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Abstract. In this paper, we investigate a cooperative spectrum sharing
mechanism realized by a dynamic Bayesian spectrum bargaining between
a pair of non-myopic primary user and secondary user. The primary user
has only incomplete information of the secondary user’s energy cost.
We model such a bargaining process as a dynamic Bayesian game, and
discuss the equilibria under all possible system parameters. Furthermore,
we discuss in details the sequential equilibrium where the reputation effect
plays an important role. Our analysis shows that the secondary user
with a low energy cost can exploit the primary user’s lack of complete
information for its own benefits.

Keywords: dynamic Bayesian spectrum bargaining, cooperative spec-
trum sharing, sequential equilibrium, incomplete information, game the-
ory, reputation effect.

1 Introduction

Rapid growth of today’s wireless data communications leads to spectrum re-
source scarcity and demands more efficient resource allocation schemes. Coop-
erative spectrum sharing (CSS) is one class of mechanisms that can greatly
enhance the efficiency of spectrum utilization through user cooperations. One
possible CSS mechanism is to allow a licensed primary user (PU) with a poor
channel link between its transmitter and receiver to improve its data rate by us-
ing a secondary user (SU) as a relay. Such interaction can increase the PU’s data
rate through creating cooperation diversity [1]. In fact, the benefit of coopera-
tive communication has been well studied in the literature [2,3], and cooperative
communication has already been incorporated into various wireless communica-
tion standards (e.g., IEEE 802.16J standard [4]).

Different from the traditional cooperative communication technology, CSS
also considers the compensation to the SU for its relay effort to create a win-win
situation. The key issue that we study in this paper is how to determine the
proper compensation with incomplete network information. A brief illustration
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of the network topology and interaction scheme is shown in Fig. 1. Detailed
notations will be introduced in Section 2.1.

CSS with complete network information has been considered in [5–7]. Refer-
ence [8] considered a contract-based CSS in a static network. Our prior work [9]
analyzed the CSS with incomplete information in a dynamic network environ-
ment. The focus of [9] is to consider the multi-stage bargaining between one
PU and one SU within a single time slot. Our recent work [10] considered the
CSS between one PU and one SU over multiple time slots, where the reputa-
tion effect happens due to incomplete information of SU’s energy cost. In [10],
SU is non-myopic but PU is assumed to be myopic. Our current paper extends
the analysis to a more realistic where the PU is also non-myopic and wants to
maximize its benefit in the long run. The analysis turns out to be much more
involved compared with the one in [10].

In this paper, we analyze a bargaining-based CSS between one PU and one
SU over a finite number of time slots, where both users are non-myopic and want
to maximize their long-term utilities. The main results and contributions of this
paper are as follows:

– Non-myopic players: We assume both PU and SU are non-myopic ratio-
nal players, who maximize their long-term utilities. This assumption better
captures the reality in dynamic spectrum bargaining.

– Incomplete information and sequential equilibrium: Wemodel the SUs energy
cost as the incomplete information to PU, and characterize the sequential
equilibrium of the bargaining game.

– Reputation effect: We show that a weaker SU can take advantage of the
incomplete information by establishing a strong reputation to obtain a higher
long-term utility by establishing a certain reputation.

The rest of the paper is organized as follows. We introduce the system model in
Section 2. In Section 3, we analyze and summarize the equilibria of the multi-
slot bargaining under different system parameters. In Section 4, we focus on
discussing when and how the reputation effect will affect the equilibrium. In
Section 5, we discuss about the equilibrium outcome by comparing with the
model under complete information. Finally, we conclude in Section 6.

2 PU-SU Cooperation and Bargaining Model

2.1 Cooperative Communication

We consider a time-slotted system with the network model as shown in Fig. 1,
where one PU bargains with one SU about the spectrum allocation scheme. Here,
TP and RP represent PU’s transmitter and receiver, and TS and RS represent
SU’s transmitter and receiver. Parameter hp, hs, hps, and hsp denote the fixed
channel gains of the link TP -RP , TS-RS, TP -TS, and TS-RP , respectively. We
further assume that both PU and SU know the channel gains of all links through
a proper feedback mechanism. The PU and SU transmit with fixed power Pt and
Ps, respectively.
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Fig. 1. PU-SU Cooperation Model

(1 ) 2 (1 ) 2

Fig. 2. The Slotted System Model with
Three Possible Bargaining Results in a
Single Time Slot

2.2 Dynamic Spectrum Bargaining

The bargaining process consists of N successive time slots as shown in Fig. 2. In
order to facilitate later backward induction analysis, we index time backwards,
i.e., the bargaining starts with time slot N and ends in time slot 1. Without loss
of generality, we normalize each time slot length to 1. During each time slot, the
PU can choose either direct transmission only or bargaining with the SU. There
are three possibilities following PU’s two options, which are illustrated in Fig. 2.

