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Abstract. The Trickle algorithm has proven to be of great benefit to
the Wireless Sensor Networking area. It has shown general applicabil-
ity in this field, e.g. for code distribution to smart objects and routing
information distribution between smart objects. Up to now analysis of
the algorithm has focussed on simulation studies and measurement cam-
paigns. This paper introduces an analytical models for the algorithm’s
behaviour for the time to consistency. The model is compared with sim-
ulation results for a set of network topologies and enables to discover
efficient settings of the algorithm for various application areas, such as
logistics.
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1 Introduction

The Trickle algorithm has been proposed in [4] in order to effectively and ef-
ficiently distribute code in a Wireless Sensor Network (WSN). The algorithm
itself however is more generally applicable: it tries to create consistency of infor-
mation in a distributed network. The definition of consistency is left to the user
of the algorithm. Currently, the algorithm is employed in the routing protocol
IPv6 Routing Protocol for Low power and Lossy Networks (RPL) [6] for the dis-
tribution of Destination Oriented Directed Acyclic Graph Information Objects
(DIO). Because of the general applicability of the algorithm, the definition of
Trickle has been split out into its own IETF RFC 6206 [3]. The algorithm has
been studied by means of simulations before, an analytical model hasn’t been
published yet. By means of an analytical model, appropriate settings for the
Trickle algorithm to be used in the user application scenarios and for the envi-
sioned application demands can be derived and trade-offs between propagation
time and the number of sent packets can be found.

1.1 Trickle Algorithm

The Trickle algorithm is a simple, yet elegant and powerful algorithm. It consists
of the following 3 variables1:

1 The notation is according to [4], the notation in [3] has slightly changed.
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τ Communication interval length
T Timer value in range [τ/2, τ ]
C Communication counter

The algorithm can be parameterized with the following three options:

K Redundancy constant
τL Lowest τ
τH Highest τ

The algorithm consists of the following 2 transmission rules and 2 receiption
rules:

– τ expires
→ Double τ , up to τH , pick a new T from range [τ/2, τ ]

– T expires
→ If C < K, transmit

– Received consistent data
→ Increment C

– Received inconsistent data
→ Set τ to τL. Reset C to 0, pick a new T from [τ/2, τ ]

With those basic rules, the algorithm adapts its communication well to different
network densities and consistency churns.

Trickle regulates the nodes’ sending rate in such a way that it sends frequently,
when the density of nodes is low; it sends rarely, when the density is high. When
there is a lot of inconsistency churn, Trickle tries to propagate the information
fast with a high rate, but backs off to a lower rate when the information is
detected to be consistent. Additionally, Trickle does not exhibit the problem of
broadcast storms as simple Flooding does.

2 Scenarios

In order to study the behaviour of the Trickle algorithm, several scenarios have
been set up to cover the most common network topologies. The scenarios are
described in the following sections. The parameters that can be controlled for
the scenarios are the number of nodes in the scenario and the scenario size.
Additionally to the scenarios listed below, the authors have also setup a Random
and a real testbed scenario (as well as models for the number of packets sent by
Trickle), whose details and results cannot be presented due to page limitations.

2.1 Line Scenario

In this type of scenario, the topology consists of all nodes arranged only on
one axis in a line. All nodes are connected according to the Closest-Pattern
Matching (CPM) propagation model [2]. This scenario will be referenced by the
name ’Line-CPM’.
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2.2 Grid Scenario

The nodes are aligned regularly in a grid. Each node has the same distance to
its closest neighbors. This scenario will be referenced by the name ’Grid-CPM’.

3 Simulation Tool

In order to validate the analytical model, a simulation has been setup. The
TinyOS simulation tool TOSSIM has been used in combination with an imple-
mentation of the Trickle algorithm in the application layer. The lower layers
conform to the Berkeley Low-Power IP (blip-1.0) stack, which has been mod-
ified to be simulatable2. Note that blip’s built-in Trickle timer in its ICMP
implementation has not been part of this study, solely the application layer
Trickle instance has been evaluated. The simulations were performed with up
to 300 Monte-Carlo repetitions for each scenario instance with varying seeds in
the TinyOS executable as well as the Python TOSSIM script. The simulation
tool can be used with the previously mentioned scenarios. A simulation suite
run consists for the ’Line’, ’Grid’ and ’Random’ scenario types of instances of
those scenarios with varying number of nodes and inter-node distances.

