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Abstract. Using the flexibility of Wireless Mesh Networks (WMNs), we
provide personalized access for highly dynamic mesh clients by splitting
a WMN into several logical networks, each one configured to meet a set of
specific levels of users’ context demands (context can span from security,
mobility, cost, services’ requirements). In such approach, users can be
grouped according to similarity of their context, and can be associated
to the logical networks matching their context, built through virtual-
ization (Virtual Networks - VNs). To break the traditional centralized
architectures for the control of nodes and networks, this paper defines a
novel context-aware distributed control framework to allow users’ associ-
ations to fitting VNs, and to create, extend, or remove VNs on-demand
to be adapted to the dynamics of WMN environments and mesh clients.
Moreover, WMN nodes are endowed with autonomous capabilities that
allow them to co-operatively control VN topologies based on indicators of
resource availability and users’ perceived Quality-of-Experience (QoE).

Keywords: Wireless Mesh Networks, Context-Awareness, Network
Virtualization, Personalized Connectivity, Distributed Control.

1 Introduction and Related Work

The flexibility and self-properties of Wireless Mesh Networks (WMNs) [2] can be
exploited to provide support for new communication and architectural paradigms.
One of these paradigms can be the personalization of users’ connectivity through
a proper selection and configuration of WMN connections, nodes, and transport
paths according to users’ context [7] (e.g., mobility patterns, security and cost pref-
erences, services’ Quality-of-Service (QoS) requirements).

With the context-based WMNs in mind, we proposed in [5] an architecture
to split a WMN infrastructure in a set of logical networks, each one config-
ured (in terms of running protocols, assigned resources, and topology) to meet
a set of context levels of users. Users are then associated to fitting logical net-
works, increasing their perceived Quality-of-Experience (QoE). Several literature
approaches (e.g., [9][10]) aim to increase the WMN performance by means of
context-aware mechanisms; however, they do not consider the concept of split-
ting the WMN in a set of context-based logical networks.

When building logical networks, network virtualization [6] is considered as a
powerful tool to allow a flexible and programmable utilization of these logical

K. Pentikousis et al. (Eds.): MONAMI 2011, LNICST 97, pp. 158–173, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Distributed Control and Management 159

networks (or Virtual Networks - VNs). There are several solutions (e.g.,[1][8])
used to build multiple VNs over a physical WMN [11][3], but they do not provide
mechanisms to adapt VNs to the dynamics of WMN environments.

In [4], we evaluated, through analytical and simulation tools, the impact of
applying network virtualization in our approach, and a basic control mechanism
to associate users to exactly fitting VNs and to configure VN topologies. In
this paper, by distributing the control knowledge and intelligence among the
different WMN nodes and their supported VN nodes, we propose a structured-
based distributed framework based on the co-operation of these elements to: (i)
perform context-driven discovery of fitting VNs for users; (ii) create, update,
extend, and remove VNs on-demand to serve the multitude of users based on
context-, topology-, resource-, and QoE-aware metrics. We also detail the control
processes to setup, maintain, and update the proposed distributed framework to
be adapted to context changing and mobility of mesh clients.

In this paper, Section 2 presents the context-aware WMN architecture, its
raised challenges, and a model definition. Then, Section 3 presents the mapping
of user’s demands in VNs’ features, and the metric to select best fitting VNs for
users. Section 4 proposes a distributed framework to control the context-aware
VNs, which is used in section 5 to associate users to fitting VNs and to manage
VN topologies on-demand. Finally, Section 6 concludes the paper and proposes
several guidelines for future work.

2 Context-Based Wireless Mesh Networks

This section presents and formally defines the proposed architecture to build
context-based WMNs, summarizing its key raised control challenges (see Fig. 1).

We split a WMN into a different number of logical networks, each one config-
ured to autonomously meet distinct levels of users’ preferences, and requirements
of their services and devices - users’ context. Users can then be grouped according
to similarity on their context, and can be assigned to logical networks match-
ing their context. The logical networks are built through network virtualization,
which enables high isolation among communications supported by distinct log-
ical networks (or VNs), and endows our approach with enough flexibility and
programmability to control and manage such networks.

2.1 Control and Management Goals

The provision of personalized access for users, which are constantly changing
their locations and context, imposes the definition of an intelligent control mech-
anism to dynamically create, discover, select, extend, or remove the VNs.