– Figure 2(a): If PU’s direct channel gain hp is good enough, then it will choose
direct transmission only and achieves a data rate Rdir = log(1 + Pthp). In
this case, The SU cannot transmit and achieves a zero utility.

– Figure 2(b): If PU believes that the SU’s cooperation may be beneficial, it can
offer α fraction of the time slot for SU’s own transmission as remuneration
for SU. If SU rejects the offer, PU proceeds with direct transmission for the
remaining time.

– Figure 2(c): If SU accepts PU’s offer α, then the PU and SU work in the
amplified and forward (AF) relay mode. The PU achieves a data rate (per
unit time) [1]

Rr = log

(
1 + Pthp +

PtPshpshsp

Pthps + Pshsp + 1

)
, (1)

and the SU achieves a data rate (per unit time)

Rs = log(1 + Pshs). (2)

PU and SU will bargain over the value of α in each time slot after observing
the bargaining history and anticipating the future, so as to maximize their own
long-term utilities.

2.3 Incomplete Information of Energy Cost

We assume that the SU is an energy-constrained device (e.g., wireless sensor or
mobile device) with an energy cost C, which belongs to one of two types: High
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type Ch and Low type Cl with (Ch > Cl). The SU knows its own type, but the
PU does not. However, the PU has a belief on C’s distribution in each time slot
(n = N, ..., 1), i.e., Pr(C = Ch) = qn and Pr(C = Cl) = 1 − qn. The belief will
be updated based on the interactions between the PU and SU.

3 Multi-Slot Spectrum Bargaining Game with
Non-myopic Players

In this section, we will explore how the PU and SU maximize their utilities in this
dynamic Bayesian bargaining game. We assume that both PU and SU are the
non-myopic players, who will maximize their total utilities in the N time slots.
As the first step, we will study the single-slot bargaining game (e.g., N = 1),
which serves as a base for the study of the multi-slot case later on.

3.1 Utility Function in the Single-Slot Game

The SU’s single-slot utility Us(α) after accepting an offer α is

Us(α) = αRs − 1 + α

2
PsC, (3)

which is the difference between the SU’s achievable data rate Rs (as in (2)) and
energy cost. If we view C as the data rate per watt that the SU can get if it does
not relay for PU, then Us(α) is SU’s data rate increase by accepting offer α.
Note that the SU can always achieve a zero utility without participating in the
cooperative communication. Given PU’s offer α, it is optimal for SU to accept
the offer if and only if Us(α) > 0.

The PU’s single-slot utility Up(α) is its achievable data rate. Without
SU’s relay, the PU can achieve a data rate Rdir. If PU’s offer α is accepted by
SU, then the PU’s data rate is 1−α

2 Rr, where Rr is given in (1). In each time
slot, the PU aims to maximize its utility

Up(α) = max

{
Rdir,

1− α

2
Rr

}
. (4)

3.2 Sequential Equilibrium

In this subsection, we consider the multi-slot bargaining game. This bargaining
process is a dynamic Bayesian game [11], which includes the PU’s and SU’s
dynamic decision-making and belief updates. The commonly used equilibrium
concept for this dynamic Bayesian game is the sequential equilibrium (SE), which
satisfies the following three requirements [12]:

Requirement 1. The player taking the action must have a belief (probability
distribution) about the incomplete information, reflecting what that player be-
lieves has happened so far.
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Requirement 2. The action taken by a player must be optimal given the player’s
belief and the other players’ subsequent strategies.

Requirement 3. A player’s belief is determined by the Bayes’ rule whenever it
applies and the players’ hypothesized equilibrium strategies.

The belief in Requirement 1 is the PU’s probability assessment qn about the
High type SU in time slot n, with an initial value qN = η in the first time slot
(i.e., time slot indexed as N). As the bargaining proceeds, both the PU and SU
can observe all prior history actions, which might enable the PU to update its
belief about the SU’s type so that PU can accordingly make new decisions. The
SU knows its own type and there is no incomplete information in the PU, thus
the SU’s belief is deterministic during the game.

