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Abstract. In this paper, optimal power allocation is investigated for
maximizing the secrecy rate of orthogonal frequency division multiplex-
ing (OFDM) systems under arbitrarily distributed input signals. Con-
sidering the discrete inputs are used in practical systems rather than the
commonly assumed Gaussian inputs, we focus on secrecy rate maximiza-
tion under more practical finite discrete constellations in this paper. It is
known that the secrecy rate achieved by Guassian distributed inputs is
concave with respect to the transmission power. However, we prove that
the secrecy rate of finite discrete constellations is non-concave, which
makes traditional convex optimization methods not applicable to our
problem. To address this non-concave power allocation problem, we pro-
pose an efficient power allocation algorithm. Its gap from optimality van-
ishes asymptotically at the rate O(1/

√
N), and its complexity grows in

order of O(N), where N is the number of sub-carriers. Numerical results
are provided to illustrate the benefits and significance of the proposed
algorithm.

Keywords: OFDM wire-tap channel, arbitrarily distributed inputs, du-
ality theory, nonconvex problem, optimal power allocation.

1 Introduction

In recent years, many privacy sensitive wireless services have become more and
more popular, such as pushmail, mobile wallet, Microblogging, etc. While it is
convenient to access to these services through mobile phone, this also leads to
more concerns of secrecy due to the easy wiretap of the subscribers’ transmission
signals in broadcast wireless channel. The security of wireless communications is
previously guaranteed by cryptographic techniques on application layer, which
recently face several challenges, such as the emergence of new cracking algorithms
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Fig. 1. (a). QPSK inputs. (b). 16QAM inputs.

and the increasing computational capability of eavesdroppers. Recently, physical
layer security [1] has received considerable attentions in wireless communication
communities as a complement to traditional cryptographic encryption to provide
additional security mechanism.

Physical layer security was firstly studied from an information-theoretic per-
spective in [2], where secrecy rate was defined as the achievable data rate from
a transmitter to its legitimate destination while keeping the eavesdropper com-
pletely ignorant of the secret massage. Later, the research in this field was ex-
tended to various scenes, such as Gaussian wire-tap channel [3]-[4], multiple
input multiple output (MIMO) channel [5]-[7], orthogonal frequency division
multiplexing (OFDM) channel [8]-[11], etc.

Recently, OFDM-based secure communications obtain much attention for its
capability of countermining the dispersive of wideband wireless channels and
enhance secrecy rate [8]-[9]. Optimal power allocation of secure OFDM system
is investigated in [8] where the distribution of input signals is assumed to be
Gaussian. However, Gaussian distributed input signals are unrealistic in practise
for its infinite peak-to-average ratio. Discrete distributions, such as PSK, QAM
(see Fig.1), are used in practical systems.

In this paper, we investigate optimal power allocation for OFDM-based wire-
tap channels with arbitrarily distributed channel inputs. While the secrecy rate
achieved by Guassian distributed inputs is concave with respect to the trans-
mission power, we show that the secrecy rate for finite discrete constellations is
non-concave. Therefore, the optimal power allocation strategy for secure commu-
nications with Gaussian distributed inputs [8]-[10] is not optimal any more to the
considered problem. Following the lead of [12]-[14], we propose a low complexity
power allocation algorithm which achieves asymptotic optimal performance as
the number of sub-carriers increases, and its complexity grows in order of sub-
carrier number. Numerical results are provided to illustrate the efficiency of the
proposed algorithm.

The remainder of this paper is organized as follows: section 2 provides the
system model and problem formulation. Optimal power allocation for arbitrar-
ily distributed channel inputs is presented in Section 3. Numerical results and
conclusions are given in Section 4 and Section 5.
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Fig. 2. System model

2 System Model and Problem Formulation

We consider wideband secure communications from a transmitter to its legit-
imate receiver, in the presence of an eavesdropper who intends to extract the
transmitter’s secret message. We assume that each node employs an OFDM air
interface with N sub-carriers. The transmitter’s signal in each sub-carrier fol-
lows an arbitrary but predetermined distribution, which can be either continuous
constellations1, such as Gaussian distribution, or finite discrete constellations,
including PSK, QAM, etc.

