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Abstract. Multiple video streaming in a shared channel with constant
bandwidth requires rate adaptation in order to optimize the overall qual-
ity. In this paper we propose a multi-stream rate adaptation frame-
work with reference to the scalable video coding (SVC) extension of the
H.264/AVC standard with medium grain scalability (MGS) and qual-
ity layer (QL). We first provide a general discrete multi-objective prob-
lem formulation with the aim to maximize the sum of assigned rates
while minimizing the differences among distortions under a total bit-
rate constraint. A single-objective problem formulation is then derived
by applying a continuous relaxation to the problem. We also propose
a simplified continuous semi-analytical model that accurately estimates
the rate-distortion relationship and allows us to derive an optimal and
low-complexity procedure to solve the relaxed problem. The numerical
results show the goodness of our framework in terms of error gap between
the relaxed and its related discrete solutions, the significant performance
improvement with respect to an equal-rate adaptation scheme, and the
lower complexity with respect to a sub-optimal algorithm proposed in
the literature.

Keywords: SVC, MGS, rate-distortion modeling, rate adaptation,
quality fairness.

1 Introduction

H.264 Advanced Video coding (AVC) standard with scalable extension, also
called Scalable Video Coding (SVC) [1], provides flexibility in rate adaptation
by coding an original video sequence into a scalable stream. Three scalability
methods are possible in SVC, named temporal, spatial and SNR scalability, that
allow to extract a sub-stream in order to meet a particular frame rate, resolution
and quality, respectively.

Due to the different complexities of the scenes composing a video sequence,
the relationships between the rate and the quality of a set of videos can be really
different among them. If individual video streams are transmitted to different
users in a broadcast dedicated channel, as for instance in the case of on-demand
IPTV services [2], an equal rate allocation can lead to unacceptable distortion
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of high-complexity videos with respect to low-complexity ones. Adaptive trans-
mission strategies must be investigated to dynamically optimize the quality of
experience (QoE) of each end-user.

In this paper, we focus on rate adaptation, also called in literature statis-
tical multiplexing, of SNR-scalable video streams, with a fixed temporal and
spatial resolution. Many contributions exist in the literature that provide rate
adaptation exploiting the Fine Granularity Scalability (FGS) tool, e.g. [3],[4]
and [5]. FGS coding allows to extract an arbitrary rate-distortion (R-D) point
while maintaining the monotonic non-decreasing behavior of the R-D curves.
Nevertheless FGS mode has been removed from SVC, due to its complexity.

Two different possibilities for the SNR scalability tool are now available in
SVC standard and implemented in the reference software [6], namely Coarse
Grain Scalability (CGS) and Medium Grain Scalability (MGS). CGS can be
achieved by coding quality refinements of a layer using a spatial ratio equal
to 1 and inter-layer prediction. However, CGS scalability can only provide a
small discrete set of extractable points equal to the number of coded layers.
MGS provides a finer granularity of quality scalability by dividing a CGS layer
into up to 16 MGS layers. The granularity can be also improved if a post-
processing quality layer (QL) insertion and a consequent quality-based extraction
is performed with the aim to optimize the R-D performance [7]. With this tool
MGS can be seen as alternative to the FGS coding.

The first aim of this work is to analyze the performance of the MGS with
QL and to provide a general R-D model. Other contributions exist in litera-
ture that estimate the R-D model for SNR-based scalable stream, with CGS
and MGS, e.g. [8],[9], either analytical and semi-analytical. The analytical mod-
els are dependent on the probability distribution of discrete cosine transform
(DCT) coefficients and often incur in a loss of accuracy. To achieve higher ac-
curacy, semi-analytical R-D models are preferable. The semi-analytical models
are based on parametrized functions that follow the shape of analytically de-
rived functions, but are evaluated through curve-fitting from a subset of the
rate-distortion empirical data points. In [9], the authors proposed an accurate
semi-analytical square-root model for MGS coding and compared it with linear
and semi-linear model. They concluded that the best performance is obtained
by changing the model according to a parameter that estimates the temporal
complexity, evaluated before encoding the entire sequence. However, a general
model, that is able to estimate the R-D relationship of a large range of video
sequences, is necessary to perform analytical optimization of the rate-adaptation
problem. Besides, they did not consider the post-processing QL insertion that
produces a variation of the R-D performance.

