide the amount of leasing bandwidth ib  

( { }1, 2i ∈ ). The spectrum broker charges WSPs according to the unit price function 

( )1 2F b b+  [13], in which ( )F b   is strictly positive, non-decreasing and convex for 

0b > . The WSPs are charged at the same unit price. The price function describe the 
characteristic of primary WSPs’ cost of spectrum providing, since the more 
bandwidth leased to secondary WSPs the more influence introduced into their own 
services. In our paper, we use the following format for ( )F b , 

                            ( ) ( )1 2F b C b b= +                               (1) 

in which  C   is a positive constant. We can see from (1) that spectrum cost for each 
WSP not only depends on its own leasing bandwidth but also depends on the other 
WSP’s. To maximize its own profit, WSP i  should consider its opponent’s leasing 
strategy.  

The system capacity is  provided by WSP i  is determined by the leasing spectrum, 

i i is k b=                                      (2) 

where ik  is WSP i ’s spectrum efficiency. Here, capacity is simply interpreted as the 

maximum amount of throughput a WSP can support. With adaptive modulation, the 
transmission rate can be dynamically adjusted based on the channel quality. Spectral 
efficiency can be obtained from [14], 

( )2log 1i i ik K γ= + ,                          (3) 

where ( )1.5 / ln 0.2 tar
i iK BER= , iγ  denotes the signal to noise ratio, and   denotes 

the target bit error rate tar
iBER . 

We model the interaction between WSPs and end users as a three-stage game 
( { }1, 2i ∈  ). 
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Stage I (Leader): WSP   decides the leasing bandwidth ( ib  ). 

Stage II (follower): WSP   decides the service pricing ( ip  ). 

Stage III (follower): Users make decision on which WSP to access, and give the 
demand distribution ( id  ). 

3 Backward Induction of the Three-Stage Game 

When the complete information is available for WSPs, we analyze the static game by 
means of backward induction. 

3.1 User Sub-game in Stage III 

(1)  Definition of Effective Price 
We assume id  is WSP i ’s demand ( { }1, 2i ∈ ). If i id s≤ , all packets are served. If 

i id s> , demand exceeds WSP i ’s system capacity, then the packets in excess are lost 

which are uniformly chosen among the sent ones. Hence, a packet is correctly sent with 
probability ( )min 1,i i iq s d= . Here we use congestion pricing as in [15].  In 

congestion period, the users are charged higher to prevent the situation from 
deteriorating.  

Definition 1. we define the effective price of WSP i  as 

( )max 1,i i i i i ip p q p d s= = . 

Note that ip  is the price that WSP i  decided for each packet sent in its network. 

As a consequence, the effective price ip  denotes average price to pay for 

successfully sending a packet. The effective price works just like the congestion price. 
(2)  Users’ Behavior 

We assumed that users are infinitesimal, and their behavior follows Wardrop’s 
principle [12]: users always choose the WSP with lowest effective price. If 1 2p p> , 

then 1 0d = ,  and Vice versa.  All users perceive the same effective price is 

( )1 2min ,p p p= .        

We defined total demand as the total number of packets for which the willingness 
to pay is larger than or equal to the effective price p . Hence, total demand can be 

represented by a function ( )D ⋅  of the effective price, and it is assumed to be 

continuous and strictly decreasing, 

      ( ) [ ]D p pα β += − , 0α > , 0β > ,                       (4) 

which means that the users would rather not to transmit any data when the effective 
price is larger than α β . 

                                ( )1 2d d D p+ =                                  (5) 
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(3)  Users Distribution Equilibrium 
In Fig.2, we show the users equilibrium characterization for specific 1p  and 2p . 

Here we discuss the situation when 1 2p p< . Meanwhile, we give some demand 

functions in 4 different cases. We can get the users’ distribution according to the 
intersection of demand function and effective price curves.  

If 1D s≤ , the effective price that all users perceive is 1p , and all users choose 

WSP 1 ( 1d D= , 2 0d = ), and the case d represents this situation. 

If 1 1 2 1s D s p p< ≤ , the effective price is 1 1 1p d s . Although the needed capacity 

is larger than WSP 1’s system capacity, all users still access to WSP 1 ( 1d D= , 

2 0d = ), since 2p p< . Case c corresponds to this situation. 

