
I. Tomkos et al. (Eds.): BROADNETS 2010, LNICST 66, pp. 40–54, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Hybrid Content Distribution Network
with a P2P Based Streaming Protocol

Saumay Pushp1 and Priya Ranjan2

1 Dept. of Computer Science and Engineering, Kanpur Institute of Technology,
Kanpur, UP-208001, India

saumaypushp@gmail.com
2 Dept. of Electrical Engineering, Indian Institute of Technology,

Kanpur, UP-208016, India
ranjanp@iitk.ac.in

Abstract. Multicast has been used as a one-to-many approach to deliver
information; it is based on the idea that if one packet of data should be
transmitted to several recipients, the information should be sent by the origin
just one time. In this paper, we propose the use of IP based Pragmatic General
Multicast (PGM) to distribute content and to make distribution more efficient;
we combine it with a P2P approach. We focus on the problem of data
redundancy (at each node), congestion and contention and show how severely it
impacts the network economics and the experience of end-user and hence leads
to low traffic load and redundancy.

Keywords: Multicast, Peer to Peer, Congestion, Contention.

1 Introduction

Since 20 years, internet has seen an exponential increase in its growth. With more and
more people using it, efficient data delivery over the internet has become a key issue.
Peer-to-peer (P2P)/efficient data sharing based networks have several desirable
features for content distribution, such as low costs, scalability, and fault tolerance.
While the invention of each of such specialized systems has improved the user
experience, some fundamental shortcomings of these systems have often been
neglected. These shortcomings of content distribution systems have become severe
bottlenecks in scalability of the internet. The need to scale content delivery systems
has been continuously felt and has led to development of thousand-node clusters,
global-scale content delivery networks, and more recently, self-managing peer-to-peer
structures. These content delivery mechanisms have changed the nature of Internet
content delivery and traffic. Therefore, to exploit full potential of the modern Internet,
there is a requirement for a detailed understanding of these new mechanisms and the
data they serve. In this work, we focus on the problem of redundancy of data being
transmitted using several state of the art content distribution systems and show how
severely it impacts the network economics and the experience of end-user. We base
our findings on real world large scale measurement studies conducted over Emulab,
which is a network test bed hosted by the University of Utah.

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 41

1.1 The Problem of Data Redundancy

Consider the scenario shown in Figure 1. The network topology contains a file server
which hosts a file to be downloaded by 9 clients. The file server is connected to a core
router which is then connected to three other access routers. All the clients are
connected to the access routers.

Each client establishes an independent TCP connection to the file server to fetch
the file. If all the clients need to download the file at the same time, nine parallel TCP
connections with file server as the source have to be started. This means that the
server opens 9 different sockets to serve each TCP connection and essentially
transmits the same data through each of these sockets. Thus, nine exact copies of the
file available at server are sent across the link connecting the file server and the core
router. The core router in turn sends 3 copies of the same data on each of the access
links. Now imagine the scenario where the number of interested clients increases from
nine to say around a few hundreds. This is common in case of new files (like movies)
getting hosted on websites or critical security patches being made available by
software companies. In that case, too much of server bandwidth and bandwidth of
access routers is wasted. This leads to each client getting low download rates and bad
user experience. We call this problem as the problem of data redundancy and work
towards solving this by proposing a Hybrid content distribution network (CDN)
which leverages the basic BitTorrent protocol.

Fig. 1. Concurrent downloads cause heavy load on server bandwidth and network resources

1.2 BitTorrent Protocol

There are several systems that focus on file sharing; one widely deployed is
BitTorrent [1]. BitTorrent is a "tit-for-tat" file sharing system whose operation is
described in this section. The basic idea behind BitTorrent is to divide a file or set of
files in several pieces also called fragments. BitTorrent distinguishes two kinds of

42 S. Pushp and P. Ranjan

peers, that is, down loaders and seeds. Down loaders are peers that have some
fragments of the file, while seeds have a complete copy of the file. Down loaders and
seeds that share a torrent form a swarm. A torrent file is usually published on the
Internet as a text file, it contains the following information:

• Number of pieces, for each piece a checksum is created to guarantee its
integrity, this checksum is created using the SHA1 hash function and
included in this torrent file.

