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Abstract. In cognitive radio (CR) networks, hard fusion is widely ap-
plied for cooperative energy spectrum sensing, since it requires only one
bit to transmit the decision results between sensing nodes and the sens-
ing station. And half-voting is an effective algorithm in hard fusion. In
this paper, two half-voting algorithms are proposed to enhance the sens-
ing performance. In the first half-voting algorithm, we adopt linear data
fusion with weights based on the SNR of each sensing node. In another
algorithm, when the sensing station has no knowledge of each sensing
node’s SNR, the history decisions are utilized to estimate the weight fac-
tors. Analyses and numerical results show that the proposed new half-
voting algorithms can significantly improve the sensing performance.

Keywords: cognitive radio, energy spectrum sensing, hard fusion, half-
voting, linear data fusion.

1 Introduction

Recently, cognitive radio (CR) has emerged as a potential wireless communica-
tion technology to enhance spectrum usage efficienc by detecting and utilizing
the spectrum holes [1]. And the first challenge of CR is spectrum sensing. Among
the three main types of spectrum sensing: energy detection, matched filter detec-
tion and cyclostationary detection [2], energy detection has been widely applied
since it doesn’t require the priori knowledge of the primary users’ signals..

However, the individual energy sensing performance suffers from the interfer-
ence factors such as multi-path propagation and the shadow effect of the wireless
channels. Therefor, many cooperative energy spectrum sensing algorithms have
been proposed to tackle this problem. The cooperative sensing algorithms in
CR networks can be mainly divided into soft fusion and hard fusion [3]. [4]
studied the half-voting algorithm based twice cooperative spectrum sensing. [5]
discussed the optimum number of sensing nodes in cooperative hard fusion spec-
trum sensing. [6] developed a partial spectrum sensing algorithm with decision
result prediction and decision result modification techniques. [7] proposed a new
decision combination scheme, in which the credibility of local spectrum sensing is
taken into account to make the final decision. The linear cooperative algorithms
with different weight factors were discussed in [8]∼ [10]. These studies showed
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that although the soft fusion scheme could provide better sensing performance,
the hard fusion scheme(requiring only one bit to transmit the decision result),
especially the half-voting algorithm, is more practical with limited transmission
resources.

In this paper, we propose two new half-voting algorithms for cooperative
sensing which combine the advantages of linear soft fusion and traditional hard
fusion algorithms. In the first algorithm, the SNR of each sensing node is used to
obtain the weight factors for the linear fusion. When the sensing station has no
knowledge of sensing nodes’ SNRs, we propose another algorithm, which adopts
the history decisions to estimate the weight factors.

The rest of this paper is organized as follows. In Section 2, the system model is
introduced, then the cooperative sensing algorithms are discussed. In Section 3,
we propose two half-voting algorithms for cooperative sensing and analyze their
performance. Simulation results and analyses are given in Section 4. Conclusions
are drawn in Section 5.

2 Energy Spectrum Sensing

2.1 Energy Sensing Model

In energy sensing, the sensing node detectsM consecutive samples in the primary
user’s band each time:

Y [i] =

{
N [i], H0

h ∗X [i] +N [i], H1
(1)

where N [i] is the noise of the i-th sample (here it is assumed that the noise
is i.i.d. Gaussian white noise and N [i] ∼ N (0, σ2)); X [i] is the licensed user’s
signal at the i-th sample; Y [i] is the signal detected by the cognitive sensing
node; and h is the channel gain. Binary hypothesis is adopted here: H0 indicates
that there is no licensed user’s signal, i.e. the band is idle; while H1 indicates
that the licensed user is using the band.

The objective of energy sensing is to decide whether H0 or H1 is true by
sensing the energy of signal Y . The output of the energy detector is:

T =
1

M

M∑
i=1

|Y [i]|2 (2)

According to the central limit theorem, when M is large enough, T is approxi-
mately Gaussian distributed. The mean and variance of T are given as [11]:

E(T ) =

{
σ2, H0

σ2 + P, H1
(3)

V ar(T ) =

{
1
M 2σ4, H0
1
M 2σ4 + 1

M 4σ2P, H1
(4)
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where P = 1
M

∣∣h2
∣∣∑M

i=1 |X [i]|2 is the signal energy detected by the cognitive
sensing node; E(·) and V ar(·) denote mean and variance, respectively.

In energy sensing, a threshold η is predefined. If T ≥ η, H1 is true, which
indicates the primary user is using the current band. On the contrary, if T < η,
H0 is true, which implies the band is currently idle. The detection probability
(Pd) and false alarm probability (Pf ) can be obtained by the following formulae:

Pd = P (T ≥ η | H1) = Q(
η − E(T | H1)√
V ar(T | H1)

) (5)

Pf = P (T ≥ η | H0) = Q(
η − E(T | H0)√
V ar(T | H0)

) (6)

where Q(η) = 1√
2π

∫∞
η e−x2/2dx is the cumulative distribution function of Gaus-

sian distribution. And 1−Pd, which stands for the collision probability between
the licensed user and cognitive user, cannot exceed a given threshold in the
interweave CR networks.