The complex channel coefficients of the legitimate and eavesdropping channels
for ith sub-carrier are denoted by hi and gi, respectively, as illustrated in Fig. 2.
The transmitted signal over the ith sub-carrier is denoted as xi, which is given
by

xi =
√
pisi, i = 1, . . . , N, (1)

where pi is the ratio between transmitting power of xi and the noise power, and
si represents the normalized channel input with predetermined distribution and
unit variance. The power constraint of the transmitter is given by

1

N

N∑

i=1

pi ≤ P. (2)

1 The words “distribution” and “constellation” are used alternatively throughout the
paper.
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The received signals of the legitimate receiver and eavesdropper are given by

yi = hi
√
pisi + wi, i = 1, · · · , N, (3)

zi = gi
√
pisi + vi, i = 1, · · · , N, (4)

where the wi and vi are zero-mean complex Gasussian noises with unit-variance
for ith sub-carrier. According to the information theoretical studies of [8], the
secrecy rate from transmitter to its legitimate receiver is determined by

N∑

i=1

[I(si;hi
√
pisi + wi)− I(si; gi

√
pisi + vi)]

+, (5)

where [x]+ � max{x, 0}, and I(x; y) denotes the mutual information between
random variables x and y. The expression in (5) is quite illuminating: the secrecy
rate of each sub-channel is non-negetive; if it is positive, it is exactly the difference
of the data rates of the legitimate and eavesdropping channels. The total secrecy
rate is simply the sum secrecy rate of all the N sub-carriers.

For fixed constellations of {si}Ni=1, we need to optimize the power allocation to
obtain the maximal secrecy rate, which is described as the following optimization
problem:

R∗ = max
p

Rs(p) � 1
N

N∑
i=1

[I(si;hi
√
pisi + wi)− I(si; gi

√
pisi + vi)]

+

s.t. 1
N

∑N
i=1 pi ≤ P,

p ≥ 0

(6)

where p ∈ RN is the vector of transmission power of the N subcarriers, i.e.,
p = {p1, p2, ..., pN}; R∗ denotes the optimal value.

3 Optimal Power Allocation for Arbitrarily Distributed
Channel Inputs

3.1 Non-concavity of the Secrecy Rate Rs(p)

If si follows Gaussian distribution, the secrecy rate Rs(p) in (6) has explicit
expression [4], i.e.,

RG
s (p) =

1

N

N∑

i=1

[ log2(1 + |hi|2pi)− log2(1 + |gi|2pi) ]+. (7)

It is worth while to mention that RG
s (p) is a concave function of p. Thus, problem

(6) is a convex optimization problem. Let us define

Rs,i(pi) � [I(si;hi
√
pisi + wi)− I(si; gi

√
pisi + vi)]

+ (8)
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Fig. 3. (a). Secrecy rate achieved by Gaussian distributed inputs. (b). Secrecy rate
achieved by discrete inputs (eg. QPSK). And pi is the ratio of the signal power and
noise power.

for the facility of latter expression. The secrecy rate for Gaussian distributed
inputs is illustrated in the left part of Fig. 3. One can observe that the mutual
information log2(1 + |hi|2pi), log2(1 + |gi|2pi) and the secrecy rate log2(1 +
|hi|2pi) − log2(1 + |gi|2pi) are all concave, provided that |hi|2 > |gi|2. In [8],
[9] and [10], the authors utilized the concavity of RG

s (p) to obtain the optimal
power allocation, i.e.,

p∗i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(|hi|2+|gi|2)+
√

(|hi|2+|gi|2)2−4|hi|2|gi|2 u+|gi|2−|hi|2
u

2|hi|2|gi|2

, if |hi|2 − |gi|2 > u

0 , others,

(9)

where the Lagrange multiplier u > 0 is chosen to meet the power constraint:

1

N

N∑

i=1

pi = P. (10)
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Fig. 4. Secrecy rate achieved by distribution of (14)

One may expect the concavity of Rs(p) still holds for general input distri-
butions. Unfortunately, our investigation shows that this is not true, which is
formally described in the following proposition:

Proposition 1. The secrecy rate function Rs(p) for any discrete constellation
with finite points is non-concave with respect to p.

Proof. When pi = 0, one can derive I(si; yi) = I(si; zi) = 0; when pi = +∞,
we have I(si; yi) = I(si; zi) = H(si), where H(x) is entropy of x. Therefore,
Rs,i(0) = Rs,i(+∞) = 0.