• The URL of a Tracker A tracker is responsible of keeping track of the down
loaders and seeds that are in the swarm. When a peer needs to know which
other peers or seeds are currently connected, it makes an HTTP request to the
tracker asking for IP addresses and ports of other peers. In other words, the
tracker is responsible to keep track of membership.

Since the file is broken into fragments, peers may share different fragments with other
peers. As mentioned before, a peer is aware of other peers by querying the tracker;
once it has their IP addresses, it can establish TCP connections with some of them to
download or upload data. Each peer is responsible for keeping upload and downloads
rates statistics of the connections it has established. This maximizes its download rate
by downloading from whoever it can and make a decision of which peers to upload
using a tit-for-tat approach. With this information, if one peer is not providing
fragments, it may be choked, which is temporary refusal to upload to other peer.

1.3 Some Drawbacks of BitTorrent Protocol

BitTorrent protocol often sustains to following drawbacks:

• For Small files, BitTorrent tends to show higher latency and overhead.
• Even though several downloader’s might be physically close to each other

and downloading the same file (for example several clients on a LAN
downloading a software patch) the tracker returns a random list of peers to
which a new downloader should connect to. This leads to wastage of
resources because of redundant downloads of same pieces by peers close
to each other.

1.4 BitTorrent Location Aware Protocol

As mentioned above, the original BitTorrent protocol can lead to peers geographically
distant from one another exchanging data when peers close by are also present,
leading to suboptimal performance. A location-aware BitTorrent protocol has been
proposed in [8]. However, the proposal is in a very lose form with no real world
implementation or performance results. It requires each BitTorrent client to supply its
approximate geographical location (longitude and latitude) when contacting the
tracker to get the peer list. The tracker knows geographical locations of all down
loaders and thus returns the list of peers to the original requesters which are closer to
it, instead of returning a random list (as in case of the original Bit Torrent tracker).

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 43

Several issues arise here. Firstly, this protocol is not compatible with the original
BitTorrent protocol and requires changes at the trackers. Secondly, assuming that the
geographical location of a client would be known is not realistic. Thirdly, clients
located close to each other geographically may not be having a fast network link
between them and might be separated by several hops in terms of routing. Finally,
absence of any implementation of this protocol makes one skeptical about the relative
performance gain of it.

2 Performance Study of Content Distribution Models

Earlier, we talked about the content distribution models, including the Peer-to-Peer
Systems model. With the help of an example scenario, we also illustrated the problem
of same data being re-transmitted over internet links, leading to degraded
performance and higher running costs. Now, we present the results of a large scale
experimental study to understand the performance of each of the content distribution
models. The study was conducted using the Emulab [9] emulation facility.

2.1 Experimental Setup

• Network Topology: The first step towards performing experiments on
Emulab is to specify the network topology and the specification of
hardware and software on each node of the network. This is done with the
help of a topology specification script written in tcl programming language,
in a format identical to that of NS-2 [10] (the program code is mentioned in
2.4). Internet can be assumed to be composed of following two entities.

Backbone Network: It consists of the high bandwidth, high delay, and long
distance network links, which typically run across continents and countries.
These backbone links are generally hosted by various Internet Service
Providers (ISPs) and account for the main cost in running the internet.

High Speed LANs: Most organizations today have access to high speed
local area networks (LANs) which in turn are connected to the backbone
internet via particular nodes (routers). Such LANs are generally error-free
and congestion free and are administered by the local organizations. Since
the major cost in running Internet is in maintaining the backbone network,
the ISPs are generally concerned about transferring the data across backbone
links in the most cost-effective manner. The cost for a link is proportional to
the amount of data (or the number of bytes) transferred across the link. In
this study, we try to understand the typical amount of traffic which the ISPs
need to transfer to support the different content distribution models. Also, as
we show in this study, most of the current models end-up sending the same
data again and again over the same links. We are interested in designing a
hybrid CDN structure which restricts such retransmissions. Figure 2
illustrates the network topology used for this performance study on Emulab.