0 0.5 1 1.5 2 2.5
0.4

0.6

1

1.4

1.6

1.8

2

D

p

 

 

s1

demand function

case a

p
2

p
1

s
1
p

2
/p

1
s

2
+s

1
p

2
/p

1

case d

case c

case b

 

Fig. 2. Users’ equilibrium demand with effective price 

If 1 2 1D s p p> , WSP 2 begins to get some demand. In case b, 

1 2 1 1 2 1 2s p p D s p p s< ≤ + , the effective price all users perceive equals to 2p , and 

1 1 2 1d s p p= , then 2 1 2 1d D s p p= − . In case a, 1 2 1 2D s p p s> + , all WSPs are 

saturated. The effective price the users perceived is 

             1 1 1 2 2 2p p d s p d s= =  .                            (6) 

The situation when 1 2p p>  can be analyzed as the same as above. In special 

situation 1 2p p= , we supposed that the demand distribution is proportioned to the 

system capacity, which means that  

 1 1 2 2d s d s= .                                         (7) 

3.2 WSP’s Pricing Sub-game in Stage II 

In this stage, the pricing strategies of non-cooperative WSPs are investigated. The 
WSPs have the information of the demand distribution as described in preceding 
section. 
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(1) Pricing Sub-game Model 
The WSPs gain revenue by providing service to users, and the revenue is defined 

as 

  ( ),i i j i iR p p p d=   for { }, 1, 2i j ∈ , i j≠ .                 (8) 

The pricing sub-game between WSPs is modeled as below. 
Players: two WSPs.  
Strategy space: WSP i  can choose price ip  from the feasible set [ )0,iΡ = +∞ , 

{ }1, 2i ∈ . 

Payoff function: ( ),i i j i iR p p p d= , for { }, 1, 2i j ∈ , i j≠ . 

For pricing game, Nash equilibrium is a point of price strategies ( )
1 2
,p p∗ ∗ , each 

WSP maximizes its revenue assuming that the other WSP chooses the equilibrium 
price, and no WSP can increase its revenue by unilaterally changing its price [16], 

{ }, 1, 2 ,i j i j∀ ∈ ≠ , 

( ) ( ), ,
j ji i i iR p p R p p∗ ∗ ∗≥ .                             (9) 

According to the analysis about demand distribution, we find that the payoff functions 
in (8) are not derivable. To determine the existence and uniqueness of Nash 
equilibrium is difficult for this model, therefore we analyze it numerically as [15]. 
The parameters are 1 1s = , 2 2s = , and 10α = , 3β = .  
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Fig. 3. Revenue of WSP 1 as a function of 1p  

For given parameters as above and fixed values of 2p , we show the revenue of 

WSP 1 with changing 1p  in Fig.3. All the curves are the same when 

( )1 2 1 2p p s D p>  is low enough, which means that all users choose WSP 1 as case d 

in Fig. 2. When ( )1 2 1 2p p s D p> , the curves have different characteristics. 
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For ( )2 2 1p s sα β≤ − − , both WSPs are saturated at the user equilibrium as case a 

in Fig. 2. The revenue of WSP 1 would reach the maximum when 

( ) ( )1 1 2 210 3p s s p= − +  as the blue curves in Fig.3. 

For ( ) ( )2 1 2 1s s p sα β α β− − < ≤ − , only WSP 1 is saturated at the user 

equilibrium as case b in Fig. 2. The WSP 1’s best price strategy 1p  is not unique, but 

an interval in ( ) ( )( )1 2 2 1 2 2 2,s p D p s p D p s −   as the red curves in Fig.3.  

For ( )1 2s pα β α β− < ≤ , all users choose WSP 1 and 2 0d =  at the user 

equilibrium as case c and d in Fig.2. The revenue of WSP 1 reaches the maximum 
when ( )1 110p s β= −  as the green curve in Fig. 3. 

(2) Nash Equilibrium of Pricing Sub-game 
The best reply function of WSP i ’s revenue is  

( ) ( )
0

arg max ,
i

i j i i j
p

BR p R p p
≥

= , for { }, 1, 2i j ∈ , i j≠         (10) 

The best reply is the price value which maximizes the revenue of the WSP i    while 
the other WSP’s price is fixed. Nash equilibrium can be represented by the set of 
points ( )

1 2
,p p∗ ∗ , in which ( )1 1 2p BR p∗ ∗∈  and ( )2 2 1p BR p∗ ∗∈ . 