First, users’ demands need to be sensed and quantified in specific levels or
policies, and rules need to be designed to map them into proper VNs’ features.
Then, and since the creation of VNs to exactly meet the demands of a single user
cannot be always performed due to its complexity or unavailability of wireless
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Fig. 1. Concept Overview and Challenges

resources, we will take into consideration the flexibility of users to be attached
to VNs that, in the one hand, do not exactly fit all their demands, but on the
other hand, meet several allowed variation ranges of such demands. Further,
context-aware similarity metrics need to be defined to match users’ demands
against VNs’ features, being selected the best fitting available VNs for users.

The high dynamics of WMN environments fosters the need to constantly dis-
cover fitting VNs for users. In order to leave behind the drawbacks of centralized
solutions, we define a structured-based topology-aware distributed framework
to perform context-driven discovery of VNs on-demand. In our architecture,
the WMN nodes (and their supported VN nodes) are endowed with enhanced
autonomous capabilities to: (i) co-operatively create, maintain, or update the
aforementioned context-aware distributed control framework; (ii) take advan-
tage of information about the availability of WMN resources and the perceived
QoE of ongoing users to limit the candidate set of fitting VNs for users.

Although this paper already proposes a mechanism to select VNs and to
control their topologies based on resource- and QoE-aware metrics (normalized
through specific fuzzy-based logic functions), we consider the availability of a
learning-based scheme to dynamically monitor and update the VN flows’ paths
based on the perceived QoE of VN users. In such scheme, the perceived QoE of
VN users will be derived from the VN context purpose, and from the end-to-
end QoS parameters of users’ communications conveyed in data packet headers
or data ACK messages. We also consider the availability of a mechanism to
dynamically compute and update the levels of wireless resources that need to
be assigned to the nodes that are part of a particular VN based on the context
purpose and number of flows of such VN. These levels will then be the input
to an overall distributed mechanism to dynamically map, schedule, and switch
WMN interfaces and channels to optimally serve the multitude of VNs.
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2.2 Architectural Model Preliminaries

The WMN is formally defined as (N,L), where N={n1, ..., n|N |} represents the
set of WMN nodes (in the overall paper, |X | is the number of elements of the
set X). L is the set of WMN links between neighboring elements of N , being
defined as L={(na, nb) ∈ N | na is in transmission range of nb}. The shortest
path for a communication performed between nw,nz∈N is defined as Lnw→nz .

Our architecture is driven by a set C={c1, ..., c|C|} of users’ context demands.
Each c ∈ C may be quantified into Mc={1, 2, 3, ..., |Mc|} normalized levels.

A set U={u1, ..., u|U|} of users may access the WMN, and the attached WMN
node of each u ∈ U is nu ∈ N . The context demands of each u ∈ U and their
maximum allowed variation ranges are represented by Ru={ruc | ruc ∈ Mc,
c ∈ C} and Tu={tuc | tuc ∈ Mc, c ∈ C}, respectively.

The WMN will be the substrate for a set V of possible VNs. Each v ∈ V is
properly configured to meet a set of Rv = {rvc | rvc ∈ Mc, c ∈ C} context levels.
The identifier of each v ∈ V is related with Rv; e.g., if |C| = 4, and |Mc| = 5
(∀c ∈ C), the vID = 3333 is representative of a v ∈ V that is configured to meet
the normalized level 3 on each c ∈ C. Each v ∈ V makes use of a set Nv ⊂ N of
WMN nodes. Each n ∈ N is the substrate for nodes of a set Vn ⊂ V of VNs.

The v′u ∈ V exactly fits the demands of u ∈ U . The set V ′
u={v ∈ V |∀c ∈

C, |ruc − rvc | ≤ tuc && ∃c ∈ C,|ruc − rvc | �= 0} is composed by VNs that do
not exactly fit the demands of u, but each feature of v ∈ V ′

u meets its respective
allowed variation range (partially fitting VNs for u). The associated VN to u ∈ U
is vu, being selected from the candidate set Vu=v′u ∪ V ′

u. The remaining set
¬Vu={v ∈ V |∃c ∈ C, |ruc − rvc | > tuc} is the set of non-fitting VNs for u.

