
Hi-sap: Secure and Scalable Web Server System

for Shared Hosting Services

Daisuke Hara, Ryohei Fukuda, Kazuki Hyoudou,
Ryota Ozaki, and Yasuichi Nakayama

Department of Computer Science,
The University of Electro-Communications

Chofu, Tokyo 182–8585 Japan
hara-d@igo.cs.uec.ac.jp

Abstract. We propose Hi-sap, a Web server system that solves internal
security problems in a server used for shared hosting services and that
achieves high site-number scalability with little performance degrada-
tion. Customers are often exposed to internal attacks, i.e., malicious cus-
tomers illegally access other customers’ files. Existing approaches solve a
portion of this problem, but they are not enough from the view point of
performance, site-number scalability, or generality. The proposed system
protects customers’ files by isolating them in separate security domains,
“partitions” that are unit of protection, using a secure OS facility. A
default partition is a Web site, and each partition has a Web server in-
stance that runs under the privilege of an individual user and serves
files in the partition. Since the Web servers reuse server processes and
can run without the burden of a security mechanism themselves, there
is little performance degradation. In addition, since Hi-sap dynamically
controls the number of Web servers, the number of partitions in a server
is scalable. We implemented Hi-sap on a Linux OS and evaluated its ef-
fectiveness. Experimental results show that Hi-sap has up to 14.3 times
the performance of suEXEC and achieves high scalability of 1000 sites
per server.

Keywords: Security in a Server, Shared Hosting Service, Web Server
Architecture, Site-number Scalability.

1 Introduction

More people are creating their own contents and publishing them on the Web as
the Internet grows in popularity. Although there are various types of services for
creating Web contents, many powerful Web publishers tend to use shared host-
ing services. In the services, service providers typically lease server resources
for a monthly/yearly fee for use in building Web sites. Customers login to an
assigned server with a given account and install favorite weblogs, wikis [1], and
content management systems (CMSs) [2], etc. A customer can thereby publish

I. Tomkos et al. (Eds.): BROADNETS 2010, LNICST 66, pp. 119–137, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

120 D. Hara et al.

its contents more flexibly and powerfully. The shared hosting service’s require-
ments for a Web server are security in the server, site-number scalability1, and
performance.

Security is one of the most important concerns on the Web. Vulnerabilities in
Web browsers and Web servers are daily found, and both site administrators and
site audiences face security risks. Common attacks on the Web, such as cross site
scripting and cross site request forgeries, are conducted by external attackers. In
addition, the customers are exposed to internal attacks by malicious customers in
a shared server. Malicious customers who share a server can illegally access other
customers’ files on traditional Web servers and OSes. In the server configuration,
the customers have to set access permissions2 on their files so that Web servers
can access them. This means that the files can be accessed illegally by malicious
customers using command-line tools or through a Web server.

Scalability is also one of the most important concerns on the Web. As the num-
ber of Web sites grows, many server machines are required to house them. There
are some hardware approaches to improve performance per unit area. For exam-
ple, blade servers are optimized to minimize physical space and can reduce the
server footprints at the data center. However, much more sites must be housed
in a machine at shared hosting services. To achieve it, software approaches are
also required. That means an innovative server software is desired.

Additionally, we take into consideration generality. Generality means a kernel
modification is unnecessary and any programming language are supported. If
a kernel is modified, it is difficult to keep OS version up to date because of
the porting cost. If customers cannot use various programming language, it is
inconvenient and does not attract many customers.

It is thought that there was no approach that took into account these require-
ments. Although existing approaches solve a portion of the security problem,
they are not enough from the view point of performance, site-number scala-
bility, or generality. An approach that uses suEXEC [3,4,5] and POSIX ACL
[6] (suEXEC & POSIX ACL) has poor performance because they cannot be
applied to server-embedded interpreters [7,8,9,10] that process requests for dy-
namic contents at high speed. Harache [11] performs poorly for server-embedded
interpreters. In addition, virtual machines (VMs) or containers which have ad-
vanced due to increase hardware performance and the number of CPU cores are
problematic for shared hosting services because they have low scalability or low
generality; i.e., they typically require modifying the kernel.

To satisfy the requirements of shared hosting service, we propose a secure
and scalable Web server system called “Hi-sap” [12] that solves the problems.
Customer files are isolated in separate security domains, “partitions” that are
unit of protection, using a secure OS [13] facility. A default partition is a Web

1 Scalability of the number of sites in a server.
2 To publish static files, for example HTML and image files, read permission
must be granted to “other”, which is defined by the UNIX permission model
“owner/group/other”. To publish CGI scripts, execution permission must also be
granted.

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 121

site, and each partition has a Web server instance that runs under the privilege
of an individual user and serves files in the partition. Since the Web servers reuse
server processes and can run without the burden of a security mechanism them-
selves, there is little performance degradation. In addition, Hi-sap implements a
Web-server-level scheduler called “content access scheduler”, which dynamically
controls the number of Web servers. The scheduler reduces memory consumption
by partitions for which the Web server is not accessed by clients, so the number
of partitions in each server is scalable.

