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Abstract. Estimation of traffic demand is a major requirement in 
telecommunication network operation and management. As traffic level 
typically varies with time, online applications such as dynamic routing and 
dynamic capacity allocation need to accurately estimate traffic in real time to 
optimize network operations. Traffic mean can be estimated using known 
filtering methods such as moving averages or exponential smoothing. In this 
paper, we analyze online traffic estimation based on exponential smoothing, 
with focus on response and stability. Novel approaches, based on traffic arrivals 
autocorrelation and cumulative distribution functions, are proposed to adapt 
estimation parameters to varying traffic trends. Performance of proposed 
approaches is compared to other adaptive exponential smoothing methods 
found in the literature. The results show that our approach based on 
autocorrelation function gives the best combined response-stability 
performance.  

Keywords: Traffic measurement, estimation adaptation, trend detection, 
exponential smoothing; autocorrelation. 

1 Introduction 

An important need in network operation and management is the estimation of traffic 
demand. Depending on the network application, this demand is usually defined by the 
average arrival rate of data packets or user connections. Depending on the network 
management function performed, the network provider estimates this average rate 
using different techniques. Network planning targets a long timescale (months, years), 
and in this case, arrival rate is estimated in an offline manner based on past traffic 
statistics and marketing forecasts. Once the network is deployed, call routing and 
bandwidth allocation occur on a shorter timescale (minutes, hours) and can be 
classified as online management functions. At this timescale, typical network traffic 
show diurnal variation in average arrivals corresponding to user activity patterns [1], 
[2]: daily traffic is non stationary; rather it will go through stationary periods of quiet 
and busy traffic, joined by transition periods of trend traffic. Static bandwidth 
allocation based on peak demand would waste network resource in periods of low 
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traffic. Conversely, allocation based on the mean demand for the day will cause 
network congestion and service degradation in high traffic periods. For continued 
optimal performance, the online network functions must adapt to traffic diurnal 
variation. It is then crucial for network operators to have a traffic demand estimation 
method that is simple to be operated online, yet accurate to provide continuous 
efficient network optimization. 

With the advent of adaptive state dependent [3] and revenue-maximizing [4], [5] 
traffic routing algorithms, traffic demand estimation algorithms such as [6] started to 
be proposed. Later on, with the possibility of adaptive bandwidth provisioning for 
network continued optimization (as in MPLS tunnels, virtual and overlay networks), 
several more online demand measurement and estimation approaches were proposed 
[7]-[12]. As arrival rate estimation is generally affected by measurement noise, 
several filtering techniques have been proposed to infer the average rate. In [8], an 
approach based on the Autoregressive Integrated Moving Average (ARIMA) is used 
to support bandwidth provisioning. In [9], approximate filtering algorithms based on 
general birth and death stochastic model were presented. In [10], Kalman filter theory 
is used in a traffic optimal estimation scheme to forecast link capacity requirements. 

Simpler methods well fit for online computation, such as moving averages (MA) 
[11], weighted average (WA) [12] and exponential smoothing (ES) aka. EWMA 
(exponentially weighted moving average) [11], [13], [14], [15] have commonly been 
used to estimate and predict time series average. It was shown in [11] that one can 
obtain similar estimation accuracy from MA and ES by selecting appropriate 
controlling parameter values. In this paper, we focus on online estimation of network 
link traffic demand using modified exponential smoothing methods. We propose two 
new approaches for improving ES that are based on traffic trend estimation. In one, 
the trend is estimated based on the traffic arrival process autocorrelation function 
(acf); in the other, it is based on the process cumulative distribution function (cdf). 

 The algorithms presented in [16] address a similar problem and the proposed 
algorithms use an iterative procedure involving an ES scheme. The difference is that 
we estimate link traffic and use adaptive ES while [16] estimates path traffic and uses 
fixed ES. The drawback of the path approach is that for large networks the high paths 
cardinality can overwhelm online path demand estimation. In such networks, a 
decomposition of network into link processes [5], [11], reduces problem complexity, 
and link demand estimation can then be used to support online network optimization. 