3 Context Mapping, Variation, and VN Selection

Although there may be a large set of context parameters, this section considers
a small set with demonstrative context information. We consider the set

C1 = {Cost, Security ,Energy , Service Type}.
However, mobility, communication type, or preferred access technology are ex-
amples of other parameters. This section presents rules to map each c ∈ C1 into
proper VNs’ features (summarized in Table 1). Then, we assess at the impact
of the variation of each c ∈ C1 in the architectural functionality, and propose a
metric to select the best fitting VN for a user from the set of candidate ones.

3.1 Context Mapping

This sub-section presents several rules to map users’ demands in VNs’ features.
Notice that these are examples, and other rules could be applied.

Cost. From a user perspective, cost preferences may be related to the less or
more money that users are willing to pay to have access to low or high reliable
communications, respectively. From a network perspective, WMN providers may
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Table 1. Context-Aware Mapping of Users’ Demands in VNs’ Features

User Demand (Ru) VN Feature (Rv)

Cost Preferences • Revenues from Multi-Path Availability

Security Constraints
• Authentication, Authorization, and Accounting
• Encryption and IPSec-Aware Mechanisms

Energy Consumption
• Interference-, and Congestion-Aware Protocols
• Average Node Degree and Number of Links

Service Type • Resource Management, Routing, and Path Control

lease their infrastructure to VN providers at a different cost, and such cost refers
to the total number of required VN nodes to provide a specific level of VN multi-
path redundancy (or VN reliability). So, distinct users’ cost preferences will be
directly mapped into distinct levels of VN multi-path redundancy.

Security. Distinct security and trust constraints of users will determine the
authentication, accounting, and authorization protocols running in a VN, as
well as the encryption mechanisms and IPSec-aware protocols of such VN.

Energy. Users’ devices with strict energy requirements will certainly benefit
from associations to VNs that provide the necessary connectivity, while still
minimizing energy wasting and maximizing the resource usage. So, high energy-
efficient VNs need to reduce the: (i) number of collisions to not waste energy in
packet retransmissions; (ii) number of traversed hops of VN communications by
minimizing the average VN node degree and the number of VN links.

Service Type. Quality requirements of users’ services may lead to a preliminary
grouping of users according to similarity on these requirements. Then, these
requirements will also play an important role in the subsequent VN routing and
resource management mechanisms, such as: (i) the selection of the nodes that
need to be added to extend or create a VN; (ii) the mapping, scheduling, and
switching of VN links to WMN interfaces and channels; (iii) the configuration
of the buffer size, processing power, and memory of VN nodes.

3.2 Context Variation

The demands of each u ∈ U are characterized by distinct levels of flexibility to
enable the association of u to a VN that does not exactly fit them. Such flexibil-
ity (or allowed variation range during the connectivity time of u, Tu) has to be
efficiently embedded on the: (i) selection of the best fitting VN for u (detailed
in the next sub-section); (ii) organization of the features and levels that charac-
terize the VNs to enable optimized distributed discovery and adaptation of VNs
(detailed in the next two sections). This sub-section provides some qualitative
insights on the allowed flexibility of several context features.

First, VN providers aim to increase their revenues from providing multi-path
redundancy, and in a contradicting perspective, users are usually reluctant to
exceed their cost preferences. Therefore, the accepted variation range of cost
preferences during users’ connectivity times is extremely restrictive.

Since security constraints are related to services’ purposes and trustability,
variations of these demands are also rarely allowed from the user perspective.



Distributed Control and Management 163

On the other hand, the quality requirements of users’ services or the energy
requirements of users’ devices may admit high variation ranges, since users may
very often change their required services, or may easily have access to devices’
battery charging mechanisms. So, these two context features have a less im-
portant role in the preliminary context-aware VN selection process for users,
since there are other restrictive context parameters that need to be exactly met
during users’ connectivity times. However, they will have a high impact on the
network-centric VN path selection and resource management mechanisms.

3.3 Context-Aware VN Matching and Selection

Due to the possibility of u ∈ U to be connected in more than one v ∈ V , this
sub-section defines a metric to derive the context-aware Similarity Difference
(SD) among the demands of u (Ru) and the features of each v ∈ V (Rv), and
to select the v ∈ V with the highest probability to deal with variations of Ru.