2.2 Cooperative Spectrum Sensing

Due to the interference factors such as multi-path propagation and shadow effect
in wireless channels, energy sensing conducted by single cognitive sensing node
with low SNR of the received signal may be unreliable [3]. This problem can
be eased by cooperative sensing strategies. Fig.1 illustrates the shadow effect
and the advantage of cooperative sensing. Apparently, sensing node 2 suffers
from severe shadow effect and is not able to detect the licensed user’s signal
individually. But if combining the data collected by sensing node 1 and 2, sensing
station is able to identify that the spectrum is currently occupied by the licensed
user.

Licensed
transmitter

Sensing
node 2

Sensing
node 1

Licensed
receiver

Sensing station

Fig. 1. The shadow effect and cooperative sensing [3]
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In soft fusion algorithms, the sensing nodes send soft information (e.g. likeli-
hood ratio or received signal power) to the sensing station. For hard fusion, the
sensing nodes individually make binary decisions of whether the band is busy
or idle by comparing the received power level to a threshold level. Then each
binary decision will be transmitted to the sensing station with one bit. In both
soft and hard schemes, the sensing station makes an overall decision based on
the collected individual information under certain rules. In this paper we use
half-voting rule [6] as our cooperative algorithm. That means the final decision
is H1 only when more than half of the total sensing nodes support H1.

3 New Half-Voting Cooperative Sensing Algorithms

As discussed in Section 1, soft fusion cooperative algorithms can remarkably
improve the sensing performance. In comparison, the hard fusion scheme requires
only one bit to transmit the decision result between a sensing node and the
sensing station. In this section, we propose two half-voting algorithms which
contain the minimum transmission overhead and adopt the linear soft fusion
scheme with weight factors to enhance the sensing performance.

3.1 Half-Voting Algorithm with Weights Based on SNRs

Denoting the individual decision of the i-th sensing node as di, where di = 0
(individual decision supports H0) or 1 (individual decision supports H1), the set
of decision results received by the sensing station is {d1, d2, · · · , dN}(N is the
sensing nodes’ number). The final cooperative decision result is denoted as H̄1

and H̄0. The traditional hard fusion scheme of half-voting can be written as:

D =

{∑N
i=1 di <

N
2 , H̄0∑N

i=1 di ≥ N
2 , H̄1

(7)

In fact, (7) can be regarded as a linear average weighted cooperative sensing al-
gorithm since each weight factor of di is 1. It can be proved that that accounting
for higher received SNRs and increasing weight factors accordingly can remark-
ably improve the cooperative sensing performance. Thereby, we propose a new
half-voting algorithm whose weight factors are based on SNRs:

D̄ =

{∑N
i=1 ωidi <

1
2 , H̄0∑N

i=1 ωidi ≥ 1
2 , H̄1

(8)

where ωi =
SNRi∑N
i=1 SNRi

. Here we assume the sensing station has full knowledge of

the SNR information of the sensing nodes. The essence of (8) is that the sensing
nodes with higher SNRs have greater impacts on the final decision.

Obviously di, i = 1, 2, . . . , N , satisfies Bernoulli distribution and the proba-
bility is

P (di = 1) =

{
Pf,i, H0

Pd,i, H1
(9)
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P (di = 0) =

{
1− Pf,i, H0

1− Pd,i, H1
(10)

where Pd,i and Pf,i are the detection probability and false alarm probability of
the i-th sensing node. When N is large enough, D̄ is approximately Gaussian
distributed. The mean and variance of D̄ are given as:

E(D̄) =

{∑N
i=1 ωiPf,i, H0∑N
i=1 ωiPd,i, H1

(11)

V ar(D̄) =

{∑N
i=1 ω

2
i (Pf,i − P 2

f,i), H0∑N
i=1 ω

2
i (Pd,i − P 2

d,i), H1
(12)

So the cooperative detection probability P̄d and false alarm probability P̄f can
be obtained in the same way as (5) and (6).

From (3) and (4), each Ti has the same mean and variance under H0, so each
node’s false alarm probability Pf,i determined by (6) is the same with the given
threshold η. Here we denote Pf,i = α and (11) can be rewritten as

E(D̄) =

{
α, H0∑N

i=1 ωiPd,i, H1
(13)

It’s mathematically prohibitive to strictly prove that the proposed weighted half-
voting algorithm (8) provides better performance than the traditional one (7).
However, this advantage offered by (8) can be analyzed intuitively by (13). Under
H0, E(D̄) is a constant despite of the choice of ωi. Moreover, from (3), (4), (5),
and the properties of Q(·), the sensing node with higher SNR will accordingly
have higher Pd,i with the fixed threshold η under H1. Thereby, with sensing
nodes of higher SNR allocated with greater weight factors, the E(D̄) under H1

could be greatly increased, which results in significant improvement of P̄d but
slightly increasing of P̄f .