In [10] the authors proposed a general semi-analytical rate-distortion model for
video compression, also verified in [11] for SVC FGS layer, where the rate and the
distortion have an inverse relationship. Three sequence-dependent parameters
must be estimated through the knowledge of six empirical R-D points. We have
also verified this model with reference to SNR scalability with MGS and QL.
The high accuracy of the results led us to investigate a simplified model with
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lower complexity, where the number of R-D points can be reduced by eliminating
one of the parameters to estimate. Thus, we propose and compare a simplified
two-parameters semi-analytical rate-distortion model. This simplification has
two main advantages: (i) only four empirical points are needed by the curve
fitting algorithm to achieve good performance, (ii) it allows the derivation of
a low-complexity optimal procedure to solve the multi-stream rate-adaptation
problem, with a maximum number of iterations equal to the number of streams
involved in the optimization.

In summary, this paper collects the following main contributions: in section 2,
a general optimization problem is formulated with the aim to provide the max-
imum quality to each video while minimizing their distortion difference, and by
fulfilling the available bandwidth. In section 3 we analyze and verify two similar
semi-analytical models for MGS with QL by comparing them with respect to
complexity and the normally used goodness parameters: the root mean square
error (RMSE) and the coefficient of determination R2 [12]. An optimum and
computationally efficient procedure to solve the relaxed general problem is de-
rived in section 4, with a discussion about complexity and optimality. Finally
the numerical results, discussed in section 5, show (i) the goodness of our frame-
work by looking at the error between the relaxed and discrete solutions, (ii) the
performance improvement with respect to a blind adaptation, and (iii) the com-
plexity of the proposed algorithm with respect to a sub-optimal golden search
algorithm proposed in literature.

2 General Problem Formulation for Multi-stream Rate
Adaptation

In general, the aim of multi-stream rate adaptation is to optimize a certain
number of utility functions Ui with respect to a quality metric and according
to rate constraints [13]. Before or after the encoding process the original high
quality video must be adapted, to meet a particular QoE metric depending on
spatial, temporal and SNR resolutions.

In this section we provide a general problem formulation for multi-stream
rate adaptation. Let K be the number of streams involved in the optimization.
Given a set of lossy compression techniques {1, . . . , Nk}, we can define in general
Dk = {d1,k, ..., dNk,k}, k = 1, . . . ,K as the set of distortion values for the k-th
stream. Let us note that its cardinality |Dk| = Nk is generally not equal for each
video source, as in the case of high-flexibility SNR-based compression techniques.

The rate-distortion theory evaluates the minimum bit-rate Rk required to
transmit the k-th stream with a given distortion dn,k, by defining a function Fk

that maps the distortion to the rate, i.e.

Fk : Dk → R
+

dn,k → Rk = Fk(dn,k)
(1)

One of the desirable properties of Fk is the strictly decreasing monotony, i.e.

Fk(di,k) > Fk(dj,k), ∀di,k, dj,k : di,k < dj,k. (2)
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When multiple streams have to be transmitted in a shared channel the rate
adaptation algorithm must choose at each time slot and according to one opti-
mization strategy, the best vector D∗ = [D∗

1 , ..., D
∗
K ] ∈ D = D1 × . . .× DK . D

contains all the possible combinations of the elements of Dk, k = 1, . . . ,K and
has cardinality N =

∏K
k=1 Nk.

The main purpose of multi-stream rate adaptation is to provide the minimum
distortion, or equivalently the maximum rate according to assumption (2), to
each video under a total bit-rate constraints Rc. However, the solution of such
problem can generally lead to large distortion variations among different streams,
due to the different complexity of video sources. Quality fairness is an important
issue that must be addressed when multiple videos from different sources are
transmitted in a shared channel. In [4] the authors have shown that, given a
continuous decreasing exponential R-D relationship with a constant exponent
equal for each source, the solution to the problem of minimizing the distortion
variations is also the solution to the problem of minimizing the total average
distortion. However, an exponential R-D relationship is not an accurate model
for all the different video compression techniques, particularly for the SVC SNR
scalable stream [4]. Thus, a general multi-objective problem has to be formulated
and a continuous relaxation of the problem leads to some particular simplification
under certain assumptions. The general objective of our proposed framework
is to minimize the differences among the distortions provided to each video
stream while maximizing the sum of the rates until a maximum bit-rate is met.
As mentioned above, these two objectives alone can generally lead to different
solutions.