The target of our system is shared Web hosting services in which a server
houses from several hundred to one thousand sites. In contrast, VMs and con-
tainers target a server machine consolidation or virtual private server in which
a server houses from several to dozen OSes or server software programs.

We implemented Hi-sap on a Linux OS and evaluated its effectiveness. Ex-
perimental results show that Hi-sap has up to 14.3 times the performance of
suEXEC and achieves high scalability of 1000 sites per server.

The remainder of this paper is structured as follows. In section 2, we describe
the background. In section 3, we describe the key aspects of our design. In
section 4, we describe the implementation of Hi-sap on a Linux OS. In section
5, we describe our evaluation of the system. In section 6, we discuss benefit
and limitation of the system. Finally, in section 7, we summarize this work and
discuss future work.

2 Background

In this section, we describe shared hosting services, security threats in a shared
server, and existing approaches.

2.1 Shared Hosting Services

Providers of shared hosting services lease server resources, such as computing
power, network bandwidth, and data storage, to customers for a monthly/yearly
fee. The customers login to an assigned server with a given account and build
their Web sites on the server, which is usually shared with many other customers.
The customers share the same OS image. The number of customers housed on
a commodity server is generally from several hundred to one thousand.

The biggest concern of the service providers is the server footprints at the
data center. To reduce operating expense, it is important to reduce the footprints.
Recent virtualization technologies described later in section 2.3 and blade servers
aim at doing this. The service providers therefore want to maximize the number
of customers housed on a server. Their servers thus need to process requests
for contents at high speed and use computation resources, for example CPU,
memory, and disk, effectively.

An effective common approach to processing requests for contents at high
speed is to use server-embedded interpreters for dynamic contents, which con-
sume more computing resources than static contents. Dynamic contents are es-
sential for a rich user experience on the Web. A common gateway interface (CGI)

122 D. Hara et al.

has traditionally been used to generate dynamic contents. However, it is difficult
for CGI to process dynamic contents at high speed because it requires a pro-
cess termination, i.e., invoking fork() and execve() system calls, for each request.
Therefore, server-embedded interpreters, such as mod ruby [8], mod perl [9], and
mod python [10], have been used as an alternative to CGI. The interpreters are
contained in a server process and run as a part of the process. Although server-
embedded interpreters are commonly used on the Web, it is difficult to use them
for shared hosting services because of a security problem described later in sec-
tion 2.2. Therefore, suEXEC and the PHP: Hypertext Preprocessor (PHP) safe
mode [7] described later in section 2.3, 2.3 are still used in the service.

One way to use computation resources effectively is to assign resources to
sites in proportion to the volume of access traffic at each site to reduce resource
consumption by each site. The traffic distribution on the Web is known to follow
Zipf’s law [14]; i.e., while a few sites get a large amount of traffic, most sites get
little traffic. Resource allocation for sites that are not accessed at all should be
avoided.

The service providers additionally want to use general technologies to do main-
tenance easily. For example, they want to avoid modifications of kernel or server
software.

2.2 Security Threats in a Shared Server

The sharing of a server by many customers has caused new security threats.
The seed of them is the roughness of traditional OS access control; i.e., the file
permissions are managed for only three classes, owner, group, and other.

The customer is given an account and assigned a user ID by the service
provider for use in logging in to the assigned server. The “owner” of the cus-
tomer’s files is set to the user ID, and the files can be accessed only by the
customer. Thus, permissions must be granted for the files to “group” or “other”
so that the Web server, which is assigned a dedicated user ID3, can access them
(Figure 1 (0)). In this situation, the files can be illegally stolen, deleted, or
tampered with by malicious customers that share the server by using command-
line tools, for example cp and rm (Figure 1 (1)). They can additionally attack
through the Web server (Figure 1 (2)). For example, a malicious CGI script that
deletes an other customer’s writable files4 can run because the script runs under
the privilege of the dedicated user, which can write the file.

We identified the factors in the security scenario for a server:

– Worth protecting: customer files
– Threat: stealing, deletion, or tampering with files by malicious customers

that share a server
– Vulnerability: coarse-grained isolation of files in traditional OSes.

The one-to-one approach can be used to solve this security problem. In this
approach, customer files are isolated in separate domains. Each domain has a

3 e.g., apache, www-data, www.
4 e.g., a log file, wiki’s data file.