3.3 Equilibrium Characterization

Generally, the equilibrium outcome depends crucially on both players’ param-
eter settings, i.e., the PU and SU will both influence the game result. On the
one hand, an SU will only choose to cooperate and serve as a relay for PU if it
can get a positive total utility in N time slots. It implies that the equilibrium
outcome not only depends on the SU’s energy cost (either Ch or Cl), but also
on SU’s achievable average data rate per unit power, Rs/Ps. On the other hand,
the equilibrium outcome also relies on whether and how the PU decides to coop-
erate with the SU. This indicates that the equilibrium outcome is related to the
relationship between PU’s direct transmission rate Rdir and relay rate 1−α

2 Rr.
1

dirR

0 s sR P
lC hC

lR

hR

II

III

IV

V

VIVI

Fig. 3. Equilibrium Outcomes in Dif-
ferent Regions
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Fig. 4. Game Tree of the Single-Slot
Bargaining with Rl > Rh > Rdir and
Cl < Ch < Rs/Ps

Next we will discuss several equilibrium contingencies based on different pa-
rameter settings of both PU and SU. Figure 3 illustrates six different cases for
equilibrium discussions. Due to the page limit, we summarize the equilibria in

1 Specifically, the relay rate has two values, i.e., Rl and Rh, which will be discussed
later. See [13] for details.
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Regions I-V in the following theorem. We will discuss the equilibrium outcome
with reputation effect of Region VI in next section.

Let us define

αh =
1

2Rs

ChPs
− 1

+ ε, αl =
1

2Rs

ClPs
− 1

+ ε, (5)

where ε is an arbitrarily small positive value. Here, αh and αl are the PUs
respective optimal offer to the High and Low type SU under the AF relay mode.
For ease of discussion later on, we further define

– Rh = 1−αh

2 Rr: the PU’s single-slot data rate if SU accepts the offer αh.

– Rl =
1−αl

2 Rr: the PU’s single-slot data rate if SU accepts the offer αl.

Obviously, we have αh > αl and Rh < Rl.

Theorem 1. Consider a multi-slot bargaining game where the PU and SU are
non-myopic players. In Regions I, II, and IV, PU always chooses direct trans-
mission only regardless of SU’s type. In Regions III and V, PU always offers αl

to SU. A High type SU rejects the offer αl, and a Low type SU accepts the offer
αl.

The proof of Theorem 1 is given in our online technical report [13]. In Regions
I-V, we can decompose the multi-slot bargaining game intoN independent single-
slot bargaining game. The PU’s decisions in these regions do not rely on its belief
about the SU’s type.

The remaining region is Region VI, where we cannot simplify the analysis of
the multi-slot bargaining into N single-slot ones. We will discuss the SE of this
region in next section.

4 Dynamic Bargaining with Reputation Effect

In this section, we study the SE result in Region VI. In this case, Rdir is small,
and PU will never choose direct transmission.

4.1 Basic Analysis of the Single-Slot Bargaining Game

To attract the help from SU, PU needs to provide an offer α that makes the
SU’s single-slot utility Us(α) slightly larger than zero. The PU’s optimal offer to
the High and Low type SU can be given in (5). For ease of discussion later on,
we define two more notations,

– ΔRsh =
(
Rs − 1

2PsCh

)
ε: the High type SU’s single-slot utility if accepting

αh.
– ΔRsl =

(
Rs − 1

2PsCl

)
ε: the Low type SU’s single-slot utility if accepting αl.
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In Region VI, an SU may reject or accept the PU’s offer αh or αl. However,
no matter what happenes, PU’s expected utility will not be worse than Rdir

since Rl > Rh > Rdir. Therefore, PU will never choose direct transmission only
without bargaining (Figure 2(a)). Thus, PU has two options here: offer αh or
offer αl, with the corresponding PU’s utility Rh and Rl if SU accepts the offer.

Let us first consider the game tree of the single-slot game in Fig. 4, where
nature moves first and determines SU’s type. PU and SU make decisions alter-
natively at the non-leaf nodes (black solid dot); each possible game result is
denoted by a leaf node (black solid square) together with the corresponding PU
utility (upper value) and SU utility (lower value). PU’s belief (about SU’s type)
is Pr(C = Ch) = q. Here, we further define

– Rsh = αlRs − 1+αl

2 PsCh: the High type SU’s single-slot utility if it accepts
the low offer αl.

– Rsl = αhRs − 1+αh

2 PsCl: the Low type SU’s single-slot utility if it accepts
the high offer αh.

When ε approaches zero in (5), we have Rsh < 0 and Rsl > 0. Thus, a High type
SU will not accept a low offer, while a Low type SU has the incentive to accept
a high offer, which leads to the reputation effect in our later analysis.