In the one hand, it is easily inferred that if v belongs to a non-fitting VN for
u, v∈¬Vu⇒SD(u,v)=∞. On the other hand, if v∈Vu, and due to the multitude
of elements of C and Mc, SD(u,v) will be a weighted sum of the absolute single
differences among ruc and rvc (∀c ∈ C). The weight associated to the single ab-
solute difference on each c ∈ C is inversely proportional to the allowed variation
range tuc , that is, the relative importance of |ruc − rvc | increases with a lower
tuc (where tuc represents the maximum allowed variation of ruc). Following this
way, we will clearly reduce the number of future required updates on the selected
vu ∈ Vu due to variations of Ru. So, our metric is formally defined as follows:

SD(u,v)(Ru, Tu, Rv) =

⎧
⎪⎨

⎪⎩

|C|∑

i=1

|ruci
−rvci |

tuci

, v ∈ Vu

∞ , v ∈ ¬Vu

. (1)

As an example of application of our metric in the VN selection process, consider
that |C|=4, |Mc| = 5 (∀c ∈ C), Ru={3, 3, 3, 3}, Tu={1, 2, 2, 2}, and there are
two fitting VNs for u: v1,v2 ∈ Vu, where Rv1={3, 2, 3, 3} and Rv2={2, 3, 3, 3},
respectively. Although

∑ |Ru −Rv1 |=
∑ |Ru −Rv2 |, the impact of a future vari-

ation of ruc1
is higher than if such change occurs on ruc2

, since tuc1
<tuc2

. So, v1
will be selected as vu, since ruc1

=rv1c1 , while v2 is already in the lower border
to meet ruc1

. Both v1 and v2, if selected, still have a high probability to allow a
future variation of ruc2

, and so, c2 has associated a lower weight than c1.
Finally, the selected VN for u, vu, will be:

vu ∈ Vu s.t. SD(u,vu) = min
v∈Vu

{SD(u,v)}. (2)

4 Distributed Context-Aware Control Framework

This section defines the basis of a context-aware distributed framework to control
the multitude of VNs. Details on the elements that compose such framework and
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Fig. 2. VN Controller Update

on the mechanisms to inter-connect them are also provided. In the next section,
we will make use of the proposed framework to discover fitting VNs for users
on-demand, and to control and manage VN topologies in a distributed way.

4.1 VN Controller

The basic element of our distributed control framework is the VN controller
(Ov ∈ Nv, v ∈ V ). A VN controller is a VN node that stores the relevant VN
information (e.g., context demands, and perceived QoE of ongoing VN users)
that is used to perform intra-VN control functionalities (e.g., VN topology, path,
and resource control), and to allow an optimized distributed selection of a fitting
VN for a user in the WMN (detailed in the next section).

At the time of the creation of v ∈ V , it is randomly chosen a node of v to be
the Ov, which then needs to be updated to be adapted to topology changes of
v. According to Fig. 2, Ov periodically triggers a process to refresh the stored
control information of v (the timer T1 is related to the periodicity of such pro-
cess). Then, each nv ∈ Nv informs Ov about the requested control information,
and resets its timer T2 (used to detect a misbehavior of Ov, as will be explained
below). In the following, and since we aim to minimize the physical topology dis-
tance between every nv ∈ Nv and Ov to enable small time consuming intra-VN
control communications, the new Ov is designated as:

nvi ∈ Nv s.t.
∑

nvj
∈Nv

Lnvi
→nvj

= min
nvk

∈Nv

{
∑

nvj
∈Nv

Lnvk
→nvj

}. (3)

Notice that the incorporation of other metrics to select Ov, such as the resource
availability and stability of each nv ∈ Nv, can be addressed in the future.

If another VN node is selected to be Ov, it is notified by the current Ov,
and then, the new Ov announces itself in the VN. If nv ∈ Nv did not receive
any message from Ov in the time-out T2, a new Ov has to be selected. In order
to easily select another Ov in a synchronized way, Ov periodically provides an
ordered list of the nodes of v according to their rankings to be designated as Ov

(obtained through (3)). Then, each nv ∈ Nv configures its timer T2 according to
its position pnv in such list (T2nv

=T2×pnv). When a problem occurs with Ov,
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the first node of the list provided by Ov is able to auto-designate and announce
itself as the new Ov. Through this approach, we can even deal with partitions
in VNs, allowing each VN partition to autonomously select its VN controller.
Notice that both T1 and T2 are dependent from the context purpose of each VN.