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 123

Server process

・

・

・

Customer account

・

・

・

・

・

・

Customer file

Web server Web client

Malicious

customer

(1)

(2)

(0) File permission
• rw-/---/r— (static contents

(e.g., HTML and image files))

• rw-/---/rw- (e.g., log files,
wiki’s data files)

HTTP

Command-line tools

Fig. 1. Internal security treats at a shared hosting service

Web server instance that serves only files in the domain. There is also a reverse
proxy server that dispatches requests from Web clients to the instance. However,
this approach is unsuitable for shared hosting services because of its poor site-
number scalability. This is because all instances run all the time though most
sites get little traffic, as mentioned in section 2.1.

2.3 Existing Approaches and Their Limitations

Although there are approaches that solve the security problem, they have limi-
tations.

Container and Virtual Machine. Containers [15,16,17,18,19] are OS-level
virtualization methods. Multiple containers with server software programs can
run concurrently in an OS (Figure 2 (1)). Each container has a different names-
pace. Assigning a container to every site creates high security in the server.
However, using containers at shared hosting services is difficult because of their
low scalability for the number of sites in a server. Although this mechanism can
scale up to a few hundred sites, service providers require up to about 1000 sites.
In addition, some containers, for example Linux-VServer [17], need to modify
the kernel. Kernel modifications are dependent on the kernel version, so keeping
them up to date generally requires significant porting [19]. If the porting is not
done, the kernel’s latest features and devices cannot be used.

In VMs [20,21,22,23,24,25], a hypervisor can run multiple OSes concurrently
on the same server machine (Figure 2 (2)). Assigning an OS to every site also
creates high security in the server. However, using VMs at shared hosting services
is difficult because of the overhead involved. The utilization of computation
resources for each site dramatically increases when this mechanism is used. This
strongly affects the scalability of the number of sites in a server. For example,

124 D. Hara et al.

HardwareHardware Hardware

Hypervisor

OS OSOS

OS

Container ContainerContainer

Server

software

Server

software

Server

software

Server

software

Server

software

Server

software

Secure OS

Server

software

Server

software

Server

software

Hi-sap

(1) Container (2) VM (3) Hi-sap

kernel
modification

(1) Some containers need to modify the kernel.

(2) A paravirtualization needs to modify the kernel.

(3) Hi-sap does not need to modify the kernel, and it can use any secure OS.

Fig. 2. Software stack of container, VM, Hi-sap

an OS that runs server programs on VMware ESX Server reportedly uses about
200 MB of memory [21]. That means about 200 GB of memory is required
to provide 1000 sites. Although some mechanisms of memory sharing between
VMs are proposed recently [22,23,24], no reports show that the number of sites
in a server reaches up to 1000. Vrable et al. described that Xen could not run
concurrently more than 116 VMs because of Xen’s limitation [22]. Gupta et
al. [23] described that their evaluations only used up to 6 VMs. In addition,
paravirtualization [25] needs to modify the kernel, and it has low generality.

In Hi-sap, server software programs share a single namespace in an OS (Figure
2 (3)). Therefore, our system can control each server software program by using
content access scheduler and achieves high scalability of the number of sites. It
also achieves high generality because it does not need to modify the kernel, and
it can use any secure OS, which is described later in section 3.1.

PHP Safe Mode. PHP [7] has a safe mode. This mechanism maintains a high
level of security in a server by restricting the operations of PHP scripts.

– File handling is permitted only when the owner of the script is the same as
the owner of the file that the script is about to handle.

– File handling is permitted only below specific directories.
– Environment variables that can be changed are restricted.
– Specific functions and classes are disabled.

However, this mechanism depends on the language processor and is not com-
monly used. There are also many cases when using this mechanism is difficult
because of its restrictions.

Hi-sap supports any programming language because it provides a security
mechanism outside the language processor.

suEXEC & POSIX ACL. The suEXEC program uses “setuid bit” to run
CGI scripts under the privilege of an individual user different from a dedicated
user. POSIX ACL provides access control for each user, unlike traditional access
control, i.e., owner/group/other.

In this approach, first, read and execution permission for public access files is
granted only to a dedicated user by using POSIX ACL. Files can therefore be

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 125

Server process

(1) suEXEC

CGI process

Protected instance

www

A

To be terminated

fork(), execve()

(2) Harache

root

A

To be terminated

setuid(),

setgid()

(3) Hi-sap

A

Reusable

forward

Dispatcher

B C

workers

www – privilege of the dedicated user

A,B,C – privilege of an individual user

root – privilege of the administratorsuEXEC process

root⇒A
setuid(),

setgid()

fork(), execve()

Fig. 3. Process composition of Web server systems

published without granting permission to “other”. Second, CGI scripts run under
the privilege of the site owner by using suEXEC. This approach can therefore
prevent execution of cp and rm commands and prevent malicious customers that
share the server from using CGI scripts to steal, delete, or tamper with files.

However, suEXEC cannot achieve the speed of server-embedded interpreters
since it needs a process termination after each request (Figure 3 (1)). In addition,
because server-embedded scripts that are executed by using server-embedded
interpreters run under the privilege of the dedicated user, they cannot ensure
the security in a server. suEXEC is therefore applied only to a CGI.

