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Abstract. Points matching between two or more images of a scene shot
from different viewpoints is the crucial step to defining epipolar geome-
try between views, recover the camera’s egomotion or build a 3D model
of the framed scene. Unfortunately in most of the common cases robust
correspondences between points in different images can be defined only
when small variations in viewpoint position, focal length or lighting are
present between images. While in all the other conditions ad-hoc as-
sumptions on the 3D scene or just weak correspondences can be used.
In this paper, we present a novel matching method where depth-maps,
nowadays available from cheap and off the shelf devices, are integrated
with 2D images to provide robust descriptors even when wide baseline
or strong lighting variations are present.
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1 Introduction

Feature points matching between two shots of a scene from different viewpoints
is one of the basic and most tackled computer vision problems. In many common
applications, like objects tracking in video sequences, the baseline is relatively
small and features matching can be easily obtained using well known feature
descriptors [14,4]. However many other applications require feature matching in
much more challenging contexts, where wide baselines, lighting variations and
non-lambertian surfaces reflectance are considered. Many interesting approaches
based on two single images have been proposed in the literature, starting from the
pioneering work of Schmid and Mohr [12] many other interesting approaches fol-
lowed: Matas et al. [8] introduced the maximally stable extremal regions (MSER)
where affinely-invariant stable subset of extremal regions are used to find cor-
responding Distinguished Regions between images, or moment descriptors for
uniform regions [10] while other approaches are based on clearly distinguishable
points (like corners) and affine-invariant descriptors of their neighborhood. One
of the most popular approaches in the last few years becomes the Scale Invari-
ant Feature Transform (SIFT) proposed by Lowe [3] thanks to its outperforming
capabilities, as shown by Mikolajczyk and Schmid [7]. The SIFT algorithm is
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based on a local histogram of oriented gradient around an interest point and
its success is mainly due to a good compromise between accuracy and speed (is
as also been integrated in a Virtex II Xilinx Field Programmable Gate Array,
FPGA [13]). Actually some other approaches, always based on affine invariant
descriptors, got growing interest like the Gradient Location and Orientation His-
togram (GLOH) [7] which is quite close to the SIFT approach but requires a
Principal Component Analysis (PCA) for data compression, or the Speeded-Up
Robust Features (SURF) [1] a powerful descriptor derived from an accurate in-
tegration and simplification of previous descriptors. All of the aforementioned
approaches assume that, even if nothing is known of the underlying geometry of
the scene, the defined features, since are describing a very small portion of the
object, will undergo a simple planar transformation that can be approximated
with an affine homography. This simplification has two main drawbacks, first of
all the extracted features are very general and weak since wide affine transforma-
tions must provide very similar results, moreover, whenever the framed object
present abrupt geometrical discontinuities (e.g. geometrical edges or corners)
the affine approximation is not valid anymore. A possible solution to such prob-
lems could be a rough description of the underlying 3D geometry. In particular,
within the Astute Artemis project, we are investigating the opportunity to use
scene depth-maps to have a rough estimation of 3D underlying geometry: We
use depth-maps to estimate the orientation of the plane, where the considered
feature is laying, with respect to the observing camera and then we apply an
homography to make this plane parallel to the camera image plane. Accordingly
to this, our descriptors can be just similarity invariant with 2 Degrees of Free-
dom, scale and rotation, with respect to the 4 Degrees of Freedom present in
an affine transformation (disregarding in both cases the translation on 2 axes).
The proposed descriptors can then be less generic becoming more robust and
discriminative. Another important aspect which we have been dealing with is
geometric discontinuities in objects surface, in particular, when detected corners
or edges are not due to texture of a locally planar surface but to the abrupt fold-
ing of the surface itself, affine approximation between two wide baseline views is
not valid any more. Projection on the average tangent plane or the unfolding of
the discontinuity (edge or corner) can significantly improve matching capabili-
ties. In the following we will show how low-cost depth-map acquisition devices
(like Microsoft Kinect) can be fruitfully adopted to prove effectiveness of the
aforementioned approach.

2 Surface vs. Texture Relevant Points

Actually the, by far, most used algorithm to define significant points in a picture
that can be used to be matched with corresponding points in another image, is
the corner Harris detector. This pioneering algorithm from Harris and Stephens
[5] is still the basic element for localization of feature descriptors: [9]. Applying
this algorithm to depth-maps provides us with surface discontinuities like geo-
metrical corners or edges. In most of cases this features are a sub-set of corner
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and edges imputable to texture variations, so, once we have the depth-map reg-
istered with its corresponding image and we perform the Harris detector we are
able to distinguish between:

– edges and corners due to textural variation but belonging to a flat surface.
– edges in the depth-maps corresponding to a folded or truncated surface.
– corners in the depth-maps (that are usually corners in the image too) corre-

sponding to abrupt variations in the surface: e.g. spikes, corners or holes.