For the performance evaluation of online traffic demand estimation, we propose to 
use the following two criteria. When demand changes, estimation responsiveness 
criterion measures the lag of the estimated value in reaching the changed average 
arrival rate. A small lag allows faster reaction to traffic demand changes. Conversely, 
during periods of stationary demand, estimation stability criterion measures the 
deviation of estimated values from the invariant average arrival rate. In this case, 
stable estimations avoid unnecessary network operation changes, therefore limiting 
the volume of signaling messages and unnecessary actions in the network. We will 
define metrics for these criteria in this paper. Using these metrics, the proposed 
adaptive ES estimation approaches are compared to static as well as to other 
previously proposed adaptive ES estimations. 

The rest of this paper is organized as follows. In Section 2, we present a traffic 
model considered in this work. Section 3 summarizes known estimation and 
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forecasting methods that are based on exponential smoothing, and presents our new 
approaches. In Section 4, we define metrics and evaluate performance of our 
approaches, by comparing them to existing methods. Section 5 concludes and gives a 
direction of future research. 

2 Model for Traffic Demand and Estimation 

Internet traffic patterns and general characteristics were reported by Thompson in [1]. 
The majority of traffic graphs revealed that both the byte and flow volume follow 
clear 24-hour patterns that repeat daily over the week. In general, the patterns include 
two levels of traffic, high during day time and low during night time, showing a 
difference of as much as 300% - 500%. Transition periods between the levels can last 
a few hours. Fig. 1 reproduces (from existing literature) real one day traffic trace 
examples taken at different locations: a) flow volume monitored at a major U.S. East 
Coast city [1], b) link data traffic collected at University of Missouri-Kansas City [8], 
c) mean connection arrival rates for various network applications gathered at a 
Lawrence Berkeley Lab gateway [17]. These and more traces found at the WAND 
WITS web site [18] confirm the daily pattern. 

In this paper, we will estimate traffic demand defined by the average connection 
arrival rate. Based on the above real traffic patterns, we build a connection arrivals 
model, shown in Fig. 1d, which we will use for evaluation of the demand estimation. 
The model presents two stationary periods where average traffic stays around a low 
and a high level, respectively, and two trend periods where traffic transitions between 
the mentioned levels. This model simulates the successive stationary and non-
stationary periods characterizing the real traffic patterns. Below is the definition of 
parameters used in the model (expressed at time t):  

− tλ : Average arrival rate (solid line in Fig. 1d). This denotes the theoretic average 

that should be estimated. This average is invariant in stationary periods, and it 
follows a linear trend in non-stationary periods. 

− tλ~ : Measured arrival rate (dashed line in Fig. 1d). 

−  et : stochastic noise on arrival rates. 

− tλ′ : Trend of arrival rate ( dtd tt λλ =′ ). 

− tλ : Estimated arrival rate 

The following set of equations defines the model: 

)( ittt tt
ii

−′+= λλλ , (1) 

ttt e+= λλ~ , (2) 

)
~

(λat f=λ . (3) 

where trend 
it

λ′  is nil in stationary periods and is assumed to be constant during a 

trend period; and arrival rate estimator fa is a function of a vector of present and past 
values of measured arrival rate. 
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Fig. 1. One day traces of Internet traffic: a) link flow volume at U.S. East Coast [1], 
b) link traffic at University of Missouri-Kansas City [8], 

c) mean connection arrival rates at Lawrence Berkeley Lab gateway [17], 
d) simulation model of demand (connection arrivals) pattern. 
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In this model, time and traffic demand are expressed in generic time units, and 
number of arrivals per time unit, respectively. Average traffic arrival rates tλ show the 

low and high traffic levels with transition periods between them. Arrival rate 
trends tλ′ and trend period durations form the parameters of the pattern. Arrival 

rates tλ~ measured at regular time intervals follow a Poisson distribution with mean 

corresponding to tλ . tλ  and tλ~ can be generated to realize the patterned demand. 