According to [15],
∂I(s;

√
ps+ n)

∂p
= MMSE(p), (11)

where MMSE(p) is defined as:

MMSE(p) � E[|s− E(s|√ps+ n)|2], (12)

where E[x] is the expectation of random variable x; E[x|y] is the conditional
expectation of x for given y, the derivative of Rs,i(pi) at pi = 0 is given by2

2 Only the sub-carriers that satisfy |hi|2 > |gi|2 are considered, as Rs,i(pi) ≡ 0 for
those sub-carriers with |hi|2 ≤ |gi|2 which do not affect the concavity of Rs(p).
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R′
s,i(pi)|pi=0 =

[|hi|2 − |gi|2
]+

> 0, (13)

which indicates that there must exist a p̂i > 0 that Rs,i(p̂i) > 0. According to
the Lagrange’s mean value theorem [17], it must have a point p̃i ∈ [p̂i,+∞] with
negative slop R′

s,i(p̃i) < 0.
If Rs,i(pi) is concave, then the inequality Rs,i(pi) ≤ Rs,i(p̃i)+R′

s,i(p̃i)(pi− p̃i)
holds [18], which indicates Rs,i(+∞) = −∞. This is impossible since
Rs,i(+∞) = 0. Therefore, the concavity assumption is not true, and Proposition
1 holds.

Two evidentiary examples are provided to illustrate Proposition 1:
The first example is QPSK. The curves of I(si; yi), I(si; zi) and Rs,i(pi) ver-

sus pi are shown in right part of Fig. 3, and they are in accordance with the
statements in the proof of Proposition 1.

The second example considers a 4 points PAM constellation with non-uniform
spacing. Its probability mass function is given by:

Psi ∼
[ −51L − 50L 50L 51L

0.25 0.25 0.25 0.25

]
(14)

where L is a normalization parameter to maintain unit variance. Figure 4 shows
the secrecy rate Rs,i(pi) of this case. It is interesting that the Rs,i(pi) has two
peaks. Hence, it is definitely non-concave. We note that the mutual information
I(si; yi) and I(si; zi) are concave with respect to pi in linear scale [16].

3.2 Optimal Power Allocation Solution of Problem (6)

Although problem (6) is non-convex, there are still some efficient algorithms to
solve it and obtain near-optimal solutions. One of them is the Lagrangian dual-
ity method [18]. Some recent studies [12]-[14] showed that asymptotic optimal
performance can be achieved by this method.

The Lagrangian of problem (6) is given by

L(p, u)=
1

N

N∑

i=1

[I(si;hi
√
pisi + wi)−I(si; gi

√
pisi + vi)]

+ + u

(
P − 1

N

N∑

i=1

pi

)
,

(15)
where u is Lagrangian dual variable. The corresponding dual function can then
be written as

g(u) � max
p≥0

L(p, u). (16)

Hence the dual optimization problem is expressed as

D∗ = min
u≥0

g(u), (17)

where D∗ denotes the optimal dual value. Since the objective function of primal
problem (6) is non-concave, there is a positive gap between R∗ and D∗, i.e.,
D∗ − R∗ > 0. However, according to the recent studies of Luo and Zhang [12],
[13], asymptotic strong duality holds for problem (6), i.e. the duality gapD∗−R∗

goes to zero as N → ∞, as is expressed in the following proposition:
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Table 1.

Algorithm : Lagrangian dual optimization method

Initialize u
repeat

for i=1 to N
find pi = argmax

pi

[
[I(si; yi)− I(si; zi)]

+ − upi
]
+ uP .

end
update u using bisection method.

until u converges.

Proposition 2. If the channel coefficients gi and hi are Lipschitz continuous
and bounded in the sense

|hi − hj | ≤ Lh
|i− j|
N

, ∀ i, j ∈ {1, 2, ..., N} (18)

|gi − gj | ≤ Lg
|i− j|
N

, ∀ i, j ∈ {1, 2, ..., N} (19)

where Lh, Lg > 0 is the Lipschitz constant. Then we have

0 ≤ D∗ −R∗ ≤ O

(
1√
N

)
. (20)

Proof. According to (11) and (12), we have [15]

0 ≤ ∂I(s;
√
ps+ n)

∂p
= MMSE(p) ≤ E[|s|2], (21)

which implies that the derivative of Rs,i(pi) with respect to pi is bounded. Then
the derivative of Rs,i(pi) with respect to |gi|2 and |hi|2 are also bounded. Since gi
and hi are Lipschitz continuous, according to chain rule, the secrecy rate Rs,i(pi)
is also Lipschitz continuous. Hence according to Theorem 2 of [12], the duality
gap between D∗ and R∗ is in the order of 1/

√
N , which is expressed as

0 ≤ D∗ −R∗ ≤ O(
1√
N

), (22)

and Proposition 2 holds.