44 S. Pushp and P. Ranjan

The internet backbone is made up of four core routers, named coreRouter0,
coreRouter1, coreRouter2 and coreRouter3. Each of the core Routers run on the Red
Hat Linux 9.0 Standard operating system. The four core routers are all connected to
each other in a symmetrical manner and thus there are total six core links named
corelink0 ... corelink5. Each of the core links is a 10Mb link with a 20 ms end-to-end
delay and a Drop Tail queue. Three of the core routers (coreRouter0, coreRouter1 and
coreRouter2) are each connected to a set of three high speed LANs via routers
(router0, router1 and router2). Each of the three routers runs the Red Hat Linux 9.0
version of operating system. The link between a router and a core router is a 2Mb link
with a 10 ms end-to-end delay and a Drop Tail queue. Each router is in turn connected
to three 10 Mbps LANs (for example, router0 is connected to lan0, lan1 and lan2).
Each LAN is composed of 4 end nodes and a switch. The nodes are named from
node0 to node 35 (total 36 end-nodes/clients). A dedicated node (named seeder) is
connected to coreRouter3 via a 2Mb link.

Fig. 2. The experimental setup used for the performance study

• Performance Metrics: In this study, we are concerned about quantifying the
amount of data transmitted over backbone links in the various content
distribution models. Thus, we measure two key metrics in each experiment
run, for each link, in each direction:

Number of Bytes: This represents the raw amount of data transferred over a
link in a particular direction.

Stress: This represents the ratio of number of total packets transmitted over a
link and the number of unique packets transmitted over the link. For
example, a stress of 2 represents a case where each packet is transferred
twice over a link. As mentioned earlier, the running cost of a link for the ISP

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 45

is proportional to the raw amount of data transferred over a link. A higher
link stress refers to the case where higher redundant transmissions of the
same data are happening over the link, thus wasting the bandwidth.

Emulab has simple support for tracing and monitoring links and LANs. For example,
to trace a link:

set link0 [$ns duplex-link $nodeB $nodeA 30Mb 50ms DropTail]
 $link0 trace

The default mode for tracing a link (or a LAN) is to capture just the packet headers
(first 64 bytes of the packet) and store them to a tcpdump output file. In addition to
capturing just the packet headers, one may also capture the entire packet:

$link0 trace packet

By default, all packets traversing the link are captured by the tracing agent. To narrow
the scope of the packets that are captured, one may supply any valid tcpdump style
expression:

$link0 trace monitor "icmp or tcp"

One may also set the snaplen for a link or LAN, which sets the number of bytes that,
will be captured by each of the trace agents:

$link0 trace_snaplen 128

In our experiments, we set the snaplen to 1600 bytes. For each link (say link0,
between nodeA and nodeB), 2 trace files of interest are generated by tcpdump: trace
nodeA-link0. recv and trace nodeB-link0.recv. Here, the first trace file stores the
packets sent by nodeA to nodeB over link0, while the second file stores the packets
sent by nodeB to nodeA over link0. To analyze the tcpdump trace files, we modified a
well-known tool tcptrace. We added a module in the tcptrace code to calculate the
MD5 checksum of payload of each tcp packet and store the checksums of all payloads
in a file. The number of checksums is equal to the total number of packets transmitted
over a link. We then calculate the number of unique checksums in the file, which
represents the number of unique packets transmitted. The ratio of these two gives the
link stress. Also, the total number of bytes from payloads of all tcp packets on a link
can be easily calculated from tcptrace.
 In our experiment we designed a BitTorrent client which supports the following:

• Must support a console based interface to allow remote execution over
Emulab nodes.

• We preferred it to be in java so that Datagram sockets could be used to
extend it to support IP multicast [11].