The estimation objective is to achieve values tλ as close as possible to tλ . This 

translates into tλ being stable (close to invariant tλ ) in stationary demand periods, and 

responding quickly to changes of tλ in transition periods. 

3 Demand Estimation by Exponential Smoothing 

Average arrival rate estimations are performed at regular time intervals as traffic 
demand evolves. Exponential smoothing is a well known technique that can be used 
to produce moving weighted averages of a time series. Different forms of ES have 
been documented in the literature. Applied to our estimation of average arrival rate, 
the Simple ES (SES) is formulated as follows: 

1)1(
~

−−+= ttttt λαλαλ . (4) 

where tα is the level smoothing parameter, 0 < tα < 1. The Double ES (DES) 

formulation introduces a second equation to account for the trend Tt in the time series, 
resulting in the set of equations: 

))(1(
~

11 −− +−+= tttttt Tλαλαλ , (5a) 

11 )1()( −− −+−= tttttt TT γλλγ . (5b) 

where tγ is the trend smoothing parameter, 0 < tγ  < 1. 

Performance of the online estimation, characterized by its stability and 
responsiveness, depends on the values of the smoothing parameters tα and tγ that can 

be fixed or adaptive. For example in SES, a low tα will effectively dampen 

random tλ~ variations, giving better stability. On the other hand, a high tα allows ES to 

better follow changes in traffic demand, improving estimation response [11]. In this 
section, we first summarize a selection of available methods for assigning tα and tγ . 

Then, we present our proposed approaches for adaptive ES based on the arrival 
process autocorrelation and cumulative distribution function. Each method will be 
identified with the convention ES type-parameter type, where ES type is SES or DES 
and parameter type denotes the smoothing parameters assignment strategy. 
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3.1 Literature Review of ES Methods 

Currently available methods for choosing parameters tα  and tγ include fixed and 

adaptive parameters [13]. A total of 24 ES techniques were reported in 1982 [19]. 
Adaptive Extended ES (AEES [14] and AEES-C [15]) were later developed which 
provide improved accuracy. For performance comparison with our proposed 
approaches, we selected two SES methods for its simplicity, and two AEES methods 
for its improved accuracy. 

SES with fixed tα  (SES-fix). In this basic method, parameter tα is fixed. tα  can be 

determined by model-fitting using the time series historical data. As mentioned 
earlier, a tradeoff between estimation stability and responsiveness is dependent on the 
value chosen for tα . 

SES with adapting tα (SES-err). In this method, as in following adaptive methods, 

tα is adapted at each estimation period as the time series evolves. For its improved 

accuracy provided, we chose to use the same adaptation formula, based on previous 
period error that was proposed for AEES: 

tttt λλλα ~
)

~
( 1 −= − . (6) 

AEES (DES-err). This method as proposed by Mentzer applies to time series with 
level, trend and seasonal components [14]. Since seasonal variations are beyond the 
timescale of online estimation periods, we ignore that component and apply this 
technique to DES (5a), (5b). tα  is adapted by (6) and tγ is fixed. Reported AEES 

tests in general showed better accuracy than previously available ES methods. 

AEES-C (DES-derr). This method [15] extended AEES by also adapting trend 
smoothing parameter tγ based on previous trend estimation error: 

221 )( −−− −= tttt TTTγ . (7) 

It was reported that accuracy performance comparisons between AEES-C and AEES 
were not consistent, but AEES-C was better in 10 of 14 cited test conditions.  
Given the double error based adaptations of both tα and tγ , this method is identified 

as DES-derr. 

3.2 New Adaptive ES Approaches 

As shown in Fig. 1, traffic demand will go through stationary and trend periods. In 

stationary periods, changes in arrival rate measurements tλ~ result solely from noise et 

(2), and use of SES with a low tα as estimator function fa (3) will provide better 

stability. In trend periods, the portion of change in tλ~ due to the trend tλ′ (1) increases 



 Traffic Dynamics Online Estimation Based on Measured Autocorrelation 61 

with the trend amplitude. To better respond to that change, tα in SES should be 

increased and therefore should be a function of the trend. 