Harache. Our previously proposed Web server system, Harache [11], enables
safe and convenient use of server-embedded programs. With Harache, each pro-
cess of a Web server runs under the privilege of an individual user for every
site. Harache therefore requires that permission be granted to only “owner” for
any contents that include server-embedded scripts. Although Harache has up to
1.7 times the performance of suEXEC, it cannot achieve the speed of server-
embedded interpreters since it needs a process termination after each HTTP
session (Figure 3 (2)).

3 Design

We designed our proposed server system, Hi-sap, which can be used with UNIX-
like OSes, with two goals in mind.

– High security with little performance degradation
– High site-number scalability in a shared server.

126 D. Hara et al.

3.1 Security with Little Performance Degradation

Performance Degradation in Existing Systems. In general, a fundamen-
tal requirement for protecting files completely in a server is that the files are
accessible only by the owner. This requires that processes that access the files
have to be an owner of the files. In a shared server, Web servers have to run un-
der the privilege of an individual user. However, changing the server privilege is
problematic. Popular types of Web servers, such as Apache [3], consist of several
server processes. Since the processes share the listen port (usually port 80) to
accept requests from Web clients, the Web server system cannot control which
of the requests a process grabs. Therefore, changing the privilege of a process,
i.e., invoking setuid() system call, has to be done after a request is grabbed
because the Web site (and in turn the customer files) about to be accessed by
the request is not known until the request arrives. However, changing the priv-
ilege of a process is noninvertible because setuid() requires the administrator
privilege. Consequently, the approaches that use an ordinary Web server system
have a problem: the processes have to be terminated after finishing a request
or an HTTP session (Figure 3 (1)(2)). For example, the CGI processes in the
suEXEC & POSIX ACL approach and the server processes in Harache have to
be terminated. Unsurprisingly, this degrades performance due to the increase in
process terminations and activations. This means that improving security with
little performance degradation requires a proactive privilege change ability.

The Hi-sap Approach. In the Hi-sap approach, the privilege of processes is
changed in advance to avoid performance degradation (Figure 3 (3)). A “dis-
patcher” distributes requests to “workers” that run under the privilege of an
individual user. The system protects customer files by isolating them in sepa-
rate security domains, called partitions that are unit of protection, using a secure
OS facility.

Partition: A partition in our system is a site or content. A default partition is
a site. Each partition has a Web server instance (worker) that serves files in the
partition. File permissions are granted for any files in a partition to only owner. A
worker can therefore access only a specific dedicated partition (cannot access any
other partitions) because workers run under the privilege of an individual user.

In the example shown in Figure 4, there are two sites (site X and Y). Site Y
contains two contents (content Y1 and Y2). A partition is assigned to site X,
content Y1, and content Y2. The worker dedicated to processing requests for
content Y1 (worker (B)) cannot access files on site X (Figure 4 (a)). Even if the
files are on the same site, the worker cannot access them if they are in an other
partition (Figure 4 (b)).

Since the Web servers reuse server processes and do not bear any overhead
for security, there is little performance degradation.

Combination with Secure OS: If the privilege of the administrator account
is appropriated due to a security hole or mis-configuration, there is no effect on
the access control of Hi-sap, which uses individual user privileges.

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 127

Customer file

Domain A

Type A

Domain B

A

Type B

B

Domain C

worker (C)

Type C

C

mod_ruby

Content Y1

(Partition B)

Content Y2

(Partition C)

Site YSite X (Partition A)

File access

Type enforcement

of a secure OS

(a) (b)

(a) An attacker cannot access files in other partition,

(b) even if the files are on the same site.

Server process

worker (B)

mod_perl

worker (A)

mod_python

rmcp

A,B,C – privilege/owner (an individual user)

File permission

rw-/---/-—

Fig. 4. Partitions

The Hi-sap enables access control in combination with a secure OS [13]. A
secure OS enhances security features, e.g., mandatory access control (MAC) [26]
and least privilege [27] security. The MAC mechanism enforces access control for
all users and processes without exception. In the least privilege security model,
a higher-than-needed privilege level is not granted to users and processes. These
mechanisms isolate server software programs from the other server software pro-
grams in the same OS; i.e., cracking one server software program does not affect
the other programs.

To prevent files from being stolen, deleted, or tampered with when the admin-
istrator account is appropriated, our system assigns “domain” of a secure OS to
every worker and assigns “type” to every partition. In Figure 4, domain A, B
and C are assigned to worker (A, B and C), and type A, B and C are assigned
to files of partition A, B and C. If worker (B) is cracked and the privilege of
the administrator account is appropriated, the attacker can access only partition
B (content Y). Therefore, the system ensures the security for each partition by
using a secure OS.

The system requires MAC and the least privilege security model; i.e., it can
use any secure OS.

