
P. Ren et al. (Eds.): WICON 2011, LNICST 98, pp. 243–253, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Fast Blind Spectrum Sensing Method  
Based on Multi-stage Wiener Filter 

Zhiqiang Bao, Guangyue Lu, Gang Yang, and Huang Qingdong 

School of Telecommunication and Information Engineering 
Xi’an University of Posts and Telecommunications 

Xi’an City, 710121, China 
{baozhiqiang,gylu,yanggang,huangqingdong}@xupt.edu.cn 

Abstract. Spectrum sensing is the key problem for cognitive radio systems. A 
fast blind sensing method on Multi-Stage Wiener Filter (MSWF) of the 
received signals is proposed to sense the available spectrum for the cognitive 
users with the help of the multiple antennas at the receiver of the cognitive 
users. The greatest advantage of the new method is that it requires no 
information of the noise power and without any eign-decomposition (or SVD). 
Both the simulation and the analytical results demonstrate that the proposed 
method is effective, and almost the same performance compare with the eigen-
value based methods. 

Keywords: Spectrum sensing, subspace projection, cognitive radio, random 
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1 Introduction 

Cognitive radio (CR) [1] has recently emerged as a promising technology to increase 
the spectrum utilization in wireless communications. In a CR network, secondary 
users (SU) continuously sense the spectral environment, reliably detect weak primary 
signals over a targeted wide frequency band, and adapt transmission parameters (such 
as the transmitting power, modulation and coding scheme, carrier frequency, etc.) to 
opportunistically use the available spectrum. The typical sensing methods include the 
energy detector, the matched filter, the cyclostationarity feature detection, and so on. 

The typical sensing methods required the knowledge of noise power, License 
Users’ (LU) waveform or known patterns and signal cyclostationary feature. All the 
above methods need a subjectively pre-defined threshold, which affects the robustness 
of the methods. 

Recently, some blind sensing algorithms are derived from the eigen-values of the 
covariance matrix. Among them, the detectors based on the sample covariance matrix, 
including the MME detector [2], MET detector [3], the information theoretic detector 
[4], [5], and DMM detector [6], have been recently proposed. All of them work well 
in the case of noise uncertainty, and can even perform better than the ideal ED (with 
perfect noise power estimate) when the detected signals are highly correlated. 
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However, these methods suffer from the heavily computational load of the eigen-
decomposition, which may be unacceptable in real-time signal processing and large-
dimension array system. To deal with this problem, a fast blind sensing method based 
on Multi-Stage Wiener Filter is proposed, which requires no information of the noise 
power and without any eigen-value decomposition (EVD). We also derive the 
threshold of our detector based on the random matrix theory. 

2 Blind Spectrum Sensing Based on Multi-stage Wiener Filter 

2.1 Array Model and Blind Sensing Algorithm Based on EVD 

Multi-antenna is widely used in wireless communication due to its ability in 
improving the performance of the system. Here the multi-antenna is also served for 
sensing the LU signal. 

Assume a uniform linear array is employed at the CR receiver side with M 
antennas. The array output data are   
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where )]()([ H kkESS SSR = is the covariance of the signals, and H denotes the 

Hermitian Transpose. )]()([ H kkENN NNR =  is the noise covariance equal to I2

nσ in 

Gaussian white noise. Here, we only consider the Gaussian white noise situation. 
The EVD based methods are based on eigen-decomposition of the covariance 

matrix R, and the signal and noise subspace are obtained from the eigenvectors of 
eigen-values, ][ 21 PS uuuU =  and ][ 21 MPPN uuuU ++= , where 
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where 2

nM2P1Pp21 σλλλλλλ ====>≥≥≥ ++  ,if there are P LUs’ signal impinging 

on the uniform linear array. 
Once the eigen-values are obtained, some blind sensing algorithms can be 

derived[2], [3], [10]. 

A) MME detector: the ratio of largest eigen-value compared with the smallest  
eigen-value. 
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B) MET detector: the ratio of largest eigen-value compared with the mean of all 
eigen-values. 
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C) DMM detector: the difference of largest eigen-value with the smallest eigen-value. 
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In noise only case, the covariance matrix Rxx is a Wishart random matrix. We can use 
the random matrix theory (RMT) to approximate the true CDF of detector based on 
largest and smallest eigen-values. 

2.2 Fast Blind Sensing Algorithm Based on MSWF 

The eigen-value based sensing methods for spectrum sensing has outstanding 
performance compared with other algorithms. However, these methods suffer from 
the heavily computational load of the eigen-decomposition. To deal with this 
problem, we use the Multi-Stage Wiener Filter technology to develop the fast and 
blind sensing algorithm. The multi-stage wiener filter (MSWF) technique is based on 
orthogonal projections, which was successfully used in adaptive beam-forming, 
adaptive reduced-rank interference suppression and space-time adaptive processing 
(STAP) . In our early work, it was adopted to develop the low complexity bearing 
estimation algorithms [11] successfully. 