4.2 Distributed Control Structure of VN Controllers

This sub-section proposes a control ring to inter-connect the available VN con-
trollers based on Distributed Hash Tables (DHTs) (see Fig. 3). The multi-context
and multi-level features that characterize the VNs and the users’ allowed context
flexibility are embedded in the DHTs’ characterization and organization in order
to efficiently allow the VN controllers that often need to communicate to each
other to be closely located in the ring. Moreover, this section details the processes
to maintain the DHT-based routing entries stored by each VN controller.

4.2.1 Context Space Partition and Organization

By assessing the level of flexibility (or allowed variation range, tuc) of each c ∈ C
(please refer to sub-section 3.2), we first split C in two disjoint sets C = C′∪¬C′,
where C′ is composed by c ∈ C admitting low values of tuc , and ¬C′ is composed
by c ∈ C admitting high values of tuc . Here, C

′ contains the majority of the
features that do not frequently admit variations during users’ connectivity times
(e.g., cost or security), and almost never trigger adaptation of users’ associated
VNs; on the other hand, ¬C′ contains the remaining features that, in general,
admit large variations during users’ connectivity times (e.g., service type), and
constantly trigger adaptations of users’ associated VNs.

This distinction in the flexibility of context levels is very important, since we
can have a first notion of the context parameters that have more probability
to change during users’ connectivity times. Then, a ring structure that enables
small time consuming communications among the controllers of VNs that are
most probable to fit the users’ context demands and their variations, allow to
quickly discover and adapt fitting VNs for users based on the co-operation among
the different elements of the ring.

Following this idea, we split the ring in a set of semantic clusters (SCs), each
one grouping the controllers of ∀v, v′∈ V :Rv[|C′|]=Rv′ [|C′|]. So, the controllers
of VNs that are more probable to fit the most frequent users’ context changes
belong to the same SC, being such controllers closely located in the ring.

Within each SC, the c ∈ ¬C′ with the highest tuc has the most important
role on the context-aware proximity among VN controllers, since it is the context
parameter with the highest probability to change. So, the controllers of two VNs
that only differ in one level in the c ∈ ¬C′ with the highest tuc are 1-hop logical
neighbors in the ring, storing a direct DHT-based routing entry to communicate
to each other.

Fig. 3 presents an example of the ring structure by considering C={c1, c2, c3},
C′={c1, c2}, ¬C′={c3}, |Mc1|=2, |Mc2 |=4, and |Mc3 |=4. First, the total num-
ber of possible available SCs is given by |Mc1 ||Mc2 |=8; e.g., SC3 groups the
controllers of available VNs characterized by the level 1 on c1 ∈ C′, and the
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Fig. 3. Context-Aware Ring-Based Control Structure of VN Controllers

level 3 on c2 ∈ C′. Second, the SCs and the VN controllers that belong to the
same SC are organized in a consecutive order of the levels of the VN features
that are part of C′ and ¬C′, respectively. Third, c3 has associated the highest
tuc , and so, the controllers of two VNs that only differ in one c3 level in the
context-aware characterization are 1-hop logical neighbors in the ring.

4.2.2 Logical Control Links

In the following, we detail the control processes that allow: (i) WMN nodes to
store a set of entries in their routing tables to access to the several SCs of the
ring; (ii) VN controllers to store a set of entries to perform intra-SC routing. Both
DHT-based routing entries will be used to accelerate the distributed discoveries
of fitting VNs for users, as will be detailed in the next section.

Disseminated Control Information. In our approach, each n ∈ N peri-
odically announces its local VN nodes to its 1-hop neighbors (the timer T3 is
the periodicity of such process). Such information is then disseminated by the
neighbors of n along a pre-defined maximum number of hops TTLmax. The in-
formation tuple associated with each announced node of v ∈ V is defined by:

tv = {nID, vID, TTL}, (4)

where, nID is the identifier of the WMN node that provides support for the node
of v, vID is the identifier of v, and TTL ≤ TTLmax indicates the maximum
amount of hops that this information tuple can be forwarded in the WMN.

Links to SCs. To limit the amount of control information disseminated in the
WMN, each n ∈ N only broadcasts to its neighbors one information tuple to
access to each SC of the control ring. For instance, and from the set Tv of local
or gathered information tuples stored by n, n will select to broadcast to its
neighbors the information tuple to access to SC1, tSC1 , according to:

tSC1 = {∀tv ∈ Tv | tv.TTL = max
{v|Ov∈SC1}

{tv.TTL}}. (5)

From (5), our approach both minimizes the length of the routes to WMN nodes
get access to the several SCs, and balances the control responsibilities among
the different elements of each SC (due to the random selection).