2.2 Performance Evaluation

Performance evaluation of Peer to Peer and WWW model is illustrated below:

46 S. Pushp and P. Ranjan

• Link Statistics for the File Download Using BitTorrent

Fig. 3. The experimental setup used for the performance study

In the P2P model, clients download the file in a collaborative manner. Instead of
depending only on the seeder for the file download, each client fetches data packets
from other clients as well. Thus, in this case, clients have TCP connections between
them, in addition to TCP connections with the seeder. In P2P model, since clients are
also responsible for uploading packets to other clients, thus the uplink capacity is also
used in P2P model as compared to the www model which is shown in figure 4 using
Wget [12].

All the links see data transfers of the order of 4-6 MB, not like the case of WWW
model, where several links had to transfer as much data as 14 MB. Data transfer
happens in both directions (uplink and downlink). The other important observation is
regarding the link stress. We observe that link stress values are smaller in case of the
core links. This means that there is lesser number of duplicate packet transmissions
happening over the internet links, thus avoiding the wastage of resources. This is due
to the fact that each client observes the data pieces which are available with other
clients and fetches them as well, instead of fetching pieces always from the seeder.

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 47

Fig. 4. Link Statistics for file download using Wget

2.3 IP-Multicast as Content Distribution Model

IP Multicast is a particularly attractive alternative for content distribution in such
scenarios. All the clients can initially send IGMP request messages to join a multicast
group and the source can multicast the data on this group. Since routers are aware of
the physical topology and positions of clients, the data traverses the shortest path to
reach each of the clients, guaranteeing optimal download time. Although such an
approach is promising, it is not viable in today's Internet because of lack of support of
IP Multicast on Internet. This means that two nodes on the Internet do not necessarily
have a route between them which is IP Multicast enabled There are several reasons
why IP Multicast is not available on the Internet. These include:

• Most routers on the Internet lack support for IP Multicast. Recollect that to support
IP Multicast, a router needs to perform several additional operations like duplication
of packets with PIM, IGMP support, Multicast forwarding etc. The routers available
on Internet simply do not have resources or capabilities to perform all such
operations. Upgrading such existing routers is clearly infeasible.
• Congestion control schemes are not well defined for multicast.
• Pricing policies in multicast are not clear. Hence, there are no incentives for the ISPs
to be interested in deploying multicast support in the networks.

Therefore, it is almost clear that utilizing IP-level multicast for large scale content
distribution in above mentioned scenarios is not feasible. The problem of IP Multicast

48 S. Pushp and P. Ranjan

as an unreliable protocol is that it works over UDP. This means that there is no
guarantee that a packet multicast over UDP will be successfully received by other
clients. Since IP Multicast does not have any mechanisms for rate control and
checking packet losses (due to random errors etc.), it is not necessary that pieces
shared by clients would be received by all other clients on the island. The clients
which have low received buffer or which are busy with other operations often are
unable to completely receive packets sent over multicast. We tackle the above
problem in providing more efficient data sharing through the concept of 3-way Hand
shake [13] and propose a method which co-exist with the standard BitTorrent protocol
and leverage IP Multicast to distribute downloaded pieces to other BitTorrent clients
on the same network.

2.4 Program Code

The NS-2 script used in the experiment is shown below:

#generated by Netbuild 1.03
set ns [new Simulator]
source tb_compat.tcl

set coreRouter0 [$ns node]
set coreRouter1 [$ns node]
set coreRouter2 [$ns node]
set coreRouter3 [$ns node]
set seeder [$ns node]
set Router0 [$ns node]
set node0 [$ns node]
set Router2 [$ns node]
set node2 [$ns node]

set link0 [$ns duplex-link $coreRouter0 $coreRouter3 10Mb
20ms DropTail]
tb-set-link-loss $link0 0.1
set link1 [$ns duplex-link $coreRouter0 $coreRouter1 10Mb
20ms DropTail]
tb-set-link-loss $link1 0.1
set link2 [$ns duplex-link $coreRouter0 $coreRouter2 10Mb
20ms DropTail]
tb-set-link-loss $link2 0.1
set link3 [$ns duplex-link $coreRouter1 $coreRouter3 10Mb
20ms DropTail]
tb-set-link-loss $link3 0.1
set link4 [$ns duplex-link $coreRouter1 $coreRouter2 10Mb
20ms DropTail]
tb-set-link-loss $link4 0.1
set link5 [$ns duplex-link $coreRouter2 $coreRouter3 10Mb
20ms DropTail]
tb-set-link-loss $link5 0.1