Trend Evaluation. As the trend is a key parameter influencing online estimation by 
adaptive ES, we need methods to detect and evaluate it. We propose to use the 
following two measures: 

a) Process Autocorrelation Function (acf). The trend of the time series formed by the 
N successive arrival rate measurements to time t can be indicated by its 
autocorrelation coefficient at lag one rt: 

N

N
r

t

Ntn tn

t

Ntn tntn

t

∑
∑

−−=

−
−−= +

−

−−−
=

)1(
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1
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)ˆ~
(

)1()ˆ~
)(ˆ~

(
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λλλλ
. (8) 

where N
t

Ntn nt ∑ −−=
=

)1(

~ˆ λλ  is the mean of the N measurements. With a large N, 

when the time series is completely random (nil trend), rt is approximately N(0, 1/N) 

and is then expected to be within N2±  in 19 out of 20 instances [20]. When the 

series has a trend, it can be shown by experimentation that rt is a function of trend 
amplitude tλ′  and N. For given N, rt increases with tλ′ . 

b) Process Cumulative Distribution Function (cdf). In a time series of measurements 

of random Poisson distributed arrival rates, measured values tλ~ are concentrated near 

mean rate tλ . When a trend is present in the series, it will cause tλ~ to deviate further 

from the mean. The probability pt that the arrival rate random variable xt is at 

measured tλ~ or further from the mean can be obtained with the cdf (we assume that 

estimated 1−tλ  approximates tλ ). For the case of 1
~

−> tt λλ : 

)
~

|
~
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and the case of 1
~

−≤ tt λλ : 

)()
~

()
~

|
~

Pr( 11 −− =≤≤= ttttttt cdfcdfxp λλλλλ . (10) 

pt is close to 1 when tλ~ is close to the mean 1−tλ , it decreases as tλ~ is further away. 

Therefore, the function pt (of measured tλ~ ) can be used as a stationarity indicator, and 

its complement 1-pt as a trend indicator. 
The value range for both the acf and cdf trend indicators is [0..1]. Online 

measurements of the indicators, applied to our traffic model (Fig. 1d), are shown in 
Fig. 2. We can see that both indicators move to higher levels when traffic moves from 
stationary to trend periods. 
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Fig. 2. Trend measurements based on autocorrelation and cdf 

Trend Indicator Based Adaptive ES (SES-acf, SES-cdf). In this subsection, we 
propose two new ES adaptation approaches for dynamic traffic online estimation. The 
approaches are based on SES (4) and use a function of the trend indicator, rt (acf 
approach) or 1-pt (cdf approach), to adapt parameter tα in (4). As mentioned, 

tα should be low in nil trend traffic to provide stability, and increase when the trend 

increases to become more responsive to traffic demand changes. 

a) Exponential Adaptation Function. Use of a simple exponential function of the trend 
indicator will limit tα in stationary traffic and provide good stability. Let It denote the 

trend indicator, representing rt (acf approach) or  1-pt (cdf approach). The function 
can be expressed as: 

tI
Rt A −= 1α . (11) 

where the base, 0 < AR < 1, is a constant chosen based on historical traffic data to 
provide estimation stability in stationary periods traffic. An example of this 
exponential function of It (case of AR=0.1) is shown in Fig. 3. 

b) Logistic Adaptation Function. In the trend indicator range, an exponential function 
(11) increases slowly with the indicator causing slow estimation response in trend 
traffic. Given the dual objectives of stability and responsiveness, a steeper change in 

tα  is needed when traffic transitions between stationary and trend periods. The 

logistic function fits well with this requirement, and in addition its parameters provide 
ease of control of the function inflexion point. We propose to use the following 
logistic based adaptation function: 

])1(85.0[05.0)(05.0 tbIl
att elIlogistic −++=+=α . (12) 
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where la and lb are parameters determining the inflexion point ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2

85.0
05.0 ,

)ln(

b

a

l

l
. 