Intra-SCs Links. In order to endow the distributed control framework with
enough flexibility to deal with the dynamics of WMN environments, we will
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Fig. 4. Intra-SC Links Control and Management

now detail the control processes to create, update, and remove the DHT-based
routing entries among VN controllers belonging to the same SC (depicted in
Fig. 4).

A) Links Creation. In our approach, each Ov stores a routing entry to access
to Ovs (the controller of the immediately successor VN of v, vs) and another
one to access to Ovp (the controller of the immediately predecessor VN of v, vp).
Ovs and Ovp are 1-hop logical neighbors of Ov in the control ring.

According to the top part of Fig. 4, at the time of the creation of v, the selected
Ov has to be integrated in the control ring through the establishment of these
two routing paths. In such process, Ov first contacts its substrate WMN node,
which, based on its stored routing entries, contacts the nearest neighbor that
provides support for a VN with controller belonging to the SC of Ov (e.g., v1).
After being contacted by one v1 node, Ov1 contacts its 1-hop logical neighbor
that is closely located to Ovs and to Ovp in such SC. Such process is recursively
performed along the SC in a DHT-alike way until finding Ovs and Ovp . Finally,
Ov is notified and stores the routes to contact Ovs and Ovp .

B) Links Update. In the one hand, Ov has to be closely located to every
nv ∈ Nv to reduce the delays of intra-VN control communications (please refer to
(3)). On the other hand, and to avoid topology mismatching problems between
the WMN infrastructure and the control ring, the physical topology distance
from Ov to Ovs or to Ovp needs to be minimized to enable small time consuming
communications in the ring. This last point fosters the need to update the Ov

selection function proposed in (3), which is detailed below.
According to Fig. 2, when Ov starts a process to refresh the stored control

information of v, it also announces the IDs of vs and vp. Then, each nv ∈ Nv asks
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its substrate WMN node about the existence of nodes of vs or vp in its physical
neighborhood. Based on its stored routing entries, such WMN node informs nv

about the nearest location of nodes of vs or vp, which is also encapsulated in the
reply sent to Ov. Then, the new Ov is selected according to:

nvi ∈ Nv s.t. Lnvi
+ L′

nvi
= min

nvj
∈Nv

{Lnvj
+ L′

nvj
}, (6)

Lnvj
=
∑

nvk
∈Nv

Lnvj
→nvk

and L′
nvj
=0.5 min

nvsk
∈Nvs

{Lnvj
→nvsk

}+0.5 min
nvpk

∈Nvp

{Lnvj
→nvpk

}.

(7)
According to (6) and (7), the selected Ov is the nvi ∈ Nv that both minimizes
the distance to every other node of v (Lnvi

), and the mean distance to access to
the successor and predecessor VNs of v in the control ring (L′

nvi
).

If another node of v is selected to be Ov, the process depicted in Fig. 2 is
started in v. Moreover, and in order to update the routes between Ov and Ovs

or Ovp , the process depicted in the middle part of Fig. 4 is started in the WMN.
In such process, Ov first contacts its substrate WMN node, which then notifies
the neighbors that provide support for the selected nodes of vs and vp. Then,
Ovs and Ovp are notified about the routes to contact Ov, and then reply to Ov.

C) Links Remotion. According to the bottom part of Fig. 4, if Ov has to leave
the WMN due to the complete remotion of v (the mechanism to decide when
to remove VNs will not be detailed in this paper due to the space limitations),
it will notify such intention to Ovs and to Ovp to adapt the control ring (such
adaptation can be also triggered by Ovs or Ovp , if they did not receive any
routing maintenance message from Ov in the time-out T4). These notification
messages will convey the information to allow Ovs and Ovp to become 1-hop
logical neighbors in the ring, and they can then announce themselves to each
other.

4.3 Global VN Manager

Finally, our proposed control framework is composed by an entity, the global
VN manager, which stores the IDs of the available VNs in the WMN, and a link
to access to one of their nodes. By storing this minimum knowledge, the global
VN manager is able to help the proposed control processes.