In Fig. 4, PU first decides to offer αh or αl. Then, the SU selects the acceptance
(A) or rejection (R). If PU offers αh, the SU will always accept regardless of its
type since ΔRsh > 0 and Rsl > 0. Hence there is only one leaf node following
the offer αh. If PU offers αl, a High type SU will reject as Rsh < 0, and a Low
type SU will accept since ΔRsl > 0.

Anticipating the SU’s responses, PU’s expected utility if offering αl is

Uαl
p = qRdir + (1− q)Rl. (6)

PU’s utility is Rh if it offers αh. Thus, PU will offer αl if Uαl
p > Rh, i.e.,

q < (Rl−Rh)/(Rl−Rdir). The relationship between (6) and Rh depends on the
value of q.

4.2 Sequential Equilibrium of the Multi-slot Bargaining

Now we return to the multi-slot bargaining game (N > 1), where the PU’s belief
might change over time (i.e., qn for time slot n instead of a fixed value q as in
(6)) based on the game history. The SU’s strategy may also change depending on
the game history and its anticipation of the PU’s future response. In particular,
a Low type user has an incentive to reject αl in earlier time slots even though
αl brings a positive utility for each time slot. The purpose of the Low type SU’s
predation strategy is to establish a reputation of a High type SU and induce the
PU to offer αh in the future, which improves the SU’s total utility in N time
slots. We will find the SE result based on such a prediction.

The SE of the multi-slot bargaining includes the following components: (i) the
update of PU’s belief qn (i.e., the probability of a High type SU) in each time
slot n = N, ..., 1, (ii) PU’s strategy (offer αl or αh) in each time slot n, (iii) SU’s
strategy (accept or reject) in each time slot n.
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Theorem 2. The sequential equilibrium of the multi-slot bargaining game with
non-myopic PU and SU is given in (a) to (l), where the parameter

d =
Rl −Rh

Rl −Rdir
∈ (0, 1). (7)

– PU’s Belief Updates:2

(a) If qn+1 = 0, then qn = 0.
(b) If qn+1 > 0 and SU accepts the high offer αh in time slot n + 1, then
qn = qn+1.
(c) If qn+1 > 0 and SU accepts the low offer αl in time slot n + 1, then
qn = 0.
(d) If qn+1 > 0 and SU rejects the low offer αl in time slot n + 1, then
qn = max (dn, qn+1).

– PU’s Strategy:
(e) If qn < dn in time slot n, offers αl.
(f) If qn > dn in time slot n, offers αh.
(g) If qn = dn in time slot n, offers αh with probability ΔRsl

Rsl−ΔRsl
and offers

αl with probability 1- ΔRsl

Rsl−ΔRsl
.3

– The High type SU’s Strategy:
(h) Always accepts αh and rejects αl.

– The Low type SU’s Strategy:
(i) Always accepts αh.
(j) If n = 1 (the last time slot), accepts αl.
(k) If n > 1 and qn ≥ dn−1, rejects αl.

(l) If n > 1 and qn < dn−1, rejects αl with probability yn = (1−dn−1)qn
dn−1(1−qn)

and

accepts αl with 1− yn.

Proof. First, let us look at the High type SU’s strategy. In the multi-slot bargain-
ing game, we can show that there is no incentive for the High type SU to accept
αl. This is because accepting αl leads to negative SU’s utility in the current time
slot, and will make PU believe that the SU is a Low type. This means that all
future offers will be αl, and thus the SU’s total utility will be negative.

Next, we verify the PU’s strategy and its belief update scheme. Let us first
discuss PU’s limiting belief q∗n, which can be interpreted as a decision threshold
to determine which offer (αl or αh) the PU should provide. It can also be viewed
as the SU’s limiting threshold reputation as the High type, above which the PU
will not offer αl.

4 We should consider the PU’s utility by summing its utilities
from the current time slot n to the last time slot. Define UPn(qn) to be the
expected utility of PU in time slot n with the belief qn.

5 Furthermore, we use

2 Recall that we index time backwards, and thus we will compute qn based on qn+1

as time slot n is after time slot n+ 1. See Fig. 2.
3 As ε is an arbitrary small positive, ΔRsl is arbitrarily small. Therefore, the assump-
tion Rsl > 2ΔRsl holds.