Thus, we formulate the general problem as a multi-objective problem:

min
D∈D

∑

i

∑

j<i

Δ(Di, Dj) (3)

max
D∈D

K∑

k=1

Fk(Dk) (4)

s.t.

K∑

k=1

Fk(Dk) ≤ Rc (5)

where

Δ(Di, Dj) =

{
0 if (i, j) ∈ XD ∨ (j, i) ∈ XD

|Di −Dj | otherwise
(6)

with

XD = {(i, j) ∈ Z
2 : (Di = Dmax,i ∧Dj > Di) ∨ (Di = Dmin,i ∧Dj < Di)} (7)

and Dmin,i = minn dn,i, Dmax,i = maxn dn,i. The operators ∧ and ∨ are the
logic ”AND” and ”OR”, respectively.

Ideal fairness among the distortion values assigned to the multiple video
streams, i.e. Di = Dj, ∀i �= j, is hard to be achieved. This fact is due to
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(i) the discretization of the R-D relationship and (ii) the presence of the mini-
mum and the maximum distortion values for each source that are related to the
complexity of each video and which can be very different. The definition of the
fairness metric takes this fact into account. In fact, the difference among video
distortions Δ(Di, Dj) is slightly modified to take into account the minimum and
the maximum constraints. It is worth noting that, under the assumption (2),
this problem admits a feasible solution only if at least the sum of the minimum
rates of the video sequences is supported by the transmission bandwidth Rc, i.e

K∑

k=1

Fk(Dmax,k) ≤ Rc (8)

otherwise a certain number of videos are not admitted in the transmission until
this constraint is not satisfied. The solution of the problem in (3)-(5) requires in
general an exhaustive search in the space D of all possible vectors. If N becomes
large the required complexity can be not suitable for real-time adaptation. On
the other hand if N is small, i.e there are few video sources as well as few related
R-D points, the problem solution can lead to a waste of the available bandwidth
and a large distortion differences among multiple videos.

In the next section we will propose a semi-analytical R-D model with reference
to the SNR scalability tool of SVC with MGS and QL layers [7]. This continuous
model will allow us to apply a continuous relaxation to the optimization problem
leading to a simplification in a single-objective problem formulation.

3 Rate Distortion Model for MGS with Quality Layer

We consider here SNR scalability obtained through the MGS coding and QL
post-processing insertion, with a fixed temporal and spatial resolution. In this
case the components of Dk are the distortion values of the extractable sub-
streams from the high quality original encoded stream.

MGS coding allows to distribute the transform coefficients obtained from a
macro-block by dividing them into multiple sets. The number of sets identifies
the number of weights, often named MGS layers, in the MGS vector. Thus, the
elements of the MGS vector correspond to the cardinality of each set.

The R-D relationship and its granularity depend on the number of MGS
layers and the coefficient distribution [14], [15]. In [15] the authors analyzed
the impact on performance of different numbers of MGS layers with different
configurations used to distribute the transform coefficients. We also verified their
results, by noting that more than five MGS layers reduce the R-D performance
without giving a substantial increase in granularity. This is mainly due to the
fragmentation overhead that increases with the number of MGS layers.

While extracting an MGS stream two possibilities are available in the ref-
erence software: a flat-quality extraction scheme, and a QL-based extraction
scheme. The second scheme requires a post-encoding process that computes a
priority index for each NAL unit, but achieves higher granularity, as well as bet-
ter R-D-performance [7]. However, differently to flat-quality extraction scheme,
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the quality-based extraction process does not give substantial variations in gran-
ularity and R-D performance when varying the distribution of the coefficients,
as also shown in [15]. In our extensive simulation campaign the best results in
terms of granularity and R-D performance are obtained with a MGS vector equal
to [3 2 4 2 5].

When the SVC video has to be adaptively transmitted it is common practice
to analyze the R-D model with respect to a fixed set of frames identified by
one group of pictures (GOP). In this way, the adaptation module can follow the
complexity variations of the different scenes. Therefore, throughout this paper
we assume that the reference time interval used to analyze the R-D relationship
as well as to optimize the distortion of multiple streams is the GOP interval.