3.2 Scaling Number of Customers

Our content access scheduler is a Web-server-level scheduler that enhances the
scalability of the number of partitions in a server. It controls the creation and
termination of workers.

128 D. Hara et al.

Web client

worker A worker B worker C

dispatcher

workers

…

www

www

A C
B

B

(3) process

(5) send response

(1) receive request

GET / HTTP/1.1

Host: www.C.net

reverse proxy
(4) forward response

(2) forward request

Server process A,B,C,www: privilege

Hi-sap

Fig. 5. Overview of Hi-sap architecture

In a Web server, memory utilization strongly affects scalability. Thrashing de-
creases the performance of Web servers dramatically [11]. Therefore, the system
dynamically terminates workers not required to save memory resources. This
means the system keeps only necessary workers. This scheduler works well be-
cause of Zipf’s law described in section 2.1; i.e., while workers for a few sites
that get a large amount of traffic are always active, workers for most sites that
get little traffic are usually inactive.

The scheduler enables high scalability, in particular, by optimizing the algo-
rithm used to create and terminate workers in accordance with the characteristics
of the contents.

3.3 Hi-sap Architecture

An overview of the system architecture is shown in Figure 5. The system consists
of a dispatcher and many workers. Each worker runs under the privilege of an
individual user and processes requests for a specific dedicated partition. The
dispatcher is a reverse proxy server and distributes requests to workers.

Secure OSes have trouble when transferring user privileges. If the policy of
a secure OS permits workers that run under the privilege of the administrator
account to transfer privileges to ordinary users, problems may occur if workers
are appropriated. That means secure OSes are ineffective because a worker that
is appropriated can transfer privileges to any ordinary user. Therefore, in our
system, workers initially run under the privilege of ordinary users.

4 Implementation

We implemented Hi-sap on a Linux OS with SELinux [13]. The dispatcher was
implemented as an Apache module, mod hisap, on an Apache HTTP server
(ver. 2.0.55) [3]. One thousand Apache HTTP servers (ver. 2.0.55) were used

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 129

Web client

worker B

workers

�

(1) receive request

www
www

worker A

A

A

B

B

worker C

C

C

C

hisapd

(3) ask to activate

worker C

root

root

(i) select worker A,

who has no
requests

(8) send response

(6) process request
reverse proxy

(4) activate

worker C

(2) determine if

worker C is active

dispatcher

(ii) terminate

worker A

GET / HTTP/1.1

Host: www.C.net

(5) forward request

(7) forward response

Server process A,B,C,www,root: privilege

UNIX domain socket HTTP

Hi-sap

Fig. 6. Overview of Hi-sap request processing

Web client dispatcher hisapd worker A worker B worker C

receive request

(e.g. for site C) determine if

worker C is

active

ask to activate

worker C
activate

worker Ccomplete

activation

forward

request

forward

responsesend

response

if worker C is inactive

if thrashing seems to occur

select worker A

who has no

requests

terminate

worker A

process

Fig. 7. Sequence of Hi-sap request processing

as workers. Each worker waited for requests at a unique port. The content ac-
cess scheduler and other management facilities of the workers were implemented
as a daemon, hisapd. An overview and sequence of request processing for the
system is shown in Figure 6, Figure 7.

Our system has a simple and user-level implementation and does not need to
modify the kernel, and it can use any secure OS. Therefore, our system can be
easily ported to any UNIX-like OSes. In addition, our system can easily scale
out because workers can be distributed to many server machines.

The details of the dispatcher and hisapd are as follows.

130 D. Hara et al.

4.1 Dispatcher

If the dispatcher receives a request, e.g., for partition C in Figure 6, from a Web
client (Figure 6 (1)), the dispatcher determines whether the dedicated worker
for partition C is active (Figure 6 (2)). If the worker (worker C) is inactive,
the dispatcher asks hisapd to activate it (Figure 6 (3)). The communication
between the dispatcher and hisapd uses a UNIX domain socket. “Worker ID”, the
identifier of the requested worker, is then recorded in a dedicated log file, “worker
request log”. After hisapd activates the worker (Figure 6 (4)), the dispatcher
forwards the request to the worker (Figure 6 (5)). The worker processes the
request (Figure 6 (6)) and forwards the response to the dispatcher (Figure 6
(7)). The dispatcher sends the response to the Web client (Figure 6 (8)).

4.2 hisapd

As described in section 4.1, hisapd dynamically activates workers after receiving
requests from the dispatcher.

There is also a procedure for worker termination. When thrashing seems to
occur, hisapd terminates workers that have not been requested recently. The
conditions under which hisapd judges thrashing seems to occur are as follows.

– A swap-in occurs.
– A swap-out occurs.
– Memory utilization is equal to or greater than 99%5.

It checks for these conditions every five seconds5. When all conditions are met,
hisapd starts terminating workers. It selects which workers to terminate on the
basis of two conditions.