For instance, and in case of a small number or high sparseness of VNs in the
WMN, a specific WMN node may not store any route to contact SC1, where a
new VN controller has to be integrated. In such situation, the time-out to create
the new links in the ring reaches a critical value, and the global VN manager is
notified to quickly redirect the process to SC1.

5 User Connectivity and VN Topology Control

This section makes use of the presented distributed framework to propose a con-
trol mechanism to associate users to fitting VNs and to manage VN topologies



Distributed Control and Management 169

Fig. 5. User Connectivity and VN Update, or Local/Global VN Extension

on-demand. From the point of view of a user that arrives at a specific WMN
node and wants to be connected in a fitting VN (or even changes his/her con-
text requirements), this section presents the required network control processes
to enable the: (i) selection and update of the best fitting VN from the set of
candidate ones available in the user attached WMN node; (ii) local or global
(context-aware driven) discovery of a fitting VN for the user; (iii) selection of
the best path to extend a fitting VN to be adapted to the user’s location. The
control processes and the used criteria to decide when to create a new VN or to
remove unused VNs will be left for future work due to space limitations.

5.1 VN Update

According to the top part of Fig.5, when u ∈ U arrives at nu ∈ N , u sends its
context demands to nu. Then, nu quantifies these demands in levels (Ru, Tu), and
matches them against the features of each v ∈ Vnu (Rv). If there are any v ∈ Vu

in nu, and v2 is selected according to (2) to be vu, nu contacts its local v2 node
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to notify Ov2 . In the following, and after storing the context of u, Ov2 runs the
VN resource management algorithm to update the assigned resources to the v2
node supported by nu (as described in Section 2, the distributed management of
WMN resources to serve the multitude of VNs is out of the scope of this paper).
Finally, u is notified about the establishment of his/her connection to v2.

5.2 Local VN Selection and Extension

Focusing now in the middle part of Fig.5, if nu does not support any v ∈ Vu,
nu will inspect the gathered VN information from its neighborhood. If nu has
information of more than one v ∈ Vu available in its neighborhood, nu has to
select the best fitting VN node to trigger a local VN extension up to nu.

In our approach, this selection process will be aware of the resource availability
in the path between nu and the WMN node supporting a specific fitting VN node
for u, and of QoE indicators of satisfaction of ongoing users in such VN node.
For this purpose, the information tuple of each node of v ∈ V announced by
n ∈ N to its neighbors (please refer to (4)) has to include two more fields:

tv = {nID, vID, TTL, f(RLnv→nu
), f ′(QoEv)}, (8)

where f and f ′ are two fuzzy-based logic functions used to respectively map in Z
normalized levels the: (i) overall WMN resource availability in the path between
the WMN node supporting the v network and the u attached node, RLnv→nu

;
(ii) mean perceived QoE of ongoing users in the v network, QoEv. For instance,
if Z = 3, we will have:

f(RLnv→nu
)=

⎧
⎨

⎩

1 , RLnv→nu
≤ Z1

2 , Z1 < RLnv→nu
≤ Z2

3 , Z2 < RLnv→nu

, f ′(QoEv)=

⎧
⎨

⎩

1 , QoEv ≤ Z′
1

2 , Z′
1 < QoEv ≤ Z′

2

3 , Z′
2 < QoEv

.

(9)
From the set Tv of gathered information tuples stored by nu, nu selects the one
of a v ∈ Vu, tu, according to:

tu={tv ∈ Tv| tv.TTL=max
v∈Vu

{tv .TTL}&&

tv.f(RLnv→nu
)+tv.f

′(QoEv)=max
v∈Vu

{tv.f(RLnv→nu
)+tv.f

′(QoEv)}}.
(10)

From (10), nu first limits the candidate set of fitting VN nodes for u to the ones
accessible in a minimum number of hops, since they enable the creation of a
less number of virtual nodes in a future VN extension, which is a high resource
and time consuming process. Then, and from the remaining information tuples,
nu gives preference to the ones allowing VN extensions through non-congested
WMN paths, and users’ associations to VNs with high QoE indicators.

Supposing that v3 is selected to be vu, nu contacts the WMN node that
provides support for the selected v3 node to notify Ov3 . Then, and after storing
the context of u, Ov3 updates the VN topology information, and runs the VN
resource management algorithm to derive the resources that need to be assigned
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to the new v3 nodes. In the following, new v3 nodes are created in the WMN
nodes where the v3 extension takes place. Finally, u is connected to v3.