In [10] the authors propose a general continuous semi-analytical R-D model
for video compression, also verified in [11] for SVC FGS layers, with the following
relationship :

Rk(D) =
ηk

D + θk
+ φk. (9)

The distortion D is evaluated as the average mean square error (MSE) of the
decoded video. The drawback of this approach is the need to estimate the three
sequence/encoder dependents parameters, ηk, θk and φk, by using curve-fitting
from a subset of the rate-distortion data points. The curve-fitting algorithm re-
quires a relevant number of iterations and function evaluations and six empirical
R-D points. To reduce the complexity, we can simplify this parametrized model
by eliminating one parameter, i.e.

Rk(D) =
αk

D
+ βk (10)

In this case, only four R-D points need to be evaluated to estimate the two
sequence-dependent parameters αk and βk, and as a result the number of itera-
tions and function evaluations decreases. Beside the complexity reduction, this
model allows a simple derivation of the solution of the problem (3)-(5), as we
will show later.

Table 1 compares the goodness of the two models with respect the coeffi-
cient of determination R2, the RMSE, the number of iterations and function
evaluations required by a non-linear Least Square Trust-Region (LSTR) algo-
rithm to converge. It can be noted how the number of function evaluations as
well as the number of iterations decrease while a minimum loss occurs in the
goodness parameter. In Figure 1, we plot the empirical R-D relationship for the
five sequences, used to obtain numerical results, as well as their related R-D
curves based on model (10). All of them are referred to the GOP with the worst
RMSE value (the minimum in Table 1). We can also appreciate in this figure
the achievable granularity of the quality-based extraction.

In the next section we will apply a continuous relaxation to the problem
(3)-(5) by exploiting the model (10) and we will provide a low-complexity optimal
procedure to solve it.
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Table 1. Comparison between the two semi-analytical model in (9) and (10) with
respect to the minimum and maximum RMSE and the coefficient of determination
R2 evaluated for each GOP (GOP size equal to 16) of five video sequence with CIF
resolution and frame rate of 30 fps. The video are encoded with one base layer (QP
equal to 38) and two enhancement layers (QP equal to 32 and 26), both with 5 MGS
layers and a weights vector equal to [3 2 4 2 5].

Video Model R2 [min,max] RMSE [min,max] Av. No. iteration Av. No. Function Evaluation

Coastguard
Model (10) [ 0.9842 , 0.9934 ] [ 37.895 , 79.992 ] 30.2 89.6
Model (9) [ 0.9956 , 0.9982 ] [ 22.261 , 36.724 ] 34.7 155.9

Crew
Model (10) [ 0.9752 , 0.9944 ] [ 23.038 , 89.130 ] 30.9 94.2
Model (9) [ 0.9914 , 0.9972 ] [ 20.019 , 52.489 ] 35.6 159.9

Football
Model (10) [ 0.9662 , 0.9891 ] [ 53.403 , 205.572 ] 29.0 89.5
Model (9) [ 0.9809 , 0.9993 ] [ 12.940 , 99.810 ] 38.0 169.3

Foreman
Model (10) [ 0.9669 , 0.9955 ] [ 19.710 , 53.371 ] 25.7 73.2
Model (9) [ 0.9906 , 0.9980 ] [ 13.516 , 33.745 ] 34.1 154.3

Harbour
Model (10) [ 0.9854 , 0.9907 ] [ 51.860 , 73.344 ] 37.5 129.8
Model (9) [ 0.9952 , 0.9991 ] [ 18.883 , 44.822 ] 45.3 164.3

Fig. 1. R-D Model (straight line), according to eq. (10) fitting the empirical R-D
relationship for the GOP with the worst RMSE with reference to Table 1

4 GOP-Based Multi-stream Rate Adaptation Framework

Without loosing generality we assume that each video is coded with the same
GOP size and the rate allocation is performed at the GOP boundaries. Thus,
from now on we focus on one GOP interval. Considering all the discussions
in the previous sections, we apply a continuous relaxation to the optimization
problem based on the model (10). Therefore we assume that the discrete variable
Dk becomes continuous (denoted by D̃k), but limited by the minimum and
maximum distortion, i.e.