The capability to characterize different Harris features as geometrical or not
(i.e. if they are also present or not in the depth-maps) is particularly important
for definition of robust invariant descriptors. In particular the knowledge of the
underlying geometry allows us to apply geometrical transformations to the tex-
tures on each slice in the neighborhood of the identified point in such a way
to make their representation invariant from the view point. The opportunity to
recover univocally a plane where the features in the neighborhood of the sig-
nificant point lay is particularly important since it allows us, applying e.g. the
proper homography, to obtain a frontal view of the neighborhood of a considered
point independently from the viewpoint. The direct effect of this transformation
is that the comparison between significant points for images acquired from dif-
ferent viewpoints can be simply performed comparing two frontal views of the
regions around the points themselves: these regions can undergo only rotation
and scaling: i.e. similarity transform where translation is disregarded since com-
paring neighborhood of two points implies the assumption that we are examining
regions spatially already aligned).

3 Fusion of Geometric and Texture Descriptors

Many techniques have been developed to find flat planes in depth-maps, a sig-
nificant example can be found in [15], and also surface curvature from cloud of
points has been deeply investigated [16].

In our case we followed a simplified approach to define tangent plane to the
surface around the interest point: it can be adopted even in case of discontinuities
like corners, edges or generic surface folds. In fig. 1 there is a sample image
where a Rubik’s cube presents textural corners and edges on faces and abrupt
geometrical corners and edges due to surface folds.

To find the tangent plane we followed a Principal Component Analysis for
the spatial dispersion of depth-map points surrounding the interest point, in
particular, accordingly to [6], we evaluated the covariance matrix (3× 3) of the
depth-map around the point (we used a 15× 15 neighborhood window centered
at the considered point but it can be adapted accordingly to the surface rough-
ness or curvature) and then we performed the eigenvector decomposition. The
resulting eigenvector associated to the lower eigenvalue represents the direction
cosines for the ”tangent” plane where we project the texture from the color im-
age: this plane represents the locus where the points surrounding the interest
point are maximally dispersed and it will always be the same independently
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Fig. 1. A synthetic representation of a Rubik cube

Fig. 2. The definition of the ”tangent” plane and the reprojection on it of the neigh-
borhood of the interest point

from the viewpoint (if all the sides are still visible). The image pixels are the
projected onto this plane accordingly to their 3D position (recovered from the
depth-map). Fig. 2 shows the reprojection of the texture on the ”tangent” plane.

Then, through the homography that transforms the tangent plane into a
frontal plane (a plane parallel to the image plane of the camera) we can re-
cover a frontal view which is independent from the viewpoint apart for rotation
and scaling (in fig. 3).
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Fig. 3. The neighborhood of the interest point after the homography that provides a
frontal view

4 Similarity Invariant Transform

Accordingly to the aforementioned steps we are able to obtain a 2D represen-
tation of the same 3D object part whose misalignment can be modeled by a
four-parameter geometric transformation that maps each point (xf , yf ) in F to
a corresponding point (xg, yg) in G according to the matrix equation (in homo-
geneous coordinates):

⎡
⎣
xg

yg
1

⎤
⎦ =

⎡
⎣
ρ cosϑ ρ sinϑ −Δx
ρ sinϑ ρ cosϑ −Δy

0 0 1

⎤
⎦
⎡
⎣
xf

yf
1

⎤
⎦

Equivalently, defining the two images as two functions denoted by f and g,
representing a gray-level image defined over a compact set of R2, for any pixel
(x, y) is true that:

f (x, y) = g (ρ (x cosϑ+ y sinϑ)−Δx, ρ (−x sinϑ+ y cosϑ)−Δy)

where Δx and Δy are translations, ρ is the uniform scale factor, and θ is the
rotation angle. In other words, when we speak about similarity transformation
we refer to the operations in this order:

RST = RSρ,θ · TΔx,Δy
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Since we are comparing image regions centered around interest points the trans-
lation invariance has no relevance in our case and the similarity invariance can
be limited to rotation and scaling. Many approaches are present in the literature
to tackle this problem [11], anyway most of them are incomplete like geometric
moments and complex moments, while we oriented our research toward complete
descriptors, that means that only representations retaining all the information
of an image, except for orientation and scale, are considered. In particular we
used the Fourier-Mellin transform (FMT) that is the Fourier Transform of the
image f (x, y) mapped in its corresponding Log-Polar coordinates fLP (μ, ξ):

fLP (μ, ξ) =

{
f (eμ cos ξ, eμ sin ξ) ξ ∈ [0, 2π)

0 otherwise

The FMT is defined as:

Fm (w, k) =

∞∫

0

2π∫

0

fLP (μ, ξ) e−j(wμ+kξ)dξdμ

Then we explored two possible invariant for orientation and scale: the Taylor In-
variant and the Hessian Invariant, which are described in the following sections.
In particular we recall that after a Log-polar transformation a rotation corre-
sponds to a circular shift along the axis representing the angles while a scaling
corresponds to a shift along the logarithmic radial axis. Applying the 2D Fourier
transform to the Log-polar transform the aforementioned shifts are reflected in
phase shifts while the amplitude will remain unchanged.