The MSWF was proposed by Goldstein et al [7] to find an approximate solution to 
the Wiener-Hopf equation which does not need the inverse of the covariance matrix. 
The MSWF algorithm is given by the following set of recursions: 

Step1. Initialization: )(0 kd and X0(k) = X(k) 

Step2. Forward recursion: For Mi ,,2,1 =  
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Step3.Backward recursion: )()( kk MM de =   

For 1,,1, −= MMi  
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END FOR 
In this paper, we consider using the output data of an arbitrary array element as the 

reference signal which are easily obtained. 
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The covariance matrix can be tri-diagonalized by match filters. That is 
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where [ ]MhhhH 21=  is the matrix of match filters, 

[ ] iiX

H
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similar with the eigen-value iλ .  According to the 2

idσ , we can derived our blind 

sensing algorithm. 
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But in low SNR, the difference between 2

idσ and the eigen-values iλ is too large to be 

used for the detector. And also the detection threshold cannot be derived from the 
conclusion of random matrix theory. So get the estimation the largest eigen-value 
from tri-diagonal matrix dR  is the key problem. Using the conclusion in [8], we can 

find the bound of largest eigen-value of tri-diagonal matrix dR , which has the same 

eigen-values of Rxx . 
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Theorem 1. Given a tri-diagonal matrix nnA × , the non-zero elements of A are all great 

than zero. 
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Let 01 == nbc  and 
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If we set the stop condictions 

( ) ( ) ε<− mm rR                            (18) 

So the largest eigen-value of A can be estimated iteratively [8]. 

( ) ( )mRA =maxλ                             (19) 

The procedure of blind sensing based on MSWF is as followed: 

Step1: Use the MSWF forward decomposition to compute the match 
filters [ ]MhhhH 21=  

Step2: Use equation (20) to get the tri-diagonal matrix dR . 
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Step3: According to Theorem 1, get the estimation of the largest eigen-value of  
tri-diagonal matrix dR . 

Step4: Compute the detection statistics and compare with the threshold from equation 
(21). 
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Remark 1. To estimate the largest eigen-value, our method merely requires )( 2 NMO  

complex products operations. However the EVD-based algorithms require )( 2 NMO  

complex products operations of estimating the covariance matrix and 
)( 3MO decomposition operations. Thus the computation complexity of our method is 

significantly reduced.  

2.3 Theoretic Analysis and the Threshold Determination 

Practically, the statistical correlation matrix XXR  is estimated through a sample 

covariance matrix. Introduce N as the number of samples collected by each receiver 
during the sensing period. The M ×M sample covariance matrix ( )NRXX  is then 

defined as 
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Although ( )NRXX  converges to XXR  as N tends to infinity, for finite N, its 

properties depart from those of the statistical covariance matrix, then the eigen-values 
of XXR  have the property that M2P1Pp21 λλλλλλ >>>>>>> ++  . At low SNR, 

the performance of a sensing algorithm is very sensitive to the threshold. Since we 
have no information of the signal (actually we even do not know if there is signal or 
not) and noise, it is difficult to set the threshold based on the Pd. Hence, usually we 
choose the threshold based on the Pfa. We need to determine the behavior of eigen-
values under null hypothesis, i.e., 0Η .  

In noise only case, the distribution of the largest eigen-value [9], [10] is described in 
the following Lemmas. 

Lemma 1. Assume that the noise is complex.  
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probability one) to the Tracy-Widom distribution of order 2 (TW2) [9]. For the 
analytical formula of 2TW  refer to [9], and for the tables of its CDF refer to [10]. 

According to the lemmas, we can derive the threshold of our algorithm based on 
false alarm probability. 
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where ( ) 2trace nXX Mσ=R is used. 

So the threshold is 
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It can be seen that the threshold has nothing to do with the knowledge of noise 
power 2

nσ and signal information, therefore our method is belong to blind sensing 

algorithm. 

3 Simulation Results 

To demonstrate the performance of the proposed methods, simulations are provided. 
A Uniform Linear Array (ULA) is used here with M = 8 sensors and half wavelength 
inter-element spacing. The QPSK signals are used in the simulations. The number of 
snapshots is 2048.  In the following, all the results are averaged over 100000 Monte 
Carlo realizations.  

Fig.1 shows our method, the T1 and T2 detectors’ pdf of the received signal under 
H1(SNR=-14dB) and H0. From Fig.1 we can see that the pdf of T2 based on ( )mR  is 
more dispersed than 2

idσ  based T1 method, which demonstrates that our algorithm T2 

works well at low SNR. 
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Fig. 1. Pdf of our method (T1 and T2 detectors)under H0 and H1 

In fig.2, the ROC curves of of our method, MME [2] and DMM [6] method. are 
described at SNR=-16dB. It can be seen that our method (T2 detector) has 
outstanding performance compared with the eigen-value based algorithms. 

 

Fig. 2. ROC performance comparison (N=2048) 
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(a) Pfa=0.001 
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Fig. 3. Performance comparison of our method, MME and DMM method (N=2048) 
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Table 1. The threshold of three detectors 

Pfa Our Method DMM MME 
0.001 1.1766 0.2723 1.3098
0.01 1.1597 0.2581 1.2936

Fig.3 compares the performance of three methods. The given Pfa is 10-3 and 10-2 
respectively. One can see that, indeed, our method, DMM and CMME methods are 
well done at low SNR. For example, when SNR=-16dB, Pfa=10-3, Pd of our method, 
DMM method, and MME method are about 96.83%, 90.86%, 81.35% respectively. It 
is clear that our method is the best compared with the other two methods, and also the 
computation complexity of our method is greatly reduced. 

Table3 gives the detection threshold of three methods, which are computed 
according to the equation (24) and the threshold equations in [2], [6]. 

4 Conclusion 

This paper proposes a spectrum sensing method based on MSWF technology. The 
employed test statistic requires no information of the noise power and without any 
eign-decomposition (or SVD). The simulation results demonstrate its effectiveness 
and robustness. 
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