4 For the standard definition of “reputation”, see Section 5.
5 For clear illustrations, we interchangeably use different notations, i.e., P1, P2, ...,
PN to mark the PU in different time slots. However, these notations all indicate the
unique PU in the multi-slot bargaining game.
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UPn(qn|αl) and UPn(qn|αh) to denote PU’s expected utilities when offering αl

and αh, respectively.
It is easy to analyze the last time slot (n = 1) since there is no other time slot

following it. PU in the last time slot is indifferent between offering αl and αh if

q1Rdir + y1(1− q1)Rdir + (1 − y1)(1− q1)Rl = Rh. (8)

The LHS of (8) is PU’s utility if offering αl, and the RHS is the utility if offering
αh. yn denotes the probability that the Low type SU rejects αl in time slot n.
Note that for the Low type SU, accepting αl is optimal in the single-slot game
(see Fig. 4). Obviously, such a strategy also applies in the last time slot. Thus, if
PU offers αl in the last time slot indexed by n = 1, the Low type SU will accept
and hence y1 = 0 holds. Given that y1 = 0, we get the limiting belief q∗1 for the
case of n = 1,

q∗1 =
Rl −Rh

Rl −Rdir
� d. (9)

The utility UP1(q1|αl) = q1Rdir + (1 − q1)Rl and UP1(q1|αh) = Rh. Further, if
the actual belief q1 > q∗1 , then UP1(q1|αl) < UP1(q1|αh) and PU will choose to
offer αh. Otherwise PU will offer αl. Therefore, we have UP1(q1),

UP1(q1) =

{
q1Rdir + (1− q1)Rl, if q1 ≤ q∗1 = d,
Rh, if q1 > q∗1 = d.

(10)

Now consider the second to last time slot indexed by n = 2. Recall Requirement
3, which states that the belief should be consistent with strategies and satisfies
the Bayes’ rule whenever it applies. Such a requirement also holds when the
actual belief is the limiting belief. Thus, q∗1 should satisfy the Bayes’ rule and
should be derived from q2 and y2, i.e.,

q∗1 = Prob(SU is High type | SU rejects αl). (11)

Note that the Bayesian process only applies if PU provides αl and SU rejects it.
Recall that accepting αl is an evidence of indicating that the SU belongs to the
Low type. Therefore, SU’s accepting αl in time slot n = 2 will result in q1 = 0,
which contradicts the fact q∗1 = d. If PU provides αh and SU accepts it, from (b)
we get q2 = q∗1 = d since there is no information provided to help update PU’s
belief. By the Bayes’ rule, we can proceed the derivation with (11) to obtain y2
as

y2 =

{
q2(1−d)
(1−q2)d

, if q2 ≤ d,

1, if q2 > d.
(12)

When q2 ≤ d, P2’s expected utility UP2(q2|αl) can be expressed as

q2(Rdir+UP1(d))+(1−q2)y2(Rdir+UP1(d))+(1−q2)(1−y2)(Rl+UP1(0)), (13)

if it offers αl. When αl is rejected by SU in the second to last period, we apply
the Bayes’ rule to get

q1 =
q2

q2 + (1− q2)×
(

(1−d)q2
d(1−q2)

) = d.
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Therefore, the updated belief in the last time slot will be q1 = d. If SU accepts
αl, then PU will update its belief as 0. Thus, we have the belief update results
in (13). Substitute (12) into (13), then we have

UP2(q2|αl) =
q2
d
[Rdir + UP1(d)] +

(
1− q2

d

)
[Rl + UP1(0)] . (14)

When q2 > d, UP2(q2|αl) will be

UP2(q2|αl) = Rdir + UP1(q2). (15)

Note that the updated belief in the last time slot keeps unchanged in (15). With
the Bayes’ rule, we have

q1 =
q2

q2 + (1− q2)× Prob(SU rejects αl | Low type SU)
= q2. (16)

Hence, we obtain the result in (15). The expected utility of PU when offering
αh is

UP2(q2|αh) = Rh + UP1(q2). (17)

If PU’s belief is the limiting belief, then the balancing condition must hold, i.e.,

UP2(q2|αl) = UP2(q2|αh). (18)

However, from (15) and (17) we can observe that the limiting belief q∗2 cannot be
larger than d. Recall the expression of UP1(q1) in (10), we have UP1(d) = Rh =
dRdir + (1 − d)Rl and UP1(0) = Rl. Let (14) equal to (17), and we have

q∗2 = d× Rl −Rh

Rl −Rdir
= d2. (19)