5.3 Global VN Discovery, Selection and Extension

If nu does not support and does not have information of any v ∈ Vu, nu will
trigger a global discovery process in the WMN using the distributed control
framework. Such discovery will be followed by the extension of the v ∈ Vu up to
nu. This two-step control process is depicted in the bottom part of Fig.5.

5.3.1 Global VN Discovery

The global context-driven discovery process of any v ∈ Vu in the WMN has two
major steps: (i) the redirection of the process to a proper SC of the control ring;
(ii) the discovery performed within the selected SC.

Redirecting the Discovery to a Fitting SC. Based on the routes stored by
nu to access to the several SCs, which are represented through the set Tv of
gathered information tuples, nu first makes use of a random tuple that allows to
access to the SC that is semantically closer to the first |C| demands of u, SCu,
in a minimum number of hops. Such information tuple, tSCu , is defined by:

tSCu={∀tv ∈ Tv | SD(u,v)[|C|]=min
v∈Vu

{SD(u,v)[|C|]}&& tv.TTL=max
v∈Vu

{tv.TTL}}.
(11)

Considering that v4 is the selected VN with controller belonging to SCu, nu then
contacts the WMN node supporting the selected v4 node to notify Ov4 .

Discovery within the Selected SC. In the following, Ov4 forwards the global
VN discovery process through both clockwise and counterclockwise directions
of SCu by using the routes to contact its 1-hop logical neighbors (as explained
in the previous section). Such process is recursively performed along SCu in a
DHT-alike way until finding the controller of any v ∈ Vu.

Focusing in a specific SCu direction, after finding the controller of any v ∈ Vu,
such controller may be followed by a controller of another v′ ∈ Vu due to the
context-aware organization of the control ring. In such situation, Ov may take
advantage of specific quality information of v′ to optimize the VN discovery at
the cost of one more communication in the control ring. By conveying indicators
of the mean QoE of the ongoing VN users in the control messages used to
periodically update the links among consecutive VN controllers (please refer to
the middle part of Fig. 4), Ov will inspect such information. Then, Ov will only
redirect the global VN discovery process to Ov′ using its stored DHT-based
routing entry, if v′ is characterized by a higher level of mean perceived QoE of
its users than v.

If the controller of any v ∈ Vu in SCu is not available, the WMN nodes that
provide support for the VN controllers of SCu, in which the global VN discovery
process stops, are notified to redirect the discovery to the following SC selected
according to (11). This two-step discovery process is recursively performed in
the control ring until finding the controller of any v ∈ Vu in any SC.
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5.3.2 Global VN Selection and Extension

Considering that v5 and v6 are the fitting VNs for u that are discovered and
selected in the clockwise and counterclockwise directions of SCu, respectively,
Ov5 and Ov6 will then notify the near v5 and v6 nodes to nu about the possibility
of their extensions up to nu. In the following, the WMN nodes that provide
support for the selected v5 and v6 nodes notify nu.

From the obtained replies, which should contain information about RLnv→nu

and QoEv, nu selects the v ∈ Vu to be extended up to nu according to (10).
Supposing that v6 is selected to be vu, a VN extension process similar to the
one explained in the previous sub-section is started in the WMN.

6 Conclusion and Future Work

This paper considers the support of context-basedWMNs through their splitting
in several VNs, each one created and configured to meet a specific set of users’
context preferences and requirements of their services. We propose a distributed
and adaptable DHT-based framework to associate users to fitting VNs and to
control and manage VNs on-demand based on context-, topology-, resource-, and
QoE-aware metrics. The elements of such framework and their inter-connections
are characterized and organized to efficiently deal with the set of considered
context features.

However, there are several aspects that need future research, such as, the
distributed resource management mechanism, the definition of the QoE-aware
intra-VN routing scheme, and the concretization of the fuzzy-based logic func-
tions to map resource and QoE metrics in normalized levels. With respect to
evaluation, we plan to assess the impact of the sizes of the sets C, Mc (∀c ∈ C),
and C′ and the value of the parameter TTLmax in the amount of control in-
formation disseminated in the WMN to maintain the multitude of SCs, and
in the number of communications required to discover a VN. Finally, we plan
to compare the efficiency and impact of the proposed control approach against
other centralized or distributed solutions available in the literature.
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