Fig.4 gives an example of best replies for non-cooperative WSPs, the model 
parameters we used are the same as in Fig.3.When ( ) ( )2 1 2 1s s p sα β α β− − ≤ ≤ − , 

best replies are not unique which is easy to understand from the analysis in Fig. 3. 
The intersection zones of best replies are ( )0,0  and the range 

( ) ( ) ( )( )1 2 1 2 2 1,min ,p p s s s sα β α β α β = ∈ − − − −  . 
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Fig. 4. Best reply curves of both WSPs 

(3) Nash Equilibrium Discussion 

( )0,0  is a trivial Nash equilibrium, because no WSP would set its price to be 0.  



 Leasing and Pricing Strategies for WSPs in Dynamic Spectrum Sharing 465 

 

There exist infinite pricing best reply intersection points in the range 
( ) ( ) ( )( )1 2 1 2 2 1,min ,p p s s s sα β α β α β = ∈ − − − −  . In Fig.4, the solid black line 

represents this set of infinitely pricing intersection points. However, the intersection 
points ( ) ( )( )1 2 1 2 2 1(( ) / ,min , ]p p s s s sα β α β α β= ∈ − − − −  correspond to the case that 

only one WSP is saturated while the other is not.  The unsaturated WSP i  

( { }1, 2i ∈ ) would like to decrease its price ip  unilaterally by a small amount to 

attract more users and gain more revenue. Obviously, there is no Nash equilibrium in 
that zone. Both WSPs are exactly saturated at the point 

( )1 2 1 2 1 2( ) / , ( ) /p p s s s sα β α β= = − − − −  and neither WSP would like to change its 

price unilaterally. As a result, ( ) ( ) ( )( )1 2 1 2 1 2, ,p p s s s sα β α β∗ ∗ = − − − −  is the unique 

Nash equilibrium of pricing sub-game that we are looking for. 
Since both WSPs are saturated, then according to (4) (5) (6) (8), we get  

                 i j i
i

i j i j i j

p p s
R

s p p s p p

α
β

=
+ +

.                             (11) 

We can get that 0i iR p∂ ∂ > , iR  increases monotonously when both WSPs are in 

saturated range.  As the analysis of the blue curves in Fig.3 and 

( ) ( )arg max
i

i j i
p

BR p R= ，the best response function can be described as following.  

For { }, 1, 2i j = , i j≠ ,      

                     ( )
i

B i
j

j j

s
p p

s p

α
β

−
=

+
.                          (12) 

Take the Nash equilibrium ( )1 2,p p∗ ∗  into (11), the demand distribution can be 

presented as  

  j

j j

i

i

i i j i

p s
d

p p p s p s

α
β

∗
∗

∗ ∗ ∗ ∗=
+ +

.                           (13) 

From above, we can get i id s∗ = . If WSPs decide the prices according to the Nash 

equilibrium ( )1 2,p p∗ ∗ , leasing bandwidth can exactly satisfy the demand which means 

that the dynamic spectrum market reaches the market equilibrium [14]. 

3.3 WSP’s Leasing Full Game in Stage I 

(1) Leasing Full Game Model 
In the first stage (full game leader), WSPs have to decide the leasing amount of the 
spectrum. Taking the demand distribution ( )

1 2
,d d∗ ∗  in stage III and pricing strategy 

( )1 2,p p∗ ∗

 
in stage II into consideration, we give the leasing bandwidth decision 

( )1 2,b b  to maximize the WSPs’ profits. 
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The WSP i ’s profit is defined as: { }, 1, 2i j∀ ∈ , i j≠ , 

           ( ) ( ) ( ), ,i i j i i i j j i i jb b R k b k b b C b bπ = − + .                    (14) 

The leasing game can be modeled as follows. 
Players: two WSPs.  
Strategy space: WSP i  can choose bandwidth amount ib  from the feasible set 

[ )0,ib = +∞ , { }1, 2i ∈ . We assume that the bandwidth provided by spectrum broker 

is enough.  
Payoff function: ( ),i i jp pπ , for { }, 1, 2i j ∈ , i j≠ . 