Furthermore, it is easy to show that UP2(q2|αh) > UP2(q2|αl) when q2 > q∗2 . We
thus have PU’s expected utility in the second to last time slot as

UP2(q2) =

{
q2
d [Rdir + UP1(d)] +

(
1− q2

d

)
[Rl + UP1(0)] , if q2 ≤ q∗2 = d2,

Rh + UP1(q2), if q2 > q∗2 = d2.
(20)

For n ≥ 3, we first conjecture that the limiting belief in time slot n is

q∗n = dn. (21)

Given the above assumption, we have PU’s expected utility in time slot n as

UPn(qn)=

{
qn

dn−1

[
Rdir + UPn−1(d

n−1)
]
+
(
1− qn

dn−1

) [
Rl + UPn−1(0)

]
, if qn ≤ q∗n = dn,

Rh + UPn−1(qn), if qn > q∗n = dn.
(22)

where we define the initial conditions as UP0(0) = UP0(1) = 0. Obviously, (21)
and (22) hold for the cases n = 1 and n = 2. Again, we apply the Bayes’ rule to
q∗n−1 = dn−1 and get the restriction condition between qn and yn,

q∗n−1 = dn−1 =
qn

qn + yn(1− qn)
. (23)
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From (23), we get

yn =
qn(1− dn−1)

(1− qn)dn−1
. (24)

Besides, we get the balancing strategy y∗n in time slot n by substituting q∗n = dn

into (24),

y∗n = yn(q
∗
n) =

dn(1− dn−1)

(1− dn)dn−1
=

d− dn

1− dn
. (25)

For the case of time slot n+1, the Bayes’ rule still applies to the limiting belief
q∗n, and thus we have

yn+1 =

{
qn+1(1−dn)
(1−qn+1)dn , if qn+1 ≤ dn,

1, if qn+1 > dn.
(26)

By considering (26), PU’s expected utility when offering αl in time slot n+ 1 is
given

UPn+1(qn+1|αl) =

{ qn+1

dn
[Rdir + UPn (d

n)] +
(
1− qn+1

dn

)
[Rl + UPn(0)] , if qn+1 ≤ dn,

Rdir + UPn (qn+1), if qn+1 > dn.
(27)

PU’s expected utility when offering αh will be

UPn+1(qn+1|αh) = Rh + UPn(qn+1). (28)

Similarly, from (27) and (28) we can see that if the balancing condition holds,
then qn+1 ≤ dn must be satisfied. According to the balancing condition, we have

qn+1

dn
[Rdir + UPn(d

n)] +
(
1− qn+1

dn

)
[Rl + UPn(0)] = Rh + UPn(qn+1). (29)

where⎧⎨
⎩

UPn(d
n) = UPn−1(d

n) +Rh,
UPn(0) = Rl + UPn−1(0),
UPn(qn+1) =

qn+1

dn−1

[
Rdir + UPn−1(d

n−1)
]
+
(
1− qn+1

dn−1

) [
Rl + UPn−1(0)

]
.
(30)

Substitute (30) into (29), and we can simplify the equation to get

q∗n+1 = dn+1. (31)

Thus, the limiting belief in time slot n+ 1 conforms to our prior assumption in
(21). Besides, it is easy to see that PU will offer αl if qn+1 < q∗n+1 = dn+1 and
offer αh if qn+1 > q∗n+1 = dn+1.

As of now, we have solved the PU’s limiting belief and its corresponding
strategy when the actual belief is not the limiting belief in each time slot. At the
same time, we also verify the Low type SU’s strategy (yn) and the High type
SU’s strategy. Since ΔRsh > 0 and Rsl > 0, SU always accepts αh regardless of
its type.
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Next let us verify the PU’s belief update scheme. If there is an offer αh in
time slot n + 1, an SU will definitely accept it. This does not help to update
the PU’s belief about the SU’s type. Thus, we have qn = qn+1 as shown in (b).
Then we will verify (a) and (c) from two aspects:

– If there is an offer αl in time slot n + 1 and the SU accepts it, then PU
immediately knows that the SU is a Low type. Therefore, PU will update
its belief as qn = 0.

– If qn+1 = 0, then PU knows that the SU is a Low type for time slot n+1 and
the whole later time slots. Therefore, PU will always set its belief as zero.

From the above discussions, we complete the proof of the PU’s belief update
scheme in (a) and (c).