– The worker is active.
– The worker is not recorded in the most recent 10,0005 requests in the worker

request log.

The pseudo least recently algorithm is used to reduce the time for searching the
worker request log. As illustrated in Figure 6, when thrashing seems to occur,
hisapd selects worker A because it has not been requested recently (Figure 6 (i))
and terminates it (Figure 6 (ii)).

4.3 SELinux Configuration

The SELinux file context (FC) file defines the relationship between a file and
the security context of SELinux. Each worker is installed at /vhosts/”Worker
ID”/. The /vhosts/”Worker ID”/bin/apachectl scripts for starting and stopping
workers are assigned the same security context. Other files are assigned a differ-
ent security context in every partition because they are used while a worker is
running.

5 This value is adjustable.

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 131

5 Evaluation

We evaluated Hi-sap using the hardware configuration listed in Table 1.

Table 1. Hardware configuration of experimental environment

Network

Switching Hub Dell PowerConnect 2724
1000 BASE-T × 24

Client

CPU Intel Pentium III Xeon 500 MHz × 4

Memory 256 MB (swap 512 MB)

OS Fedora Core 4 (Linux 2.6.14)

NIC Intel PRO/1000XT (1 Gbps)

Server

CPU AMD Opteron 240EE 1.4 GHz × 2

Memory 4 GB (swap 8 GB)

OS Fedora Core 4 (Linux 2.6.14)

NIC Broadcom BCM5704C (1 Gbps)

5.1 Basic Performance

We evaluated the basic performance of Hi-sap when processing dynamic contents
to determine its effectiveness. An Apache HTTP server ver. 2.0.55 (Apache), an
Apache enabling suEXEC (suEXEC), and a one-to-one approach that described
in section 2.2 were used for comparison. A one-to-one system enables access
control in combination with a SELinux to isolate each worker. Although a one-
to-one system is similar to our system, mod hisap and hisapd were not installed.
Therefore, all workers ran from beginning to end. Apache and suEXEC did not
enable a SELinux. In our system, Apache, and one-to-one, a PHP script was
executed by the server-embedded interpreter. In suEXEC, a PHP script was
executed as a CGI. Our system, Apache, suEXEC, and one-to-one used the
default configuration files. We used httperf benchmark ver. 0.8 [28] to measure
performance.

We sent requests to the PHP script and measured the response throughput.
The script calls phpinfo(), which displays the system information of the PHP
language processor. The traffic generated by the script is 40 KB per request.
As shown in Figure 8, the throughput with our system was, on average, 28.0%
lower than with Apache and was a maximum of 56.5% lower. This was due to
the overhead of the reverse proxy operation. However, the throughput was, on
average, 10.2 times that with suEXEC and was a maximum of 14.3 times the
throughput. It was, on average, 1.0% lower than with one-to-one and was a
maximum of 2.6% lower. This was due to the overhead of mod hisap and hisapd
operation. Since this overhead is very low, this implementation is effective.

132 D. Hara et al.

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000

Request frequency (N/s)

T
h
ro
u
g
h
p
u
t
(N
/s
)

Apache
One-to-one
Hi-sap
suEXEC

Fig. 8. Basic performance evaluation

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

Request frequency (N/s)

T
h
ro
u
g
h
p
u
t
(N
/s
)

Apache
One-to-one
Hi-sap
suEXEC

Fig. 9. Basic performance evaluation: Weblog

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

Request frequency (N/s)

L
a
te
n
c
y
 (
s
)

Apache
One-to-one
Hi-sap
suEXEC

Fig. 10. Basic performance evaluation: latency

In addition, we performed the same experiment for a real application (We-
blog). We used tDiary6 ver. 2.0.2 written in Ruby. As shown in Figure 9, the
throughput with our system was, on average, 2.0% lower than with Apache and

6 http://www.tdiary.org/

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 133

was a maximum of 6.9% lower. It was, on average, 1.1% lower than with one-
to-one and was a maximum of 3.7% lower. The reason for reducing performance
difference between Apache and our system compared to the experiment using the
PHP script is that the processing time for communication increased. As shown
in Figure 10, the latencies of Apache, one-to-one, and our system were small. In
contrast, the latency of suEXEC was very large, so suEXEC is not suitable.

This evaluation demonstrates the system has sufficiently high performance
while ensuring security in a server.

5.2 Scalability

We evaluated the site-number scalability of Hi-sap when processing dynamic
contents. The one-to-one approach was used for comparison. This experiment
was designed to determine the effectiveness of the content access scheduler.