The procedures to solve (16) and (17) are provided in the following.
For each fixed u, problem (16) can be decoupled into N independent sub-

carrier problems

g(u) = max
pi≥0

L(pi, u),

=
∑N

i=1 max
pi≥0

[[I(si; yi)− I(si; zi)]
+ − upi] + uP .

(23)
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Fig. 5. The secrecy rate versus total power P

While the sub-carrier problem in (23) is still non-convex, it has only one
variable pi and can be solved by simple one dimension line search. As the dual
function g(u) is convex in u and its subgradient g′(u) = P − 1

N

∑N
i=1 p

∗
i , where

p∗i is optimal solution for problem (16) with fixed u, is an increasing function in
u, bisection method can be used to solve dual problem (17), so that either u = 0,

P ≥ 1
N

∑N
i=1 p

∗
i or u > 0, P = 1

N

∑N
i=1 p

∗
i is satisfied. Table.1 summarizes the

algorithm.
The complexity of this algorithm is N 1

ep
log2(

1
ed
), where ep is the accuracy

of one dimension exhausitive search to solve (16) and ed is the accuracy of the
bisection search to solve (17). Since its complexity is linear with respect to the
number of sub-carriers N , it is quite convenient for practical large values of N ,
such as 64∼4096. We note that the complexity of solve (6) directly is 1

eNp
, which

is exponential in N and thus unrealistic.

4 Numerical Results

In this section, we provide some simulation results to illustrate the performance
of our proposed power allocation algorithm and show how different channel input
distributions affect the secrecy rate and power allocation results.
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Fig. 6. Power allocation results versus P for QPSK inputs

Fig. 7. Power allocation results versus P for Gaussian inputs

We first consider an OFDM-based secure system with N = 128 subcarriers.
The secrecy rate versus total power constraint for different power allocation
strategies and input distributions are illustrated in Fig. 5. Two reference strate-
gies are considered to compare with our strategy: the optimal strategy for Gaus-
sian inputs, i.e., (9), which is denoted by “PA of (9)” in Fig. 5; the equal power
allocation strategy, which equally allocates total power among the subcarriers
that satisfy |hi|2 > |gi|2 and is denoted by “equal PA”.
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Higher secrecy rate can be achieved for QPSK and 16QAM by our proposed
optimal power allocation strategy, especially when the power constraint P is
quite large. Equal power distribution works well for Gaussian distributed inputs.
More specifically, it tends to be optimal for large value of P . Actually, when P
is large, secrecy rate in (9) can be approximated by

RG
s (p) =

1
N

∑N
i=1[ log2(1 + |hi|2pi)− log2(1 + |gi|2pi) ]+

≈ 1
N

∑N
i=1[ log2(

|hi|2
|gi|2 ) ]

+,
(24)

which is independent with power allocation pi. However, equal power allocation
can be quite bad for finite discrete constellations. The secrecy rate can drops to
zero for large value of P .

The power allocation solution of the proposed algorithm is shown in Fig. 6
and Fig. 7, respectively, for QPSK and Gaussian inputs with N = 4. When the
power constraint P is small, most transmission power is allocated to the stronger
sub-channels, the channels with larger |hi|2 − |gi|2 (Channel 2 and Channel 4 in
our simulation example). However, as P grows, the transmission power of the
weak sub-channels grows quite fast. For QPSK input signals, the transmission
power allocated to every sub-channels will stop increasing as P grows. But the
transmission power for Guassian input signals still continues to increase.

5 Conclusion

In this paper, we have obtained the optimal power allocation for OFDM-based
wire-tap channels with arbitrarily distributed inputs. While the secrecy rate
achieved by Gaussian distributed channel inputs is concave with respect to the
transmission power, we have found and rigorously proved that the secrecy rate is
non-concave for any practical finite discrete signal constellations. A power alloca-
tion algorithm has been proposed, which is asymptotic optimal as the number of
sub-carrier increases. Our numerical results show that more transmitting power
may results in a huge loss in secrecy rate, which is rarely seen in previous power
allocation studies. This indicates that optimal power allocation is quite essential
in practical studies of physical layer security.
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