D̃k ∈ [Dmin,k, Dmax,k]. (11)
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With reference to the SNR scalability, the points {Dmax,k,Fk(Dk,max)} and
{Dmin,k, Fk(Dk,min)} are the base layer and the highest enhancement layer
points, respectively. Those values are two of the four R-D points required by the
curve-fitting algorithm.

It is worth noting that a trivial solution can be derived if the sum of the full
quality encoded stream rates is less then or equal to the available bandwidth,
that corresponds to transmit the entire encoded streams without adaptation.
Thus, we analyze the non-trivial case where the following constraint holds :

K∑

k=1

Fk(Dk,min) > Rc (12)

According to the continuous relaxation (11) and the assumptions (8) and (12),
a feasible solution is obtained when the constraint on the overall channel band-
width is active with equality. A single-objective problem, where the second objec-
tive, i.e (4) in the problem formulation, is eliminated and replaced by an equality
constraints can be then formulated. Nevertheless, as a result of the relaxation of
the problem, the two constraints referred to the maximum and minimum avail-
able rates of each stream must be added. They imply that each video sequence
has to obtain at least the base layer and not more than the maximum available
bit-rate must be allocated to each video source to save bandwidth.

Thus, the relaxed problem can be formulated as

min
D̃∈RK

∑

i

∑

j<i

Δ(D̃i, D̃j) (13)

s.t.

K∑

k=1

Rk(D̃k) = Rc (14)

Rk(D̃k) ≥ Fk(Dk,max) ∀k (15)

Rk(D̃k) ≤ Fk(Dk,min) ∀k (16)

Note that the model Rk(D̃k) replaces the actual R-D relationship Fk(Dk). In
the next subsection we will derive an optimal procedure to solve this relaxed
problem using methods that are computationally efficient and without the use
of heuristics or brute-force search.

4.1 Problem Solution

A solution to the relaxed problem (13)-(16) can be derived by using sub-optimal
procedures as the golden search algorithm proposed in [3] for a piecewise linear
model. Nevertheless, the continuous formulation of model (10) allows us to derive
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a low-complexity optimal procedure, by noting that the solutions to the problem
without the constraints (15) and (16) can be easily derived as follows:

D̃∗ = D̃∗
k =

∑K
k=1 αk

Rc −
∑K

k=1 βk

, ∀k. (17)

Since those constraints imply that a minimum (maximum) or a maximum (min-
imum) rate (distortion) has to be allocated to each video stream, these solutions
can be improved successively through a simple iterative procedure.

Let xk, yk ∈ {0, 1}, k = 1, . . . ,K, be binary variables that indicate whether
or not the two constraints are active for the video stream k and will be updated
during the procedure. We can then define:

Ax,y =
K∑

k=1

xkykαk (18)

Bx,y =

K∑

k=1

xkykβk (19)

Rav
x,y = Rc −

K∑

k=1

(1 − xk)Fk(Dk,max)−
K∑

k=1

(1 − yk)Fk(Dk,min) (20)

where Rav
x,y is the available rate for the videos which have not active constraints.

The iterative procedure works as follows:

1. Initialize: xk = 1 and yk = 1 ∀k = 1, . . . ,K
2. For each k : xk · yk = 1 Compute:

D̃∗
k =

Ax,y

Rav
x,y−Bx,y

R̃∗
k = Rk(D̃

∗
k), based on model (10)

condition = 0

2a. If R̃∗
k > Fk(Dk,min) then

R̃∗
k = Fk(Dk,min)

D̃∗
k = Dk,min

yk = 0
condition = 1

2b. elseif R̃∗
k < Fk(Dk,max) then

R̃∗
k = Rk(Dk,max)

D̃∗
k = Dk,max

xk = 0
condition = 1

3. If condition = 1
Go to step 2.

4. else break
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The final relaxed solutions, given xk and yk, k = 1, . . . ,K, are then given by:

R̃∗
k =

⎧
⎪⎨

⎪⎩

αk

D̃∗
k

+ βk if xk · yk = 1

Fk(Dk,max), if xk = 0

Fk(Dk,min), if yk = 0

(21)

with

D̃∗
k =

⎧
⎪⎨

⎪⎩

Ax,y

Rav
x,y−Bx,y

if xk · yk = 1

Dk,max, if xk = 0

Dk,min, if yk = 0

(22)

The algorithm requires in the worst case, a maximum of K iterations with
(K − 1)/2 rate and distortion evaluations. At the first iteration, due to the
initialization, D̃∗

k is computed as in (17). At each iteration the algorithm checks
if the related rate solutions violate one of the constraints (15), (16). If it happens
for one video, the algorithm assigns the relative minimum or maximum rate to
this particular video and re-evaluates the distortion for the other video streams.