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 49

set link6 [$ns duplex-link $coreRouter3 $seeder 2Mb 10ms
DropTail]
tb-set-link-loss $link6 0.1
set link7 [$ns duplex-link $Router0 $coreRouter0 2Mb 10ms
DropTail]
tb-set-link-loss $link7 0.1
set link8 [$ns duplex-link $Router2 $coreRouter2 2Mb 10ms
DropTail]
tb-set-link-loss $link8 0.1

set lan0 [$ns make-lan "$Router0 $node0 " 10Mb 0ms]
set lan1 [$ns make-lan "$Router2 $node2 " 10Mb 0ms]

$ns rtproto Static
$ns run
#netbuild-generated ns file ends.

2.5 Our Approach

We used a highly modular approach to the problem. We figured out that there are
basically 5 parts to the program:

1. Database Manager: This takes care of the list of chunks of different files available
on the network.
2. Chunk Maker/Assembler: This creates chunks of a file and maintains a
mechanism for testing the integrity of each chunk. It also assembles the chunks into a
complete file when all the chunks of a file have been downloaded.
3. Chunk Sender/Receiver: This communicates on a single port with another host on
a defined port and transfers file reliably. This throws back problems if encountered in
the process or flags a success message if it is successful.
4. User Interface: This is where the user interacts with the program. We have 2 such
interfaces, one is a GUI and another is a console one. Here the user can ask to share a
file on the network and fetch a file from the network.
5. The Head: This interacts with every other part and decides what to do when. It
basically deploys the work to other modules and also performs a 3-way handshake
before a communication begins on a defined port using the Chunk Sender/Receiver.

Multicast packets on an island can be lost or delayed due to two things:

1. The clients and links on a LAN show abnormal behavior (due to load or miss-
configuration) leading to random packet losses.
2. There is congestion on the LANs due to other heavy traffic being exchanged by
clients, e.g., VoIP etc.

To overcome this problem we applied the method of 3-way handshake which is
illustrated below:

50 S. Pushp and P. Ranjan

The tracker when requested to fetch a file from the network, it does the following:

a. Asks the Managed Hash Table for the information of the locations of the chunks.
b. Now for each chunk, it contacts the Tracker of another host sending a Type1 packet
requesting a chunk.
c. The peer host’s tracker sends back a packet which can be:

• Type2 packet: This says that the peer host has accepted the request and it is
designating a port for sending the chunk.
• Type3a packet: This says that the peer host does not have the chunk requested and
thus is negating the connection.
• Type3b packet: This says that the peer host has the chunks but currently does not
have any free ports to take the request.

d. If Type3a is received then the tracker tries to request the file from another source, if
available.
e. If Type3b is received then the tracker would look for other sources and if it runs out
of other sources it ask the same host after some time.
f. If Type2 packet is received, the Tracker sends a Type4 packet that carries the
information about which port of this user would be listening for the packets and starts
the Downloader.
g. On reception of Type4, the Up-loader is called.
h. If on any of these communications, a timeout is faced, it is gracefully handled
Thus we achieve a 3-way handshake similar to TCP for starting up the chunk transfer.

3 Results

For the sake of completeness, the topology is shown in Fig 2. There are two types of
links in this topology:

Core links: which serve the traffic across the internet by connecting the core routers;
and Access links; which are used to provide internet access to the islands consisting
of various high-speed LAN’s. Since the two types of links carry different type of
traffic, we show the evaluation of both types separately.