We sent 100 requests to a PHP script in each partition sequentially and mea-
sured the response throughput. The script was the same as that described in
section 5.1. We used the Apache HTTP server benchmarking tool (ver. 2.0.41-
dev). As shown in Figure 11, our system had substantially higher throughput

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900 1000

Number of partitions (N)

T
h
ro
u
g
h
p
u
t
(N
/s
)

Hi-sap

One-to-one

Fig. 11. Scalability evaluation

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Number of partitions (N)

M
e
m
o
ry
 u
ti
li
z
a
ti
o
n
 (
%
)

One-to-one memory
Hi-sap memory
One-to-one swap
Hi-sap swap

Fig. 12. Scalability evaluation: memory utilization

134 D. Hara et al.

Table 2. Comparison of approaches (overall evaluation)

Security Basic Site-number
in Server Performance Scalability

Apache poor excellent excellent

suEXEC & POSIX ACL good poor excellent

One-to-one good excellent poor

Hi-sap excellent excellent excellent

than one-to-one from beginning to end. The reduction in throughput with our
system as the number of partitions increased was lower than with one-to-one.
With one-to-one, the OS crashed due to a memory shortage when the number
of partitions reached about 600.

The change in memory utilization is plotted in Figure 12. The swap utilization
of one-to-one increased dramatically as the number of partitions increased, which
is the reason for the OS crashing. In contrast, our system does not use swap
space as much because of the content access scheduler. In addition, although our
system could avoid swapping by advancing the scheduling algorithms, it gave
priority to immediate evaluation of the entire system.

This experiment demonstrates that the system has high site-number
scalability.

5.3 Comparison of Approaches

As shown in Table 2, suEXEC & POSIX ACL had poor performance, and scal-
ability of one-to-one was lower than that of others. Our system ranked high for
all items and did not have any weak points. It is therefore the most effective.

6 Discussion

In this section, we discuss benefit, limitation, and target of the system.

6.1 Benefit of a User-Level Approach

In our system, server software programs of all sites share a single namespace in
an OS. Computation-resource utilization of our system is much less than that
of VMs and containers because all sites share computation resource except Web
server processes. Therefore, it achieves high site-number scalability.

It also achieves high generality because it does not need to modify the kernel,
and it can use any secure OS. As described in section 2.3, kernel modifications
require significant porting effort. Our user-level approach enables compatible
between different kernel versions for binary compatibility, and also compatible
with other UNIX-like OSes for source compatibility.

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 135

6.2 Limitations

Network Isolation: VMs and containers provide a network isolation mecha-
nism. A server software program on them is isolated at layer 2 or 3 from the
others.

In our system, workers share a single IP address and use a unique port.
SELinux can restrict access to each port. A worker therefore cannot sniff packets
of the others.

Administrative Cost: Our system has many workers. Installation and main-
tenance costs increase in proportion to the number of workers that include a
Web server instance and contents. To add or remove a worker, configuration of
a dispatcher and SELinux is also required.

Because VMs and containers require installation of an OS or a container in
addition to setup Web server instance and contents, administrative cost of our
system is believed to be lower than that of VMs and containers.

Response Time for Request to Inactive Workers: Our system control the
creation and termination of workers by using content access scheduler to achieve
high site-number scalability. A response for a request to inactive workers thus
takes a longer time than that to active ones because worker activation is required.
However, this latency does not matter because running a server software program
is very fast.

On the other hand, VMs and containers require to boot an OS (VM) or a
container in addition to run a server software program. This takes a lot of time.

6.3 Target of Hi-sap

Our system is applicable to Web hosting services with following conditions.

– A dedicated OS for each Web site is unnecessary.
– The demand of communication confidentiality is not severe.

– The demand of real-time processing is not severe.

The target of our system is therefore shared Web hosting services in which a
server houses from several hundred to one thousand Web sites.

If the demands are much severe, a dedicated server or a virtual private server
is available.

7 Conclusion

This paper has three contributions. First, we have clarified security problems
and requirements of shared hosting services. The requirements are security in
the server, performance, and site-number scalability. Second, we have clarified
that existing approaches and their limitations. It is thought that there was no
approach that took into account these requirements. At last, we have designed

136 D. Hara et al.

a secure and scalable Web server system for shared hosting services, and imple-
mented it on a Linux OS with SELinux. Our evaluation results demonstrate our
system qualitatively and quantitatively satisfies the requirements.

We plan to optimize the content access scheduler algorithm to avoid swapping
and to enable more than 1000 sites to be housed. In addition, the concept of
Hi-sap can be applied other daemons, for example mail servers and network file
systems, which provide the service to many users in a server.

Acknowledgments. This work was supported in part by the Exploratory Soft-
ware Project of the Information-technology Promotion Agency, Japan.

References

1. WikiWikiWeb, http://c2.com/cgi/wiki?WikiWikiWeb
2. Goodwin, S., Vidgen, R.: Content, content, everywhere...time to stop and think?