The optimality of the solutions (21) and (22) can be easily proved, by not-
ing that the sum of the difference functions in (13) is always kept to zero, i.e.∑

i

∑
j<i Δ(D̃∗

i , D̃
∗
j ) = 0 and the sum of the rates is always equal to the available

bandwidth. In fact, if at the n-th iteration a maximum rate constraint (condition
of step 2a) is violated for the i-th video, the distortion of the other videos at the
next iteration, D̃∗

k[n+ 1], will decrease, i.e.

D̃∗
k[n+1] < D̃∗

k[n] < Di,min, ∀k �= i : xk[n+1] · yk[n+1] = 1, yi[n] = 0. (23)

Vice versa, when the second constraint (condition of step 2b) is violated for the
j-th video the distortion D̃∗

k[n+ 1] of the other video will increase, i.e.

D̃∗
k[n+1] > D̃∗

k[n] > Dj,max, ∀k �= j : xk[n+1] ·yk[n+1] = 1, xj[n] = 0. (24)

For all other videos with xk · yk = 1 the solutions are left untouched, as shown
in (22). The inequalities (23) and (24) follow from the monotony property of the
R-D function.

Let us finally note that the conditions of steps 2a and 2b are auto-exclusive
for each video source if

Ds,max > Dp,min, ∀s �= p, s, p = 1, . . . ,K (25)

When two or more video streams have a very different scene complexity in the
same GOP, the inequality (25) may not be verified and the evaluated distortion
D̃∗

k may fall inside the interval [Ds,max, Dp,min]. In this particular case, to assure
the best fairness, the algorithm would require some temporary additional steps
to evaluate which constraints has to be applied first, which leads to a small
increase in the complexity. In order to keep the complexity low we propose
for this case to prioritize the distortion minimization. Thus, we first apply the
constraints on the maximum rate (step 2a) by assigning the minimum distortion
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Dp,min to the p-th video. At the next iteration, the distortion will decrease, due
to the convexity of the R-D functions. If the distortion decreases in such way
that the evaluated rate of the s-th video do not violate its maximum distortion
constraint, the algorithm will be able to assign a lower distortion to it. Let us
note that this choice does not compromise the optimality of the solution of the
problem according to eq. (6).

From a mathematical perspective the optimal discrete solution D∗, starting
from the relaxed one D̃∗, should be derived by applying optimization techniques,
e.g. branch & bound search. Nevertheless, such techniques require the knowledge
of all the empirical discrete R-D points or a subset of R-D points close to the
relaxed optimum solutions, with an increase in complexity. To keep the com-
plexity low, it is common practice to extract the higher discrete bit-rate under
the optimal relaxed solution, by paying a minimum waste of bandwidth due to
the granularity of the empirical R-D relationship.

5 Numerical Results

In this section we evaluate the performance of the proposed rate adaptation
framework by using the JSVM reference software [6]. We encode five video se-
quences with different scene complexity, i.e. coastguard, crew, football, foreman,
harbour in CIF resolution with a frame rate of 30 fps. The SNR-scalability is
obtained through 2 enhancement layers, each one split in 5 MGS layers with
vector distribution [3 2 4 2 5]. The quantization parameter (QP) of the base and
enhancement layers are equally spaced and set to 38, 32 and 26, respectively.
Each sequence is coded GOP-by-GOP with a GOP size equal to 16, and the
post-processing quality-based process is then applied, as mentioned throughout
the paper. We first provide the performance metrics for a particular case of
bandwidth, i.e. Rc = 3000 kbps, then we study the impact of different Rc val-
ues. The fairness is evaluated through two metrics: the average MSE difference
δav = (1/S)

∑
i

∑
j<i |D∗

i − D∗
j |, where the average is computed with respect

to the number S = K(K − 1)/2 of terms in the sum, and the most used MSE
variance for each GOP. We first compare the solution of our algorithm (OPT)
with an equal-rate (ER) scheme where no adaptation is performed, i.e. the same
proportion of the available bandwidth is assigned to each video. To have a fair
comparison we apply to ER scheme the constraints (15) and (16) in order to
guarantee the base-layer to each video and to fulfill the available bandwidth.
Therefore, after sorting the streams in two vectors into decreasing order accord-
ing to base-layer bit-rate and into increasing order according to highest layer
bit-rate, respectively, we iteratively check if the bit-rate Rk = Rc/K required by
each ordered stream violates one of those constraints. If it happens, we assign
the corresponding bit-rate and equally re-distribute the remaining bandwidth to
the other streams.