(2) Nash equilibrium of leasing full game 
As the payoff function is derivable, Nash equilibrium of the leasing game exists 

and can be acquired through solving the function 0i ibπ∂ ∂ = , for { }1, 2i ∈ , i j≠ , 

( ) ( )1 1 2 2 1 2,i i iR k b k b b C b bπ = − + , 

( )22 2 0i
i i i i j j i j

i

k k b k k b Cb Cb
b

π α β∂
= − − − − =

∂
. 

The best response function can be written as 

                     ( ) 22 2
j

i

i i j jB
j

i

k k k b Cb
b b

k C

α β
β

− −
=

+
                             (15) 

Set  1 2m k k Cβ= + , 2
12 2n k Cβ= + , 2

22 2l k Cβ= + , we can get the unique Nash 

equilibrium as ( )1 2,b b∗ ∗ . 

                   1 2
1 2

lk mk
b

nl m

α α∗ −
=

−
                       (16) 

                    2 1
2 2

nk mk
b

nl m

α α∗ −
=

−
                      (17) 

4 Dynamic Game of WSPs  

In section 3, WSPs are assumed to have the complete information about the strategies 
and payoff functions for both WSPs. Hence WSPs can make simultaneous decisions, 
and the three-stage game is static. However, the situation is different in reality. The 
strategies and payoff functions of the other WSP are not fully available. WSP can 
only observe each other’s history of strategies, and we present dynamic game model 
for the competitive WSPs. We investigate how WSPs interact in such a dynamic 
game, and give an iterative algorithm to achieve its dynamic equilibrium. As in [9], 
we assume that the pricing sub-game at the users’ side is a short term dynamic game, 
while leasing game at the spectrum broker’s side is a long term dynamic game. This is 
because that these two competitions are done separately. We assume the following 
discussions are in the condition where users’ market is stable. 
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4.1 Short Term Pricing Dynamic Game 

With incomplete information, current decision of the opponent’s pricing strategy is 
not available. We use the history record of the WSP j  to decide the price of WSP i   

based on the best response function in (12). We give the pricing dynamic game as 

  ( ) ( )( )1B
i i jp t p p t= −  for { }, 1, 2i j ∈  , i j≠ .                (18)             

We describe the iterative algorithm of the pricing dynamic game as below. 

Step 1. Initially 0t = , WSPs set prices as ( )0ip , ( )0jp . 

Step 2. In each iteration 0t > , WSPs update their prices according to (18). 
Step 3. Stop until the criteria is met. The criteria can be the maximum number of 

iteration or the difference between the WSP i ’s prices of two consecutive iterations 
is less than a predefined threshold.  

Theorem 1: Given leasing bandwidth, pricing dynamic game converges to the Nash 
equilibrium point and it is stable.  

Proof: It is obvious that the best response function in (12) is monotonous and 
bounded, so the pricing dynamic game is convergent. For the stable point, it satisfies 

( )B
i i jp p p= , which is just the Nash equilibrium of pricing sub-game. 

4.2 Long Term Leasing Dynamic Game 

Leasing dynamic game is relative long term with respect to pricing dynamic game. 
We assume that leasing strategy only updates after pricing dynamic game finished.  

According to (18), we give the leasing dynamic game as 

          
( ) ( ) ( )

2

1

2 2i

i i j j

i

k k k C b T
b T

k C

α β
β

− + −
=

+
.                          (19) 

Equation (15) has the same characteristic as equation (12), so the long term leasing 
dynamic game also converges to the Nash equilibrium which has the same reason as 
short term pricing dynamic game. We can describe the leasing dynamic game’s 
iterative algorithm as below. 

Step 1. Initially 0T = , WSPs set leasing bandwidth ( )0ib , { }1, 2i ∈ . Adjust the 

prices according to the short term pricing dynamic game and acquire the prices 

( )0ip  ( { }1, 2i ∈ ) which meet the criteria. 

Step 2. In each iteration 0T > , WSPs update their leasing bandwidth according to 
(19). ( )ip T  ( { }1, 2i ∈ ) can be obtained by short term pricing dynamic game. 

