
L. Atzori, J. Delgado, and D. Giusto (Eds.): MOBIMEDIA 2011, LNICST 79, pp. 1–15, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Tackling the Sheer Scale of Subjective QoE 

Vlado Menkovski, Georgios Exarchakos, and Antonio Liotta 

Eindhoven University of Technology,  
P.O. Box 513, 5600MB Eindhoven, The Netherlands 

{v.menkovski,g.exarchakos,a.liotta}@tue.nl 

Abstract. Maximum Likelihood Difference Scaling (MLDS) used as a method 
for subjective assessment of video quality alleviates the inconveniencies 
associated with high variation and biases common in rating methods. However, 
the number of tests in a MLDS study rises fairly quickly with the number of 
samples that we want to test. This makes the MLDS studies not scalable for the 
diverse video delivery environments commonly met in pervasive media 
networks. To tackle this issue we have developed an active learning approach 
that decreases the number of MLDS tests and improves the scalability of this 
method.   
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1 Introduction 

As video is becoming highly pervasive, pervasive media networks are being 
developed as an underlying delivery technology to handle the newly arisen technical 
requirements. Pervasive media networks deliver and adapt video and other 
multimedia content to the context, environment and purpose for which the content is 
being used. Efficient adaptation of the different video parameters necessitates 
understanding of the effect of these parameters on the delivered Quality of Experience 
(QoE). For example, depending on the context, type of content and screen 
characteristics a person might not perceive any more improvement if the video bit-
rate is larger than 512kbps. On the other hand, for a low cost service a 256kbps video 
could offer only slightly lower quality than 512kbps (again in the specific context) 
and be the optimal setting. Calculating these utilities requires understanding of the 
costs, but more importantly it requires understanding of the perceived quality for 
these resources. To determine the utility of these resources an accurate estimation of 
quality is necessary. This needs to be achieved through subjective testing, because of 
the subjective nature of perceived quality of video. 

Our focus is on Maximum Likelihood Difference Scaling (MLDS) because of its 
superior performance as a subjective testing methodology. MLDS is based on two-
alternative-forced choice (2AFC) tests that suffer significantly less from bias and 
variability [1]. However, MLDS studies require all the combinations of four for a 
given set of samples. As the number of parameter or characteristic of interest 
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increases, so does the number of samples and in turn the number of MLDS tests. Even 
though each of these 2AFC tests is simple and straight forward the overall subjective 
study is not scalable. To tackle the scale of this type of subjective studies we have 
developed an adaptive test selection procedure for MLDS that improves the learning 
rate.  The adaptive approach iteratively inputs new data by asking the participant to do 
specific tests, instead of randomly going through all of the combinations of samples. 
Because of the built in redundancy and high correlation in MLDS, some tests become 
more informative than others over the course of the experiment. The adaptive MLDS 
estimates the responses of the unknown tests from the information collected by the 
answered ones. The tests estimated with less confidence are more informative and are 
selected as next. Additionally, the confidence for the remaining unknown tests is an 
indication of how much more tests are necessary, and provides for early stopping 
capability.  

The adaptive MLDS algorithm implemented in a software test bed and executed 
over subjective test data showed significant improvement in the learning rate and 
substantial decrease in the number of tests that are necessary.  