Function (12) presents asymptotes at tα =0.05 and tα =0.90, and the inflexion point 

can be chosen based on historical trend indicator data. For example, logistic based 
functions used in the case of traffic and trend indicator of Fig. 2 are shown in Fig. 3. 
When compared to the exponential function, we can see that the logistic functions 
present distinct tα levels for low and high trend indicator values, with a much steeper 

transition between them. Fig. 3 also shows distinct tα increase start points (obtained 

by la and lb choices) for the acf and the cdf indicator cases, corresponding to the 
respective indicator characteristics from Fig. 2. 
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Fig. 3. SES parameter α as exponential and logistic functions of trend 

4 Performance Analysis 

In this section, performance of our proposed demand estimation methods based on 
logistic function of the trend indicator, under different traffic levels and trends, is 
evaluated by comparison with existing methods (Section 3.1). Poisson distributed 
traffic is generated following the model of Fig. 1d. The methods are compared under 
the previously mentioned stability and responsiveness criteria, whose metrics are 
defined below. 

4.1 Performance Metrics 

Estimation Stability in Stationary Traffic. In stationary traffic periods, a stable 
estimate of the average arrival rate is advantageous as it avoids unnecessary network 
routing and capacity allocation changes, therefore limiting the amount of control 
traffic in the network. We define estimation stability, denoted by Sσ , as the mean 
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absolute deviation of the estimated arrival rate tλ from the true (generated) average 

rate tλ , normalized by the standard deviation of measured arrival rates tλ~ : 
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where nS is the number of samplings in the evaluated stationary traffic period. A 
smaller Sσ  indicates a better stability. 

Estimation Responsiveness in Trend Traffic. In trend traffic periods, arrival rate 

estimates should converge quickly to the true trending tλ . This is particularly 

important during increasing demand periods, as slow estimation response will delay 
network management reaction causing connection or packet losses. The measure of 
this responsiveness, denoted by Cσ , is defined by the average lag of estimated 

rates tλ with respect to tλ (a positive lag indicates that tt λλ > ), normalized by tλ : 

∑
=

−=
cn

t
ttt

c
C n 1

)(
1 λλλσ . (14) 

where nC is the number of samplings in the evaluated trend traffic period. Smaller 
amplitude of lag Cσ  indicates a better responsiveness. 

4.2 Performance Results 

Proposed and existing estimation methods are evaluated under the traffic model 

shown in Fig. 1d. Arrival rate mean tλ (1) are generated for successive periods of 

stationary and trend traffic. At regular time intervals, arrival rate samples tλ~  are 

generated randomly (2) with a Poisson distribution having mean tλ . In our test traffic, 

100 and 50 samplings are included in each stationary and trend period, respectively. 
Initial stationary rate is set to 10, and trend tλ′ cases of 0.5, 1.0 and 1.5, leading 

respectively to stationary period rates of 60, 85 and 110, are verified. Coefficients 
rt(8) needed in autocorrelation based methods are calculated using a time window of 
N=30 measurements. Parameters (la, lb), realizing logistic based adaptation 
function(12), shown in Fig. 3, are (100, 20) for SES-acf and (100000, 15) for SES-cdf. 

Stability and convergence metrics are computed for the arrival rate estimates 
produced by the different methods and compared. For responsiveness evaluation, we 
concentrate on the increasing trends as it is in these cases that response is a key in 
avoiding connection and packet losses. The results for stability and responsiveness are 
given in Tables 1 and 2, respectively. 
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Table 1. Demand Estimation Stability Performance 

 Traffic estimation stability σS  (90% confidence) 