Step 3. Stop until the criteria are met. The definition of stopping criteria is similar 
to previous part. 
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5 Simulation Results 

(1) Static Game of Non-cooperative WSPs 
The model parameters are 1C = , 10α = , 3β = . Nash equilibrium of pricing sub-

game is only influenced by the total leasing bandwidth given the particular spectrum 
efficiency of the WSPs. In Fig.5, it shows that the pricing sub-game’s Nash equilibrium 
decreases with the total leasing bandwidth in linear relation. Fig.6 shows that spectrum 
efficiency influences the WSP’s leasing strategy. We can see that WSP with bigger 
spectrum efficiency gets more bandwidth. Fig.7 shows that for given 1k , WSPs’ leasing 

bandwidth and profits change as 2k  increases. The WSP 2’s leasing bandwidth firstly 

increases as 2k  grows because the WSP with bigger spectrum efficiency gets more 

bandwidth, and then it decreases because as spectrum efficiency increase the WSP needs 
less bandwidth to fulfill the demand. The profit of WSP 2 increases as 2k  grows, while 

the profit of WSP 1 decreases. Hence with the same objective to maximize the profit, 
every WSP will have the incentive to promote its own spectrum efficiency. 
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Fig. 5. Nash equilibrium of pricing with different leasing bandwidth 
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Fig. 6. Nash equilibrium of leasing with different spectrum efficiency 
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Fig. 7. With given 1 1k = , the leasing bandwidth and profit varies with 2k  

 
(2) Dynamic Game of Non-cooperative WSPs 

We present some numerical results for the performance in dynamic spectrum 
market, and study the characteristic of the dynamic game. We set 1 1s = ,  

2 2s = , 10α = , 3β =  in Fig.8  and 1C = , 1 1k = , 2 2k = , 10α = , 3β =  in 

Fig.9. 
For short term price adjustment in Fig.8, given the initial small value of prices, we 

can see that the iterative algorithm converges to the pricing Nash equilibrium very 
quickly. We also simulate the long term bandwidth adjustment in Fig.9, the 
convergence of leasing dynamic game is rather quick and it converges to the full 
game Nash equilibrium. Fig.9 also shows the corresponding prices at each stable 
point. The simulations show that the dynamic games converge to Nash equilibria. 
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Fig. 8. Short term pricing dynamic game 
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Fig. 9. Long term leasing dynamic game 

6 Conclusion 

In this paper, we use a three-stage game to model the interactions between 
competitive WSPs and users in dynamic spectrum leasing.  The users choose WSP 
by taking price and QoS into considerations. The pricing sub-game has a unique Nash 
equilibrium. The pricing Nash equilibrium of WSPs is the same even when they lease 
different amount of bandwidth and have different spectrum efficiencies. Interestingly, 
with the pricing Nash equilibrium, the demand equals to the leasing bandwidth which 
means that the game reaches the market stable equilibrium. The pricing Nash 
equilibrium is only dependent on the total leasing bandwidth of WSPs. Leasing Nash 
equilibrium is unique and dependent on the spectrum efficiency. When information is 
incomplete, WSPs interact with each other in a dynamic game. We use the iterative 
algorithm based on the best response function as a solution to In this paper, we use a 
three-stage game to model the interactions between competitive WSPs and users in 
dynamic spectrum leasing.  The users choose WSP by taking price and QoS into 
considerations. The pricing sub-game has a unique Nash equilibrium. The pricing 
Nash equilibrium of WSPs is the same even when they lease different amount of 
bandwidth and have different spectrum efficiencies. Interestingly, with the pricing 
Nash equilibrium, the demand equals to the leasing bandwidth which means that the 
game reaches the market stable equilibrium. The pricing Nash equilibrium is only 
dependent on the total leasing bandwidth of WSPs. Leasing Nash equilibrium is 
unique and dependent on the spectrum efficiency. When information is incomplete, 
WSPs interact with each other in a dynamic game. We use the iterative algorithm 
based on the best response function as a solution to the dynamic game. The short term 
pricing dynamic game converges to the Nash equilibrium of the pricing sub-game, 
while the long term leasing dynamic game converges to Nash equilibrium of the static 
full game.  

There are many aspects to extend our results in this paper. For example, we can 
introduce the heterogeneous into WSPs for providing different services or into users 
with different QoS requirements in future works. 
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