4 Analytical Model

The main factors governing the efficiency of the Trickle algorithm are the num-
ber of messages issued by the algorithm and the delay until the network has
reached consistency. Analytical models have been created for both metrics, in
the submission only the analytical model for the delay will be presented.

4.1 Consistency Delay

The model for the complete network consistency delay distribution is created
from the individual nodes’ delay distribution.

The analytical model is based on the fact that the Trickle algorithm draws
uniformly distributed pseudo random numbers between τ

2 and τ . If an inconsis-
tency is detected, the algorithm immediately sets τ = τL.

For the simplest scenario ’Line-CPM’ as described in section 2.1, the consis-
tency model can be setup in the following way. The seed of the inconsistency
is the 0th hop. It does not draw a random number, but immediately knows
the consistent information, thus this results in a Dirac impulse at t = 0. That
particular node chooses its time to send the inconsistent information uniformly
distributed between τL

2 and τL, cf. figure 1. The 1st hop neighbor (assuming a
perfect link for the moment and neglecting processing and communication time)
thus detects the inconsistency uniformly distributed between τL

2 and τL. For the

2 The authors have also modified the upcoming version of blip, so that it can simulated
with TOSSIM.
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2nd hop 2 uniformly distributed random variables are added, the convolution
of the 2 random variables leads to a triangle distribution as shown in figure 2.
The 3rd hop adds another uniformly distributed random variable resulting in
the bell shape shown in the same figure. The central limit theorem states that
the mean of a summation of independent and identically distributed random
variables, each with finite mean and variance, will be approximately normally
distributed. For larger number of hops, the node consistency distribution will
become normally distributed.

L0
0. Hop
1. Hop
2. Hop
3. Hop

Fig. 1. Consistency Delay Addition
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Fig. 2. Node Consistency Delay Distribution

The network-wide distribution of the consistency delay can be deducted from
the individual distributions by a normalization of the sum of all the node con-
sistency distributions. For the particular scenario, that process is depicted in
figure 3.

The probability density function (pdf) of the time to consistency scenario can
be modeled in detail by

p(t) =
1

N

N−1∑

n=0

N−1∑

h=0

W∑

w=0

1∑

r=0

hn,h,w,r(t) ∗ pn,h,w,r(t), (1)

where n: node; h: hops; w: way; r: ’retransmission’/ next Trickle cycle.
The individual nodes’ delay pdf in 1 can be calculated according to:

pn,h,w,r(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(t) , n = 0,

L−1{L{Θ(t− τL
2 )−Θ(t − τL)}h} , n ≥ 1, r = 0,

L−1{L{Θ(t− τL
2 )−Θ(t − τL)}∗

L{Θ(t− 2τL)−Θ(t − 3τL)}h−1} , n ≥ 1, r = 1.

(2)
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Fig. 3. Probability Density and Cumulative Distribution Function of the Network
Consistency Delay Distribution

Θ(·) denotes the Heaviside step function. L denotes the Laplace transform and
L−1 denotes the inverse Laplace transform. For n ≥ 1 this equation denotes a
repeated folding of a unit step function. For n = 1 the unit step is broader than
for n = 0.

The derivation of the weighting factor hn,h,w,r(t), which describes how often
a certain distribution is represented in the network delay distribution is scenario
dependent. In the following the steps to calculate hn,h,w,r(t) are shown for a 4
node Line-CPM scenario.

Figure 4 shows the Packet Receive Ratio (PRR) depending on the distance
as employed by the Closest Pattern Matching (CPM) propagation model of
TOSSIM.

Based on the CPM model the various PRRs of the scenario, can be calculated,
shown in figure 5 for the line scenario.

Figure 6 lists all possible node and hop count combinations for a 4 node
Line-CPM scenario. The combinations can be created using integer partitioning
algorithms, e.g. as in [1]. Creating all possible node and hopcount combinations
of a 4 node line scenario, involves splitting up 3 into the list [(3), (2,1), (1,2),
(1,1,1)], splitting up 2 into [(2), (1,1)] and 1 into [(1)]. To get to node 3 from
node 0 in the line scenario is thus possible, either by going 1 hop of 3 times
the base distance, or going 2 hops (with a 2 base distance hop and a 1 base
distance hop in two variations), or going 3 hops of the base distance. The multiple
base distances of course have an influence on the PRR according to the CPM
propagation model.