5 Taylor and Hessian Invariant Descriptors

In this section we depict the two orientation-scale invariant descriptors that we
used, both of them are based on the FMT described in the previous section. The
Taylor invariant descriptor [2] is focused on eliminating the linear part of the
phase spectrum by subtracting the linear phase from the phase spectrum. Let
F (u, v) be the Fourier transform of an image f (x, y), and φ (u, v) be its phase
spectrum. The following complex function is called the Taylor invariant:

FTl (u, v) = e−j(au+bv)F (u, v)

where a and b are respectively the derivatives with respect to u and v of φ(u, v)
at the origin (0, 0), i.e.:

a = ϕu (0, 0) ,
b = ϕv (0, 0)

The Taylor invariant is rotationally symmetric, but not reciprocally scaled. It
can be modified accordingly to the Laplacian invariant:

FL (u, v) =
(
u2 + v2

)
FTl =

(
u2 + v2

)
e−j(au+bv)F (u, v)
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The effect is then the registration of the input features in such a way that the
phase spectrum is flat in the origin, i.e. if we should take the inverse transforms,
all of them will be rotated and scaled to accomplish to this constrain.

The idea behind the Hessian Invariant Descriptor [2] is to differentiate the
phase spectrum twice to eliminate the linear phase, the invariant parts are then
the modulus of the spectrum and the three, second order, partial derivatives of
the phase spectrum:

FH (u, v) = [|F (u, v)| , ϕuu (u, v) , ϕuv (u, v) , ϕvv (u, v)]

As described in the following sections, we evaluated both descriptors obtaining
very similar results.

6 Results

We applied the previous descriptors to real images together with their depth-
maps. The proposed algorithm can be summarized as follow:

– for each shot of the scene, significant points are extracted using Harris corner
detector applied on the picture;

– the PCA was applied on the neighborhood 15×15 of the corresponding point
of each detected point on the depth map and the eigenvector associated to
the lower eigenvalue is used to determine the homography that transform
the tangent plane into a frontal plane;

– the Fourie Mellin Transform is applied to the reoriented neighborhood;
– at last the Laplacian invariant is applied to Fm (w, k) (only Laplacian trans-

lation invariant is used for these test).
– The resulted vector is used as feature descriptor of the significant point

and correct match from different images are selected as those for which the
Euclidean distance is minimized.

For completeness we summarize also the main step of the SIFT algorithm im-
plemented for comparing the performances:

– Maximally Stable Extremal Regions (MSER) [8] are found for each shot of
the scene;

– all the MSER are approximated as elliptical and oriented so that each major
axis is horizontal;

– the ellipsis are deformed in circles and the intensity gradient for each pixel
is computed;

– each circular region is divided in rectangular subregions and the histogram
of the gradient’s direction is computed for each subregion;

– the feature vector is made linking all the histograms computed on the cir-
cular neighborhood and, as for the proposed algorithm, correct match from
different images are selected as those for which the Euclidean distance is
minimized.
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We performed some experiments using snapshots similar to those visible in fig. 4.
No databases of pictures and depthmaps associated are yet available nowadays,
so we decided to test our algorithm taking 20 pictures of the box illustrated in
fig. 4 from different viewpoints. We used a Kinect device for the acquisition in
an indoor environment and without any restriction except avoid that sun light
directly on the IR device’s camera. In fig. 5 we show how the planes, where the
interest points lay, are reprojected in frontal views; the homographies have been
defined accordingly to the PCA analysis of the underlying depth-map.

Fig. 4. A box acquired from different viewpoints and its depth-maps

Fig. 5. Images of interesting points after the homography to obtain a frontal view of
framed surface by the depth-map

We checked the discriminative power of the proposed descriptors, in particular
we compared the correct match rate and the euclidean distance from the closest
match and from the second candidate. With the SIFT descriptor applied to the
images, we obtained a correct match rate of 73%. For correct matches the mean
ratio of the euclidean distances between the correct one and the second one is
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around 0.8. Using the proposed approach we obtained a correct match rate of
85% with an average ratio of distances for the first match and the second one
of 0.65.

7 Conclusion

In this paper we propose a novel approach to define putative correspondences
between images where the information from corresponding depth-maps are fruit-
fully integrated to reduce variability in the neighborhood around interest points,
in particular projective or affine distortions are reduced to similarity transforms
making available more robust and complete descriptors like Taylor or Hessian
invariants applied to the Fourier-Mellin Transform.

The resulting approach demonstrates the profitable integration of depth-maps
with acquired images to strengthen matching capabilities. Examples have been
obtained by a low cost Kinect device.
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