2 Video Quality Assessment 

Estimation of video quality is highly diverse area with many methods, which fall 
within the two main categories of objective or subjective. Objective methods estimate 
the quality by focusing on the signal fidelity or measuring the distortions of the video 
compared to the original. These objective methods are referred to as full-reference 
(FR) methods. Some effective FR methods include MultiScale-Structural SIMilarity 
index (MS-SSIM) [2], Perceptual Video Quality Metric (PVQM) [3], and the 
perceptual spatio-temporal frequency-domain based MOtion-based Video Integrity 
Evaluation (MOVIE) [4]. These vary in accuracy compared to the subjective 
reference estimation and complexity. In these methods there is always a trade-off 
between accuracy and complexity and memory requirements. In addition to the FR 
methods there are the reduced-reference (RR) and  no-reference (NR) objective 
methods.  The RR methods have only partial information on the original signal. 
Although less accurate this makes them more practical than FR and applicable to 
continuous assessment of video quality while FR are mostly used in offline 
estimation. One such method is [5], which examines local harmonic strength features. 
These features are correspond to artifacts such as blockiness and blurriness. By 
examining the loss of these features the method estimate the video quality.   The NR 
methods are the most practical because the hold no information on the source of the 
signal, but also most challenging to implement.  

The subjective methods include some type of tests with actual human participants. 
Evidently objective tests are more practical and therefore with significantly more 
widespread use. However, objective tests commonly are not designed to consider all 
the factors that affect the perceived quality of the video or the QoE [6]. In this manner 
the subjective methods are regarded as more accurate and are usually used as a 
benchmark for the objective methods. One such study by Seshadrinathan et al. [7] 
analyzes the different objective video quality assessment algorithms by correlating 
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their output with the differential mean opinion score (DMOS) of a subjective study 
they executed. This type of undertaking is costly, time consuming and necessitates 
considerable amount of tests to achieve statistical significance. The bias and the 
variability of subjective testing arise from the fact that subjective tests rely in rating as 
the estimation procedure. Rating is inheritably biased due to the variance in the 
internal representation of the rating scale by the subjects [8][9][10]. 

In [8] we describe the use of a two-alternative-forced-choice (2AFC) method to 
estimate the relative differences in quality. The method Maximum Likelihood 
Difference Scaling (MLDS) delivers the ratio of subjective quality between a video 
with different levels of resource provided. Because the method is a 2AFC method, 
meaning the participant has to answer a single binary question of the ‘which is bigger’ 
type, the amount of bias and variability is significantly lower than in rating [1].  

In the case of video quality estimation the 2AFC test is discriminating between 
different levels of quality. More particularly, four videos or two pairs of video are 
presented and the participant needs to select which pair has the bigger difference in 
quality. This might sounds as a particularly difficult and time-consuming effort, but in 
most cases the difference in video quality is quite evident. The video is typically short 
(less than 10 seconds) and uniformly impaired, so very often the participant is 
confident enough to vote after only watching a part of each of the video. Many of the 
tests are quite obvious and derivative, i.e. based on previous responses the following 
are apparent.  Nevertheless, the number of tests is combination of all the samples over 
four, so the number of tests is a function that is forth order polynomial of the number 
of samples. For one or two parameters that affect the video the number of samples is 
not very big, but as number of samples grows the tests become unfeasible.  

Motivated by the effectiveness of MLDS in estimating difference in quality or the 
utility of the resources and the possibilities for improving the efficiency of the method 
we have developed an adaptive test selection procedure for MLDS that improves the 
learning rate and provides for possibilities for executing a subset of the subjective 
tests while estimating the rest with a given confidence. 

2.1 MLDS 

To better understand the mechanics of the adaptive MLDS we need to start with a 
discussion on MLDS itself. The goal of this method is to map the objectively 
measurable scale of video quality to the internal psychological scale of the viewers. 
The output is a quantitative model for this relationship based on a psychometric 
function [11] as depicted in Figure 1. 

The horizontal axis of the Figure 2 represents the physical intensity of the stimuli – in 
our study the bit-rate of the video. The vertical axis represents the psychological scale of 
the perceived difference in quality. The perceptual difference of quality ψ1 of the first 
(or reference) sample x1 is fixed to 0 and difference of quality ψ10 of the last sample x10 
is fixed to 1 without any loss in generality [12]. In other words there is 0% difference in 
quality between x1 and x1 (itself), while there is 100% difference in quality between x1 
and x10. The MLDS method estimates the relative distances of the rest of the videos ψ2 
through ψ9 and therefore models the viewers’ internal quality scale. 
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Fig. 1. Psychometric function 