Each island in our experimental topology consists of 3 high-speed (10 Mbps)
LANs. All the LANs are connected to each other via the access router (i.e., router0,
router1 or router2). Each of the access routers runs the Red Hat operating system. In
order to allow IP Multicast across different LANs on the same island, we run mrouted
[14] on each of the access routers. The mrouted utility is an implementation of the
Distance-Vector Multicast Routing Protocol (DVMRP), an earlier version of which is
specified in RFC-1075 [15].It maintains topological knowledge via a distance-vector
routing protocol (like RIP, described in RFC-1058 [16]), upon which it implements a
multicast datagram forwarding algorithm called Reverse Path Multicasting. The
mrouted utility forwards a multicast datagram along a shortest (reverse) path tree
rooted at the subnet on which the datagram originates. The multicast delivery tree
may be thought of as a broadcast delivery tree that has been pruned back so that it

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 51

does not extend beyond those sub networks that have members of the destination
group. Hence, datagrams are not forwarded along those branches which have no
listeners of the multicast group. The IP time-to-live of a multicast datagram can be
used to limit the range of multicast datagrams. Thus, any multicast packet in one of
the LANs reaches all other LANs on the same island, provided there are clients on the
other LANs who have subscribed to the corresponding multicast group .Also, we set
the TTL value of multicast packets to 3 to allow them to cross multiple levels of
multicast enabled routers. Note that a TTL value of 1 means that packets are limited
to the same subnet.

The seeder serves a file of size 1 MB. All the results reported in this section have
been obtained after proper averaging over 5 to 10 runs of each experiment. Figure 5
below shows the comparison between the bandwidth utilization of BitTorrent client
and the Hybrid CDN. Note that the steeper the plot is, the faster is the completion of
download for all the clients. In the above figure 100 % of clients complete their
download within 30 seconds while using Hybrid CDN. It takes about 60 seconds for
all the nodes to complete their download using Bit-Torrent. Figure 6 show the effect
of random link losses, a random packet loss module is installed in each of the LANs,
whose packet loss rate can be configured. We varied the packet loss rate of each LAN
from 0% to 5% and repeated the experiments for each case to measure the various
performance metrics for both Hybrid CDN and BitTorrent. Experimental Client’s
download time increase after 4% packet loss, due to the fact that during
multicasting maximum of the packets get lost and they are retransmitted using
unicasting. However, random packet loss percentages as high as 4% are quite rare in
most LANs today and thus represent an unnatural scenario. With the more common
scenarios, Hybrid CDN is shown to have a better performance over BitTorrent.

Fig. 5. Cumulative Distribution Function of time for download by each client

52 S. Pushp and P. Ranjan

Fig. 6. Time for download with Packet Loss Percentage of each LAN

Finally, Figure 7 shows the variation of average link stress with packet loss
percentage. Stress on the internet links increases with random packet loss due to the
higher number of TCP retransmissions to deliver data across the LAN network. Note
that more retransmission means same data packets traversing internet links again and
again. To model the scenario of congestion in each island, we start a Constant-Bit
Rate (CBR) traffic source on each of the LANs which send the traffic to one the
clients on another LAN in the same island. Thus, each island has 3 CBR traffic
sources. The rate of CBR traffic for each source is varied from 0 Mbps to 10 Mbps to
model the severity of congestion. Figure 8 shows the variation of average time for
download over all clients with increasing value of CBR traffic rates.

Fig. 7. Link stress with Packet Loss Percentage of each LAN

 Hybrid Content Distribution Network with a P2P Based Streaming Protocol 53

Fig. 8. Time for download with varying congestion level

4 Conclusion

We obtained the following three important results with the Hybrid CDN Model:

• Reduction in download time of each client using Hybrid CDN by 48% over
Bit- Torrent and by 86% over WWW Protocol.

• Reduction in traffic load on Internet links and ISPs.
• Reduction in the wastage of resources like bandwidth due to redundant

packet.