If the transmission to node 3 did not succeed with a 1 hop transmission, due
to the propagation model, then the transmission might succeed via intermediate
nodes which have received the broadcasted transmission and transmit the same
information based on their Trickle timer. The transmission updates node 3 only
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Fig. 4. Packet Receive Ratio Model in TOSSIM
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with a certain conditional probability that it did not receive the information
earlier directly. A conditional probability tree, with which the various conditional
probabilities can be calculated is shown in figure 7. The trees are shown for all
3 nodes of the 4 node Line-CPM scenario, that have to receive the information
from node 0. The nodes are signified with the respective shapes as used in figure 5
previously.
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Fig. 7. Conditional Probability Tree derivation from PRR

The probability of ’retransmissions’ (actually transmissions from the next
Trickle cycle with a different probability density function) can be derived from
the PRR tree as well.

Currently, the analytical model is fitted for the Trickle parameter K = 3.
The authors are working on extending the model to include the parameter, so
that different Trickle aggressiveness settings can be judged. Lower K values will
reduce the probability of sending out the information, while higher values will
incrase the probability of each node sending.

5 Comparison of Analytical Model and Simulation
Results

The results of the numerically solved analytical model and the simulation re-
sults of the tool described in section 3 are shown in figure 8 for the Line-CPM
scenario with 4 nodes. A very good match can be seen between the analytical
and simulated results.
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Fig. 8. Comparison of Analytical Model and Simulation Results of the Consistency
Delay CDF (Line-CPM scenario, 4 nodes)

The Trickle settings for the results are:

– τL = 2 s
– τH = 32 s
– K = 3

The results are also adhering to the expectation, that for short distances the
delays are lower, due to more nodes being in one-hop distance. For inter-node
distances between 80 m and 120 m, the nodes are in 1, 2 and 3 hop distance with
no difference in PRR due to the propagation model, thus showing the typical
expected behaviour of summed convoluted unit step functions. For higher inter-
node distances than 120 m the PRR of the CPM propagation model is not 1
anymore and thus reduced success probabilities and retransmissions from the
next Trickle interval are governing the distribution.

In figure 9 the consistency delay CDF is shown for a Line-CPM scenario with
9 nodes. Again a good match between the simulated results and the analytical
model can be seen. Slight differences are caused by using uniform pdf function,
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Fig. 9. Comparison of Analytical Model and Simulation Results of the Consistency
Delay CDF (Line-CPM scenario, 9 nodes)
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Fig. 10. Comparison of Analytical Model and Simulation Results of the Consistency
Delay CDF (Grid-CPM scenario, 4 nodes)

while actually a pdf based on the minimum of several uniformly distributed
random variables should be used.

As an example for the results of a Grid-CPM scenario figure 10 shows again
the consistency delay CDF for 4 nodes. Also for this scenario, a good match
between simulated and analytical results has been achieved.

6 Conclusions

A Wireless Sensor Network which employs the Trickle algorithm at the appli-
cation layer based on blip-1.0 has been implemented. In order to be able to
simulate the application, the 6LoWPAN implementation blip-1.0 has been in-
strumented so that it can be simulated and external tools can inject traffic into
the simulated 6LoWPAN network.

Analytical models for the behaviour of the Trickle algorithms − with regard
to the delay of the network consistency as well as the number of packets sent
− have been derived and shown to fit the results that were obtained from the
simulation for several scenarios. To the knowledge of the authors, there is no
published analytical model on the Trickle algorithm, although this particular
algorithm is employed for the IETF RPL routing protocol for WSNs.

Using the analytical model and the simulation tool developed, and the derived
CDFs design decisions and tradeoffs can be made, e.g. for the settings of the
Trickle parameters (e.g. for the routing information propagation of RPL), the
number of nodes supported and the network size.

7 Outlook

Based on the analytical model further studies with regard to the parameters of
the Trickle algorithm are planned, so that optimal parameters for varying use
cases of the algorithm can be derived easily.
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Employing the Trickle algorithm, e.g. for Constrained Application Proto-
col (CoAP [5]) multicast collision avoidance and service distribution for self-
organizing networks of smart objects in the application area of logistics are
other fields that the authors are studying.
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