This 2AFC test is designed in the following manner; two pairs of videos are 
presented to the viewers {xi, xj} and {xk, xl} where the indexes of the samples are 
selected as 1≤i<j<k<l≤10, so that the ranges of quality does overlap. The video with 
smaller index has higher quality. The viewer then selects the pair of videos that have 
bigger difference in quality. For a given test Tn the viewer selects the first pair (sets 
Rn=1) if she perceived the qualities of videos in the quadruple as |ψj - ψi |-|ψl - ψk |>0, 
otherwise she chooses the second pair (Rn=0). These comparisons between the quality 
distances of video pairs allow for design of a quality distance model between all of 
the presented videos. The method calculates the quality differences ψ2 through ψ9 as 
parameters in maximum likelihood estimation (MLE). 

The MLE is a method for estimating the parameters of a statistical model. Using 
signal detection theory (SDT) [13] MLDS models each response as sampled from a 
Gaussian distribution with unknown parameters. The difference of differences of 
quality between the four videos is the signal contaminated by Gaussian noise or the 
mean of a Gaussian distribution (1). When executing a test the participant calculates 
the value.  

( ), , ,
n n n nj i l kn

δ i j k l ε ψ ψ ψ ψ ε+ = − − + +   (1) 

Where ε  is value sampled from a Gaussian distribution with zero mean and standard 
deviation of 1.  
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Fig. 2. Stimuli intensity contaminated with Gaussian noise 

Using this assumption, the probability of each response is given in (2). 

( )2 0( 1; , ) 1 Φ Φn
n n n

δP R δ σ δσ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−= = − =  (2) 

 

Fig. 3. Probability of first pair being selected 

For a test where the first pair is selected the probability is given in (2). 

( )( 0; ) 1 ( 1; ) 1 Φn n n n nP R δ P R δ δ= = − = = −
                                  

(3) 

For a test where the second pair is selected the probability is given in (3). The 
likelihood of all the responses is accordingly as equation (4).  

( ) ( )( )1
1

(Ψ | ) Φ 1 Φ nn
N RR

n n
n

L R δ δ
−

=
= −∏  

(4) 
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Fig. 4. Probability of second pair being selected 

There is no closed form for such a solution, so a direct numerical maximization 
method needs to be used to compute the estimates (5). 

ΨΨ argmax (Ψ | )L R=  (5)

More details on MLDS for video quality can be found in [14] and on MLDS for 
image quality in [15]. 

A fitter curve through the Ψ  also represents the utility of the bit-rate as a resource 
or how much we can improve the quality by increasing the bit-rate over the tested 
range assuming that the cost of increasing the bit-rate is constant over the same range.  

3 Adaptive MLDS 

The MLDS method is appealing for their simplicity and efficiency, however one full 
round of tests for ten levels of stimuli (i.e. video qualities) requires 210 individual 
tests. The full range of tests carry significant redundancy and removing some of  it 
should not necessarily make the results significantly less reliable; even more so it can 
have only negligible effects on the end result.  

In this adaptive procedure we have two aims, to improve the rate of learning and to 
decrease the number of required tests. The approach is based on the idea that with the 
knowledge acquired by executing a small number of tests we can estimate the answers 
of the remaining tests with some confidence. Then using these estimates together with 
the known responses we execute the MLDS method. Executing the MLDS with more 
responses helps the argument maximization procedure. The estimates rely on the 
characteristics of the psychometric curve (such as its increasing monotonicity), so that 
the overall performance of MLDS is improved.  