Method λ = 10 λ = 35 λ = 60 λ = 85 

SES-fix, 

α=0.1 
0.225 ± 0.009 0.218 ± 0.004 0.218 ± 0.006 0.217 ± 0.006 

SES-fix, 

α=0.5 
0.576 ± 0.004 0.570 ± 0.004 0.574 ± 0.006 0.572 ± 0.005 

SES-err 0.713 ± 0.008 0.487 ± 0.014 0.399 ± 0.015 0.347 ± 0.013 

SES-acf 0.272 ± 0.010 0.261 ± 0.016 0.274 ± 0.013 0.269 ± 0.021 

SES-cdf 0.495 ± 0.011 0.489 ± 0.012 0.494 ± 0.020 0.489 ± 0.009 

DES-err 0.753 ± 0.008 0.549 ± 0.015 0.470 ± 0.019 0.421 ± 0.017 

DES-derr 1.026 ± 0.014 0.885 ± 0.024 0.832 ± 0.024 0.819 ± 0.027 

Table 2. Demand Estimation Response Performance 

 Traffic estimation response σC  (90% confidence) 

Method Trend λ’=0.5 Trend λ’=1.0 Trend λ’=1.5 

SES-fix, α=0.1 0.161 ± 0.005 0.215 ± 0.004 0.247 ± 0.003 

SES-fix, α=0.5 0.022 ± 0.006 0.030 ± 0.005 0.037 ± 0.004 

SES-err 0.069 ± 0.007 0.083 ± 0.005 0.097 ± 0.004 

SES-acf 0.048 ± 0.007 0.031 ± 0.005 0.026 ± 0.005 

SES-cdf 0.031 ± 0.006 0.041 ± 0.005 0.051 ± 0.006 

DES-err 0.037 ± 0.008 0.030 ± 0.007 0.029 ± 0.005 

DES-derr -0.034 ± 0.007 -0.034 ± 0.007 -0.025 ± 0.008 
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Fig. 4. Demand estimation combined stability-convergence performance. 

SES-fix, SES-err, DES-err and DES-derr (section 3.1); 
SES-acf and SES-cdf (section 3.2). 
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SES-fixed, α=0.1
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Fig. 5. Arrival rate estimation comparison : 
 a) SES-fix with α=0.1, b) DES-derr, c) SES-acf 
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Fig. 4 shows the methods combined stability-responsiveness performance. Each 
plotted point represents a dynamic traffic case, combining the responsiveness 
performance corresponding to a given trend λ′  and the stability corresponding to the 

stationary level λ reached at the end of the trend period. Cases for ( λ′ , λ ) values of 
(0.5, 35), (1.0, 60) and (1.5, 85) are represented in the figure. For most methods, a 
performance tradeoff is apparent, as a better stability is shown paired with a poorer 
responsiveness, and vice-versa. SES-cdf provides good responsiveness, although its 
stability is only average. The proposed SES-acf provides the best combined stability-
responsiveness performance. For the case of λ′ = 0.5, responsiveness for SES-acf is 
slightly slower. This can be explained by the imprecision of trend detection, caused 
by the limited number N of autocorrelation samples in an environment of low traffic 
trend to traffic noise ratio. For example, increasing N from 30 to 35 improves the 
method’s responsiveness measure from 0.048 to 0.043, while stability performance is 
maintained (from 0.261 to 0.249). 

To visualize online demand estimation performance, Fig. 5 compares estimation 
responses to real-time measured arrival rates for a) SES-fix with α=0.1, b) DES-derr, 
c) SES-acf. a) shows good stability, however the lag in both increasing and decreasing 
trends is apparent. b) is very responsive to trends, but stability in stationary traffic is 
poor. Finally, c) our proposed SES-acf is capable of showing both trend 
responsiveness and reasonable stability. 

5 Conclusion 

In this paper, we proposed dynamic traffic demand estimation approaches that are 
simple to function online, yet accurate to allow for efficient network optimization and 
management. Exponential smoothing is adapted based on traffic trend that is 
estimated through the use of arrival process acf or cdf. When compared to known 
adaptive ES methods, proposed SES-acf, where adaptation is based on traffic trend 
evaluated by measured autocorrelation, provided the best combined stability-
responsiveness performance. This feature makes it particularly fit for autonomic 
estimation of time-evolving traffic conditions. 

In future research, we will investigate the possibility of online estimation using the 
Kalman filter, recognized as a general method for signal estimation in the presence of 
noise, and compare its performance to these proposed approaches. 
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