When qn+1 > 0 and SU rejects the offer αl in time slot n+1, (with the Bayes’
rule) qn is determined by

qn+1 × 1

qn+1 + (1 − qn+1)× Prob(SU rejects αl | Low type SU)

According to the Low type SU’s strategy, it could be further divided into two
cases:

– When qn+1 ≥ dn in time slot n+ 1, the Low type SU will always reject αl.
Thus, we have

qn =
qn+1 × 1

qn+1 + (1− qn+1)× 1
= qn+1. (32)

– When qn+1 < dn in time slot n + 1, the Low type SU will reject αl with

probability (1−dn)qn+1

dn(1−qn+1)
. We have

qn =
qn+1

qn+1 + (1− qn+1)×
(

(1−dn)qn+1

dn(1−qn+1)

) = dn. (33)

From (32) and (33), we have

qn = max(dn, qn+1) = max (q∗n, qn+1) . (34)

Thus, we complete the verification of (d).
Finally, let us consider PU’s mixed strategy in (g). Note that the utility in

(22), denoted as UPn(q
∗
n) when PU’s actual belief is equal to the limiting belief,

is constant if the balancing strategy y∗n applies. It is also subject to the limiting
belief q∗n, and independent of whether Pn chooses αl or αh, or randomizes on
both alternatives. Thus we have

UPn (xn, y∗n/q
∗
n) = constant, for all xn in Xn, (35)

where Xn is the set of all possible Pn’s strategies in time slot n. The mixed
strategy [xn, 1−xn] denotes PU’s choosing αh with probability xn and choosing
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αl with probability 1− xn. When qn = q∗n, from (22) we can see that the utility
on the limiting belief is Rh + UPn−1(d

n), which can be iteratively calculated by
considering PU’s expected utility in time slot n− 1, n− 2,..., and 1. Since PU’s
utility in each time slot is fixed, Rh+UPn−1(d

n) is a constant for a given n. Thus
it implies that all xn in Xn are the best response to y∗n.

However, when qn = q∗n the Low type SU will only be expected to choose
the balancing strategy y∗n, which is the requirement of the Bayesian consistency
(Requirement 3), thus y∗n, as an equilibrium strategy, should maximize the Low
type SU’s total utility. If we choose [x∗, 1− x∗] from the set Xn as Pn’s optimal
mixed strategy, then it implies that the balancing strategy y∗n is the best response
to x∗ for the corresponding beliefs.

To solve it, we first conjecture that there exists a strategy for the PU in each
time slot when the actual belief is equal to the limiting belief, given as follows,

X = (xN , ..., xn, ..., x1) , xN = · · · = x1 = x∗ > 0 (36)

where xn is the PU’s mixed strategy, i.e., the probability of offering αh in time
slot n when qn = q∗n and making the Low type SU indifferent between rejecting
and accepting αl. Since accepting αl will result in the utility ΔRsl > 0, the
strategy profile X implies the Low type SU’s utility is nΔRsl, irrespective of what
strategy the Low type SU will choose. Therefore, any strategy will maximize the
Low type SU’s utility, including the equilibrium strategy y∗n. It means that y∗n is
the best response to x∗. If we can verify that the strategy in (36) does exist and
further obtain the value of x∗, then we solve x∗ in PU’s strategy (g). In fact, we
get x∗ = ΔRsl

Rsl−ΔRsl
. Due to the page limit, we omit the proof here. See [13] for

details. Therefore, we completed the proof of Theorem 2. �

5 Reputation Effect Analysis

In noncooperative game theory, a player’s “reputation” is its opponents’ current
beliefs about its type [11]. In the multi-slot bargaining game, the Low type SU’s
reputation can be viewed as the PU’s belief about the SU’s type in time slot n,
i.e., Pr(High type)=qn. The “reputation effect” refers to the fact that a non-
myopic Low type SU has incentive to reject αl to sustain a reputation of the
High type so as to get higher utility in the future (see (k), (l)). This is the most
interesting part of our model, and we will discuss the intuitions behind it in
more details and compare it to the complete information benchmark.

Intuitively, such incentive of doing so becomes higher when the bargaining
process lasts longer, which means that the reputation effect is more likely to
happen in long term relationships than in short ones [11]. Therefore, it is more
interesting to discuss such an effect when N is sufficiently large.