The idea comes from the notion that some of the tests are covering the range of 
others. In fact, all of the tests are being covered by others in one way or the other. The 
approach makes use of the characteristics of the psychometric curve. The 
psychometric curve is a monotonously increasing function ( )Ψ f X= . Consequently, 

for k l m< < , mk lx x x> >  if mk l kx x x x− > − in the physical domain then 

mk l kψ ψ ψ ψ− ≥ − in the psychological domain Figure 5. 
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Fig. 5. Monotonicity of the psychometric curve 

If we now observe five samples , , , , mi j k lx x x x x such that i j k l m< < < <  and we 

observe two tests 1( , ; , )i j k lT x x x x  and 2( , ; , )i j k mT x x x x , the perceived qualities in the 

psychological domain are i j mk lψ ψ ψ ψ ψ≤ ≤ ≤ ≤ . If in T2 the first pair is bigger or 

j i m kψ ψ ψ ψ− > −  that would mean that mj i k l kψ ψ ψ ψ ψ ψ− > − ≥ − . In other 

words, if in T2 the first pair is selected with a bigger difference, then in T1 the first pair 
has a bigger difference as well (Figure 5).  

There are many different combinations of tests that have this dependency for the 
first pair or the second pair. We can generate a list of dependencies for each pair 
based on two simple rules: 

• Let us assume test T1(a, b, c ,d) such that a b c d< < < , a cb dψ ψ ψ ψ− > −  and 

test T2(e, f, g ,h) with he f g< < < . If e a b f<≤ ≤  and c g h d<≤ ≤  then 

e gf hψ ψ ψ ψ− > −  (Figure 6). 

 

Fig. 6. If first pair in T1 is bigger than first pair of T2 is bigger as well 
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• Let us assume that for test T1(a, b, c ,d) with a b c d< < < , a cb dψ ψ ψ ψ− < − . 

If for test T2(e, f, g ,h) with e f g h< < <  the following hold: a e f b<≤ ≤  and 

g c d h<≤ ≤  then e gf hψ ψ ψ ψ− < − . 

 

Fig. 7. If second pair in T1 is bigger than second pair of T2 is bigger as well 

After introducing an initial set of responses we can estimate the probabilities of the 
rest, however first we need to learn the probabilities of each of the known responses 
to be actually valid. MLDS estimates the values of the psychological parameters 
Ψ=(ψ1,...,ψ10) such that the combined probabilities of each response or the overall 
likelihood of the dataset is maximized. Nevertheless, after the argument maximization 
is finished the different responses have different probabilities of being true.  

Having a set of initial quality Ψ values as the prior knowledge about the underlying 
process coming from the data, we generate the estimations for the rest of the tests. 
The interdependencies from the tests are far more complex, of course. 

Let us assume, for example, a test T1 that depends on tests T2 and T3. If the answer 
from T2 indicates that the first pair has a larger difference in T1 and the answer from 
T3 indicates the opposite then we need to calculate the combined probability of T2 and 
T3 to estimate the answer of T1.  

Assuming that the responses of T2 and T3 are independent and that the probability 
of giving the first and second answer is the same, the combined probability of T2 and 
T3 is given in (6). 

2 3
1

2 3 2 3

( )(1 ( ))
( )

( )(1 ( )) (1 ( )) ( )
P T P T

P T
P T P T P T P T

−=
− + −

 (6) 

Of the remaining tests that have no responses, some will have higher estimates than 
others. In other words we have better estimations for some of tests than others. To 
improve the speed of learning, the adaptive MLDS method, focuses on tests that have 
smaller confidence in the estimations. This way when we receive the next batch of 
responses the overall uncertainty in the estimates should be minimized.  
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The goal of the adaptive MLDS is to develop a metric that will indicate how 
sufficient the amount of tests is for determining the psychometric curve. We can 
obtain this indication from the probabilities of the estimations. As we get more 
responses by asking the right questions the estimation for the rest of the tests 
improves. At some point adaptive MLDS will have very high probabilities of 
estimating correctly all of the remaining tests. This is a good indication that no more 
tests are necessary.  