3.2 Half-Voting Algorithm with Estimated Weights

(8) assumes that the sensing station accurately knows the SNR of each sensing
node. However, this assumption may not be satisfied for two reasons: first, it’s
difficult to obtain the SNRs, since the sensing node has no priori information
of the licensed user’s signals and also there is not any cooperation between the
sensing nodes and primary user; second, there may not be sufficient channels
between the sensing nodes and sensing station for transmitting the information
of SNRs in real-time. Therefore, we propose another half-voting algorithm whose
weight factors are estimated by the history decision results.

To simplify the discussion, we suppose that the licensed user’s state H has
constant probability of busy (H1) or idle (H0). Denoting P (H = H1) = ε, we
obtain
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P (H̄1) = P (H̄1 | H = H1)P (H = H1)

+P (H̄1 | H = H0)P (H = H0)

= P̄dε+ P̄f (1 − ε) (14)

The bayesian posteriori probability of the licensed user’s state H = H1 under
the final cooperative decision H̄1 is:

P (H = H1 | H̄1) =
P (H̄1 | H = H1)P (H = H1)

P (H̄1)

=
P̄dε

P̄dε+ P̄f (1 − ε)
(15)

Similarly,we have

P (H = H0 | H̄1) =
P̄f (1− ε)

P̄dε+ P̄f (1− ε)
(16)

Hence conditioned on the final cooperative decision H̄1, the i-th sensing node’s
probability of individual decision di = 1 is

P (di = 1 | H̄1) =
P̄dε

P̄dε+ P̄f (1 − ε)
Pd,i

+
P̄f (1− ε)

P̄dε+ P̄f (1− ε)
α (17)

For each sensing node, P̄d, P̄f , ε and α are the same. Since higher SNRi cor-
responds to higher Pd,i, (17) indicates the probability of di = 1 will be larger if
and only if the i-th sensing node has higher SNR compared with other sensing
nodes. So this probability can be applied to estimate weight factors. Here we
construct the weight factors of (8) as:

ωi =
P (di = 1 | H̄1)∑N
i=1 P (di = 1 | H̄1)

(18)

Under the assumption that the received signal powers or SNRs do not change
over a number of sensing slots (which is reasonable when the sensing slot is quite
short or the channel between sensing nodes and primary user changes slowly), we
can approximately calculate the probability of di = 1 under the final cooperative
decision H̄1 by using history decision results. Set S = {s1, s2, ..., sN} to record
history decision results. At the beginning si = 1 and when the final cooperative
decision is H̄1, si = si+di. Then the weight factors in (18) can be approximately
calculated as follow:

ωi =
si∑N
i=1 si

(19)
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4 Simulation Result and Analyses

To evaluate the proposed half-voting algorithms for cooperative sensing in CR
networks, numerical simulations are conducted and the results are shown in
Fig.2-Fig.3. In our simulation, σ2 = 1, M = 64.
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Fig. 2. Pd vs. Pf with different sensing algorithms, the number of the sensing nodes
N is 10, and sensing nodes’ received SNRs are set to be {-10.38, -14.77, -6.81, -16.89,
-18.75, -13.80, -16.99, -14.16, -13.80, -12.22} in dB

Fig.2 depicts the relationship between Pd and Pf with different hard fusion
schemes. This figure shows that compared with the individual sensing and the
traditional half-voting algorithm, the proposed half-voting algorithm with weight
factors based on SNRs provides better performance. Hence performance-wise,
when the sensing station has the knowledge of each sensing node’s SNR, the
proposed half-voting algorithm would be the best choice for the cooperation.
It is worth noting that the bigger the gaps of sensing nodes’ SNRs are, more
performance gains can be obtained since in the new algorithm the sensing node
with higher SNR will have much greater impact on the final decision.

Fig.3 portrays the relationship between Pd and Pf of different half-voting al-
gorithms. These curves illustrate that the proposed algorithm with estimated
weights can evidently improve the cooperative sensing performance compared
with the traditional half-voting algorithm with average weights. And the sim-
ulation result also indicates that there is an obvious performance gap between
the algorithm with weights based on SNRs and the one with estimated weights.
This gap can be explained by the difference between the P (di = 1 | H̄1) and
the received SNRi, especially when P̄f is high in (17). So the sensing perfor-
mance with weight factors based on SNRs is always better than that based on
estimation.
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Fig. 3. Pd vs. Pf of different half-voting algorithms, the number of the sensing nodes
N is 8, and sensing nodes’ received SNRs are set to be {-12.73, -13.56, -7.78, -13.97,
-17.44, -12.73, -10.96, -6.19} in dB

5 Conclusion

In this paper, we propose two half-voting algorithms for cooperative sensing
in CR networks. In the first algorithm, the linear soft fusion scheme is adopt
with weights based on the SNR of each sensing node. In another half-voting
algorithm, when the sensing station has no knowledge of each sensing node’s
SNR, we calculate the weight factors with estimators which are consistent with
the SNRs. These estimators can be obtained by the history decision results. We
analyze and demonstrate the proposed half-voting algorithms can considerably
improve sensing performances . Simulation results show that the performance of
the algorithm with weights based on SNRs can offer significant performance gains
compared with the traditional one. And when the sensing station has difficulty
to obtain the information of the sensing nodes’ SNRs, the half-voting algorithm
with estimated weights can be adopted to improve the sensing performance.
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