Since d ∈ (0, 1), dN can be arbitrarily small when N is large enough, and thus
condition qN = η > dN−1 can be easily satisfied, even if the initial belief η (in
the first time slot N) is small. From (k), the Low type SU will reject αl in the
initial time slot. Anticipating this, the non-myopic PU will offer αh according to
(f). Thus, a Low type SU gets the high utility Rsl in the first time slot n = N .
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Interestingly, such a set of strategies will last in the early several time slots.
As the bargaining progresses and slot index n deceases, parameter dn increases.
If PU’s belief qn cannot increase accordingly and becomes 0 (e.g., as in (c)),
then PU begins to offer αl. It indicates that the Low type SU’s benefits from
the reputation effect ends. To clarify the discussions, we define

k(η) = inf (n : dn < qN = η) , (37)

Obviously, PU will offer αh from time slot N to k(η) according to (b), (f), (h),
and (i). In time slot k(η)− 1, PU begins to offer αl based on (e). Facing αl, the
Low type SU might reject or accept it based on (l). Since only the Low type SU
might accept αl based on (h), acceptance of αl will reveal the Low type SU’s
true type to PU, after which the PU will offer αl in each time slot till the game
ends according to (a), (c), and (e).

For the purpose of comparison, let us consider the case with complete infor-
mation, where the PU knows the SU’s true type from the very beginning. To
begin with, let us discuss the single-slot bargaining with complete information
in SU’s energy cost. There are two different optimal strategy profiles according
to the SU’s type. For the PU and Low type SU, if the PU offers αl, the Low
type SU chooses between utility 0 if it rejects and ΔRsl > 0 if it accepts, so
definitely it will accept PU’s offer. Anticipating this response, the PU chooses
between Rh if it provides αh (SU will accept it as we discussed above) and Rl

if it provides αl, and so it will offer αl. This is the unique Nash equilibrium for
this single-slot bargaining game with complete information.

Figure 5 (a) indicates the equilibrium discussed above. We mark the PU’s
and Low type SU’s equilibrium decisions by the black bold line on the possible
decision paths. Similarly, we can obtain the equilibrium in the case of PU and
High type SU as shown in Figure 5 (b).

Next, let us consider the case that the two different single-slot games in Figure
5 are separately played a finite number times. The PU plays with the SU (High
type or Low type) during a succession of N time slots. Take the PU and Low
type SU game as an example. The analysis for the PU and High type SU case
follows similarly and is omitted to due space constraint.

This is a finitely-repeated game with complete information. It allows both PU
and Low type SU to perfectly observe all moves in earlier time slots. In the last
time slot (n = 1), the SU will not reject PU’s offer αl since there are no later
chances for PU to provide offers. Anticipating this, PU will definitely provide αl

in the last time slot. Backwardly, in the second to last time slot the SU will have
no incentive to reject αl because doing so is costly in the short run and will have
no effect on the decisions in the last time slot. Realizing this, the PU will offer αl

to get a higher utility Rl for itself. This logic can be repeated till the first time
slot (n = N): in each time slot, PU offers αl and SU always accepts. Moreover,
this is the unique subgame perfect Nash equilibrium (SPE) of the game.6 We have

6 SPE is a commonly used solution concept for dynamic game with complete informa-
tion, which can effectively eliminate the incredible threat from the opponent. See [11]
for more details.
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Fig. 5. Game Tree of the Single-Slot Bargaining with Complete Information: (a) PU
and the Low type SU, (b) PU and the High type SU

the similar conclusion for the case of PU and High type SU, i.e., PU’s offering
αh and SU’s rejection of αl always occur in each time slot.

Based on the above analysis, we can see that the reputation effect does not
emerge in a repeated game with complete information. The sequential equilib-
rium of the multi-slot (finite-repeated) bargaining game in Theorem 2 deviates
from the equilibrium outcome discussed above because of incomplete information
in SU’s energy cost. In the dynamic Bayesian bargaining game, the Low type
SU might convince PU that it is the High type by rejecting the offer αl from PU
and thus obtains a higher utility. This means that information incompleteness
in SU’s energy cost results in the reputation effect, with which the Low type SU
can benefit more from the cooperative communication.

6 Conclusion

In this paper, we investigate a cooperative spectrum sharing mechanism achieved
by a dynamic Bayesian spectrum bargaining between one PU and one SU. We
model the bargaining as a dynamic Bayesian game, and characterize all possi-
ble equilibria under different system parameter settings. In particular, we focus
on characterizing the sequential equilibrium, where the reputation effect brings
higher utilities for the Low type SU. Analysis shows that the Low type SU could
exploit the PUs lack of information for its own benefits, which will not happen
with the complete information scenario.
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