Downloading time is the most critical performance metric for normal Internet users,
whose experience with the system is largely determined by how fast they
can Download file from the Internet. Also, recent applications of Peer-to-Peer
systems like distributing the software updates and the images of operating
systems, etc., over large networks spread across a geographically distributed area
depend heavily on the download time for each computer. The delay in download
in [7] can be overcome by the use of Hybrid CDN like model leveraging the IP-
Multicast and Bit-torrent protocol applicability. Most ISPs today observe heavy
traffic load on their Internet links due to increasing number of users using Peer-to-
Peer file sharing systems. Due to competition, ISPs are forced to reduce tariff
continuously resulting in reduction in the margins of profit. However, with more users
migrating to a system like Hybrid CDN, the load on ISP resources (Internet
links) can be reduced by as much as 65%, for the comparable amount of downloads
by end clients. Thus, the profit margins of ISPs can be increased heavily if they
encourage more users to switch to such type of system. The load on access links is
also reduced by similar proportions, the island owners have to pay for the Internet
access links, on the basis of the usage of such links. With reduced usage of
access links, the Internet consumption bills for island owners can be reduced

54 S. Pushp and P. Ranjan

considerably, which in turn will be a motivation for them to enable IP Multicast
support on their networks requiring software (and in some cases hardware)
upgrades. Thus, such models are economically sustainable.

Finally, our work is distinct from other similar research because of the following
reasons:

Standard compliance: The proposed method is interoperable with BitTorrent
protocol. It only requires changes at the end client level, unlike other solutions, which
would need network wide support.

Actual Implementation: In place of theoretical results or Network simulations, we
resorted to actually implementing a prototype system of our method and have
evaluated it on a large scale real network.

References

1. Cohen, B.: Incentives build robustness in Bit-Torrent. In: Proc. of the First Workshop on
the Economics of Peer-to-Peer Systems (2003)

2. Leibowitz, N., Bergman, A., Ben-Shaul, R., Havit, A.: Are file swapping networks cacheable?
Characterizing p2p traffic. In: Proc. of the 7th Int. WWW Caching Workshop (2002)

3. Karagiannis, T., Rodriguez, P., Papagiannaki, K.: Should internet service providers fear
peer-assisted content distribution. In: Proc. of IMC, pp. 63–76 (2005)

4. Wierzbicki, A., Leibowitz, N., Ripeanu, M., Wozniak, R.: Cache replacement policies
revisited: the case of p2p traffic. In: Proc. of IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), pp. 182–189 (2004)

5. Saleh, O., Hefeeda, M.: Modeling and caching of peer-to-peer traffic. In: Proc. of IEEE
International Conference on Network Protocols, pp. 249–258 (2006)

6. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker, D.:
Scalability and accuracy in a large-scale network emulator. In: Proc. of OSDI (2002)

7. BitTorrent used to update workstationsm,
http://torrentfreak.com/university-usesutorrent-080306

8. BitTorrent location-aware protocol 1.0 specification,
http://wiki.theory.org/BitTorrentLocation-
awareProtocol1.0Specification

9. Emulab documentation, http://www.emulab.net/doc.php3
10. The network simulator - ns-2, http://www.isi.edu/nsnam/ns
11. IP-Multicast,

http://www.cisco.com/en/US/docs/internetworking/technology/h
andbook/IPMulti.html

12. Gnu Wget, http://www.gnu.org/software/wget
13. 3-way Handshake,

http://www.inetdaemon.com/tutorials/internet/tcp/3-way_
handshake.html

14. How to set up Linux for multicast routing,
http://www.jukie.net/bart/multicast/Linux-
MroutedMiniHOWTO.html

15. Distance vector multicast routing protocol,
http://www.ietf.org/rfc/rfc1075.txt

16. Routing information protocol, http://www.ietf.org/rfc/rfc1058.txt

	Hybrid Content Distribution Network with a P2P Based Streaming Protocol
	Introduction
	The Problem of Data Redundancy
	BitTorrent Protocol
	Some Drawbacks of BitTorrent Protocol
	BitTorrent Location Aware Protocol

	Performance Study of Content Distribution Models
	Experimental Setup
	Performance Evaluation
	IP-Multicast as Content Distribution Model
	Program Code
	Our Approach

	Results
	Conclusion
	References