4 Experimental Setup 

To show the performance of the adaptive MLDS we have developed a software 
simulation. The software simulates the learning process of the adaptive MLDS 
algorithm by sequentially introducing data from a previously [14] executed subjective 
study. The simulation test-bed is a Java application that loads the subjective data from 
a file, and then sequentially introduces new datapoints. The datapoints are selected by 
the adaptive MLDS algorithm and the estimated values are used to calculate the 
psychometric curve in each iteration. The output is compared to the output of running 
MLDS on the full dataset and the root mean square error (RMSE) is computed on the 
differences. In parallel a random introduction of data is also executed as a baseline for 
comparison. The adaptive MLDS algorithm is implemented in Java, while the MLDS 
software from [12] is used directly from R using a Java to R interface. To account for 
the variation in the results due to the random start and random data introduction in the 
comparison process, the simulation is repeated 100 times and results averaged. Finally 
the simulation process was computationally very demanding. Each numerical 
optimization was bootstrapped 1000 times. This was repeated for each step in the 
introduction of new batch of data and for each video. All this for a single simulation. 
To handle the computational demand the simulation was executed on a high 
performance computing grid.  

5 Results 

Adaptive MLDS as an active learning algorithm explores the space of all possible 
2AFC tests with the goal of optimizing the learning process. It also provides 
indication of confidence in the model built on the subset of the data, which provides 
for early stopping of the experiment. The performance of the adaptive MLDS is 
presented in Figure 8, 9, 10 and 11. In Figure 8 we present the accuracy of the 
estimations for ten types of videos against the number of introduced datapoints. In 
Figure 9 we observe the leaning rate of adaptive MLDS against the classical MLDS. 
The horizontal axis represents the number of points introduced at the time the 
calculation was executed and the vertical axis the RMSE between the estimated curve 
and the curve built on the whole dataset. We can clearly observe that for this 
datapoints adaptive MLDS brings significant improvement in the learning rate.  
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Fig. 8. Accuracy of the estimations 

In Figure 10 we present the standard deviation of the different value for the RMSE 
at each point. Figure 11 presents the distribution of the confidence or the probabilities 
of those estimations. Starting from the initial 15 data points most of the unknown 195 
test are estimated with 0.5 accuracy, but soon after introducing more data the 
estimations rapidly improve. Between 40 and 60 collected answers the confidence in 
the estimations was close to 1, suggesting that the rest of the tests are not necessary 
and that we can correctly estimate the psychometric curve without them. This also 
evident in Figure 9. The accuracy of the predicted psychometric curves is high for all  
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Fig. 9. Mean RMSE for the ten types of video 
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Fig. 10. Standard deviation of the RMSE for the three types of video 
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Fig. 11. Estimation confidences for the three types of videos over the number of introduced 
datapoints 
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datasets in this range. The RMSE is bellow 0.3 between the 10 given and predicted Ψ  
values. The accuracy in the prediction is generally very high and improves with the 
introduction of more data, shown in Figure 8. The Riverbed and Station are more 
difficult to learn due to high noise in the answers, which makes them also more 
difficult to estimate. 

6 Conclusions 

The adaptive MLDS algorithm is an active learning algorithm specifically designed 
for the MLDS method, a method for estimating a psychometric curve. Motivated by 
the fact that MLDS is efficient in estimating video quality utility functions we have 
developed this adaptive scheme to improve its learning efficiency. The results from 
the simulations show that adaptive learning provides for significant improvement in 
the learning rate of MLDS and gives solid indication for stopping the test early when 
further tests bring no significant improvement in the accuracy of the psychometric 
curve. Overall this approach adds to the efficiency of MLDS into tackling the issues 
that arise with subjective estimations of video quality. This further makes this method 
an excellent candidate for use in management of video delivery services and 
optimizing the QoE.  

Further we intend to apply this method in a subjective study of a more diverse 
environment, involving different devices and modes of use. Finally the method could 
be extended in the online learning direction for highly dynamic environments where 
model validity is short termed. 
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