Table 2 shows the average MSE resulting from the rate assigned to each video
sequences for the first 15 GOPs. As expected, the ER scheme is able to provide
less distortion to the low-complexity video, i.e. crew, foreman, by compromising
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Table 2. Average MSE of each video sequence with equal-rate (ER) assignment and
rate adaptation with the proposed algorithm (OPT). Total bandwidth is equal to 3000
kbps.

Gop
index

Guard Crew Football Foreman Harbour

ER OPT ER OPT ER OPT ER OPT ER OPT

1 53.71 53.71 18.59 34.64 80.86 55.87 18.40 31.66 74.28 55.52

2 57.35 54.57 19.79 37.85 74.65 59.56 18.24 29.96 81.23 56.98

3 69.45 54.63 23.52 38.67 64.02 54.06 24.63 29.99 94.54 58.27

4 81.35 59.02 39.87 39.87 63.69 56.29 17.75 33.34 75.92 57.75

5 53.71 47.36 24.89 41.67 49.53 43.55 17.73 31.58 71.93 50.97

6 55.16 41.70 28.22 38.26 16.85 24.55 19.51 34.00 73.82 46.48

7 49.11 42.22 39.87 44.31 20.23 31.36 12.40 27.35 82.14 49.31

8 49.38 42.64 33.87 38.57 31.49 39.12 14.21 28.35 73.47 48.10

9 45.79 44.11 37.47 41.71 43.89 44.20 19.20 36.12 73.51 50.37

10 42.02 46.06 42.85 43.02 47.94 45.19 19.51 32.24 69.64 52.51

11 44.49 49.17 34.40 45.68 59.81 48.88 17.77 31.33 67.82 53.78

12 42.07 40.36 25.56 39.42 41.44 41.17 18.73 30.32 71.87 46.47

13 40.17 43.18 27.09 41.48 50.24 43.84 16.55 27.87 72.23 50.91

14 42.11 56.76 23.86 35.08 82.50 56.45 25.39 45.48 68.08 57.95

15 38.29 60.28 24.81 38.76 84.63 56.84 25.92 57.12 69.48 55.82

Av. 50.95 49.05 29.64 39.93 54.12 46.73 19.06 33.78 74.66 52.74

Fig. 2. Rate assigned by our adaptation algorithm in each GOP, with bandwidth equal
to 3000 kbps

the distortion of the video sequences with more complexity. Our algorithm, while
providing fairness, is able to improve the performance of the complex videos, by
allocating more bits to video with more complex scenes. This is more clear in
figure 2 where we plot the rate assigned to each video sequence GOP-by-GOP.
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Table 3. Average modified MSE difference Δav, average MSE difference δav and MSE
variance in each GOP interval. Comparison between the proposed algorithm (OPT)
and equal-rate (ER) assignment with bandwidth equal to 3000 kbps.

GOP
index

Δav δav Variance

ER OPT ER OPT ER OPT

1 36.12 0.43 36.12 13.86 884.40 145.41

2 35.51 1.00 36.17 15.67 889.50 171.43

3 33.78 0.84 37.37 14.50 941.76 148.35

4 19.53 0.55 32.65 13.85 705.43 139.62

5 24.79 1.48 27.44 8.89 489.84 53.75

6 29.92 1.64 29.92 10.31 614.97 69.38

7 33.67 1.42 33.67 11.37 752.18 84.72

8 27.28 2.21 27.28 8.72 495.50 52.27

9 23.39 2.01 23.39 6.20 382.93 26.39

10 21.24 1.93 21.24 8.72 319.33 54.28

11 24.30 1.46 25.10 9.68 398.50 73.46

12 24.56 1.22 24.56 6.81 420.64 34.09

13 26.90 1.54 26.90 9.69 463.11 70.69

14 32.00 0.30 32.00 11.40 680.44 98.23

15 32.64 1.05 32.64 8.87 730.21 73.16

Av. 28.37 1.21 29.76 10.57 611.25 86.35

More bit-rate is assigned to coastguard, football and harbour video sequences,
allowing them to achieve more quality.