The process of Web content management. IEE Computing & Control Engineering
Journal 13(2), 66–70 (2002)

3. Apache HTTP Server, http://httpd.apache.org/
4. Neulinger, N.: CGIWrap: User CGI Access, http://cgiwrap.sourceforge.net/
5. Marsching, S.: suPHP, http://www.suphp.org/
6. Grunbacher, A.: POSIX Access Control Lists on Linux. In: Proc. FREENIX Track:

2003 USENIX Annual Technical Conference, pp. 259–272 (2003)
7. PHP: Hypertext Preprocessor, http://www.php.net/
8. mod ruby, http://modruby.net/
9. mod perl, http://perl.apache.org/

10. mod python, http://www.modpython.org/
11. Hara, D., Ozaki, R., Hyoudou, K., Nakayama, Y.: Harache: A WWW Server Run-

ning with the Authority of the File Owner. J. IPS Japan 46(12), 3127–3137 (2005)
(in Japanese)

12. Hara, D., Nakayama, Y.: Secure and High-performance Web Server System for
Shared Hosting Service. In: Proc. the 12th International Conference on Parallel
and Distributed Systems (ICPADS 2006), pp. 161–168 (2006)

13. Loscocco, P., Smalley, S.: Integrating Flexible Support for Security Policies into
the Linux Operating System. In: Proc. FREENIX Track: 2001 USENIX Annual
Technical Conference, pp. 29–40 (2001)

14. Classman, S.: A Caching Relay for the World Wide Web. In: Proc. the 1st Inter-
national World-Wide Web Conference, pp. 69–76 (1994)

15. Kamp, P., Watson, R.: Jails: Confining the omnipotent root. In: Proc. the 2nd
International System Administration and Networking Conference (2000)

16. Dike, J.: A user-mode port of the linux kernel. In: Proc. the USENIX Annual Linux
Showcase and Conference (2000)

17. Linux-VServer, http://linux-vserver.org/
18. Linux containers, http://lxc.sourceforge.net/
19. Suranyi, P., Abe, H., Hirotsu, T., Shinjo, Y., Kato, K.: General Virtual Hosting via

Lightweight User-level Virtualization. In: Proc. the 2005 International Symposium
on Applications and the Internet (SAINT 2005), pp. 229–236 (2005)

20. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proc. the 19th ACM
Symposium on Operating Systems Principles (SOSP 2003), pp. 164–177 (2003)

http://c2.com/cgi/wiki?WikiWikiWeb
http://httpd.apache.org/
http://cgiwrap.sourceforge.net/
http://www.suphp.org/
http://www.php.net/
http://modruby.net/
http://perl.apache.org/
http://www.modpython.org/
http://linux-vserver.org/
http://lxc.sourceforge.net/

Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services 137

21. Waldspurger, C.A.: Memory Resource Management in VMware ESX Server. In:
Proc. the 5th Symposium on Operating Systems Design and Implementation (OSDI
2002), pp. 181–194 (2002)

22. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A., Voelker, G.,
Savage, S.: Scalability, Fidelity and Containment in the Potemkin Virtual Honey-
farm. In: Proc. the 20th ACM Symposium on Operating Systems Principles (SOSP
2005), pp. 148–162 (2005)

23. Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A.C., Vahdat, A., Varghese,
G., Voelker, G.M.: Difference engine: Harnessing memory redundancy in virtual
machines. In: Proc. the 8th Symposium on Operating Systems Design and Imple-
mentation (OSDI 2008), pp. 309–322 (2008)

24. Milos, G., Murray, D.G., Hand, S., Fetterman, M.A.: Satori: Enlightened page
sharing. In: Proc. the 2009 USENIX Annual Technical Conference (USENIX 2009),
pp. 1–14 (2009)

25. Whitaker, A., Shaw, M., Gribble, S.: Denali: Lightweight Virtual Machines for Dis-
tributed and Networked Applications, University of Washington Technical Report,
02-02-01

26. McLean, J.: The algebra of security. In: Proc. 1988 IEEE Symposium on Security
and Privacy, pp. 2–7 (1988)

27. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proc. the IEEE 63(9), 1278–1308 (1975)

28. Mosberger, D., Jin, T.: httperf—A Tool for Measuring Web Server Performance.
In: Proc. the 1st Workshop on Internet Server Performance, pp. 59–67 (1998)

	Hi-sap: Secure and Scalable Web Server System for Shared Hosting Services
	Introduction
	Background
	Shared Hosting Services
	Security Threats in a Shared Server
	Existing Approaches and Their Limitations
	Container and Virtual Machine.
	PHP Safe Mode.
	suEXEC & POSIX ACL.
	Harache.

	Design
	Security with Little Performance Degradation
	Performance Degradation in Existing Systems.
	The Hi-sap Approach.

	Scaling Number of Customers
	Hi-sap Architecture

	Implementation
	Dispatcher
	hisapd
	SELinux Configuration

	Evaluation
	Basic Performance
	Scalability
	Comparison of Approaches

	Discussion
	Benefit of a User-Level Approach
	Limitations
	Target of Hi-sap

	Conclusion
	References