In Table 3, we show the improvements of our proposed schemes with respect to
ER. The averageMSE difference is significantly reduced and equivalently the vari-
ance is decreased up to ten times. However, in this particular case of bandwidth,
the MSE difference (variance) is still quite high, due to the minimum rate con-
straints. The average modified MSE difference Δav = (1/S)

∑
i

∑
j<i Δ(D∗

i , D
∗
j )

according to definition in (6), is also evaluated in Table 3. Let us note that this
metric also give us the information of the error generated when the discrete solu-
tion replaces the continuous solution of the relaxed problem, whose Δav is zero.
This error includes two contributions: the estimation error of the model and the
integrality gap. As expected the average error is not small due to mainly the low
granularity of the low-rate points.

In figure 3, the MSE variance averaged over 15 GOPs is evaluated for dif-
ferent bandwidths. In the bandwidth interval considered, the assumptions (8)
and (12) hold for each GOP. When the bandwidth is very low the two schemes
provide approximately the same MSE because the optimization range is limited
by the minimum rate constraints. When the bandwidth increases, our proce-
dure improves the fairness leading the variance close to 0. A slight variance in-
crease occurs at large bandwidths when the maximum rate constraints limit the
achievable distortion. On the other hand the ER scheme generally increases the
MSE variance until the base-layer constraints are active for most of the streams.
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Fig. 3. Variance of the MSE averaged over 15 GOPs, with different bandwidth values.
Comparison between the proposed algorithm (OPT) and equal-rate (ER) assignment.

Fig. 4. Average number of iterations required by our adaptation algorithm (OPT) and
golden search algorithm (GSA) to converge

This behavior can be partially reduced by controlling the base-layer bit-rate [16]
to each video according to their complexity as performed for instance in [3].

To further assess our proposed scheme, we compared it to the golden search
algorithm (GSA) proposed in [3], to solve the problem (13)-(16). This algorithm
can be seen as a suboptimal version of our procedure. The initial solution is
computed as function of the golden-section value and the difference between the
lower and higher bounds, i.e. a = mink Dk,min and b = maxk Dk,max, identi-
fied by the minimum and the maximum distortion among the videos. At each
iteration the solution is updated by applying the per-video constraints and by
compressing the search interval consequently. The GSA terminates when the dif-
ference between the sum of the assigned rates and the available bandwidth is less
of a chosen value ε. Nevertheless, an additional termination condition must be
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introduced to assure the convergence of the algorithm, that is usually indicated
by the tolerance τ , i.e. |a− b| ≤ τ . In order to provide a fair comparison we set
ε = 0.0002Rc, and τ = 0.01, leading to a sub-optimality error under 0.5% over
all the investigated cases. In figure 4 we plot the average number of iterations
required by the two algorithms for different bandwidths. The number of itera-
tions of our algorithm is limited by the number of video sequences, as mentioned
in sub-section 4.1, and decreases away from the minimum and the maximum
bandwidths obtained as the sum of minimum and maximum rates of each video.
The GSA algorithm requires generally more iterations due to the sub-optimal
choice of the starting-point. This result does not change by increasing the num-
ber of videos involved in the optimization, as we also verified.

6 Conclusions

In this work we proposed a multi-stream rate adaptation framework with ref-
erence to SNR-scalability of SVC with MGS and QL. We formulated a general
discrete problem with the aim to minimize the average distortion while provid-
ing fairness to different video sources. Two similar semi-analytical model that
estimate the R-D relationship of each video source GOP-by-GOP are evaluated
and compared with respect to goodness parameters and complexity. The general
discrete problem was then relaxed and an optimal procedure was derived based
on a low-complexity model. In the numerical results we showed the feasibility of
our framework by analyzing the gap between the relaxed and discrete solution
according to fairness metrics, the improvements with respect to an equal-rate
scheme and the lower complexity of the proposed procedure with respect to an
existing algorithm in the literature.
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