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Abstract. Energy-efficient wireless networks are essential to reduce the
effect of global warming and to minimize the operational costs of future
networks. In this paper we investigate approaches exploiting spatial cor-
relations that offer a high potential to significantly decrease the total
energy consumption thus enabling “green” wireless networks. In partic-
ular, we analyze the impact of distributed compression and optimized
node deployments on the energy-efficiency of networks. Furthermore, we
present results on the operational lifetime of networks which is often a
major performance criterion from applications’ perspective.
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1 Introduction

Information and communication technologies (ICTs) are a contributor to the
global energy consumption. Increasing demands of energy is foreseen in future
since intensified use and extended availability of ICTs is expected. Power gen-
eration through regenerative but also fossil technologies causes greenhouse gas
emissions. Climatologists determined that primarily accumulated carbon diox-
ide (CO2) forms a shield in the earth’s atmosphere that prevents heat radiated
away from earth [1]. Thus, carbon dioxide advances the global warming that
beyond doubt will have strong negative impact on the societies world-wide. It
has been estimated that ICTs contribute around 2-2.5% of global greenhouse
gas emissions already in the year 2007 with a strong trend to increase [2].

Although wireless networks are responsible for only a minor share of CO2

emissions they have shown exponentially increasing energy consumption figures,
doubling almost every four years. In addition, providing communication services
on a world-wide scale would consume about 40% of the current global power
generation capabilities if western standards are targeted [3]. In addition to min-
imizing the environmental impact of industry, network operators show strong
interest for economical reasons since the expenses for energy tend to increase,
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while the revenues in bandwidth tend to decrease. Furthermore, energy conser-
vation can also lead to improved performance in terms of operational lifetime of
networks if those consist of nodes that are battery-operated.

Within the communications and networking sector a trend towards improved
energy-efficiency, thus reducing the CO2 footprint, has been identified. The most
common energy reduction approaches target the hardware components and the
power management of nodes and entire networks. Additionally, significant en-
ergy savings can be achieved if two other concepts are taken into account. First,
improvements are possible if the amount of data to be communicated between
nodes is reduced [4–7]. Second, gains can be achieved through optimisation of
the applied node deployment strategies [8–11]. Both concepts considered in this
work rely on the energy-efficient exploitation of spatial correlations and are com-
plementary. Although we focus on the spatial domain, in principle also the tem-
poral domain offers great potential. Spatial correlations are often inherent to
networking scenarios taken from the wide field of data gathering applications.
For example, for monitoring and surveillance purposes various correlation prop-
erties in the phenomenon under observation can be assumed.

Previous works often seek to decrease energy consumption either by trading off
communication vs. signal processing costs or shifting computational complexity
between transmitter and receiver. However, not all works thoroughly take into
account the overall net energy balance including entire signal processing costs,
see, for example, [6, 7, 11–13]. It is therefore of strong interest to minimize the
total energy consumed, which includes the energy consumed in terms of commu-
nication as well as the energy sacrificed for the extra signal processing. Those
additional costs occur due to the use of data reduction techniques offering the
actual benefits.

In this study we present results on the analysis of the total energy consumed
by a clustered wireless network. We consider lossless distributed compression
on the lowest level in the hierarchy of nodes since we can make use of synergy
effects if most of the data is reduced where it is originated. In addition, the
net energy balance of our proposed approach is provided. Furthermore, different
node deployment strategies are evaluated since the location of nodes has a strong
impact on the energy consumption and operational lifetime of the network.

The remainder of the paper is structured as follows. In Section 2 we explain
the lossless distributed compression scheme in detail. Section 3 briefly describes
the system model including the node deployment models used for topology gen-
eration. In Section 4 we present the net energy balance taking into account the
total energy consumed. Section 5 provides extensive simulations results and the
energy-efficiency analysis of the considered wireless networks. Network lifetime
is investigated in Section 6 since it is often a major performance criterion in the
case of battery-operated networks. Finally, Section 7 draws conclusions.

2 Distributed Compression

In wireless networks observations of neighbouring nodes can be seen as spa-
tially correlated discrete sources. The source information consists of blocks of v
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symbols (bits) that are compressed into the same number of blocks of u symbols
each, with u < v. Thus, the packet sizes are reduced prior to the transmission
while the overall number of packets is kept constant. We denote the probability
density function of the random source X by p(x). Let H(X) denote the infor-
mation entropy which is the measure of the uncertainty associated to the source
X . The Shannon source coding theorem states the limits on the achievable code
rate Rx for lossless data compression described by Rx≡ u

v ≥ H(X), where v
and u denote the block lengths of the information word and of the code word,
respectively.

One way of exploiting the spatial correlation of, for example, two neighboring
nodes X and Y is through joint compression based on inter-node information
exchange. If the nodes are allowed to communicate with each other, they could
avoid the transmission of any redundant information, leading to the total com-
pression rate R equal to the joint entropy H(X,Y ) [14]. The strong drawback is
that this comes at the expense of energy and substantial communication over-
head. The traditional way for separate encoding avoiding any inter-node com-
munication is to compress at the total rate R = H(X) +H(Y ). Since we assume
spatial correlation, H(X) +H(Y ) is always greater than H(X,Y ) and thus this
approach is suboptimal and not considered further. Hence, the question arises
what we will loose in compression efficiency if the costly inter-node commu-
nication is not allowed. This question has been answered by the fundamental
information-theoretic result obtained by Slepian and Wolf [15]. The theorem
states that there is theoretically no loss in performance if the joint distribution
quantifying the node correlation structure is known. The Slepian-Wolf theorem
defines the achievable rate regions for two sources and is given by

Rx ≥ H(X |Y ),

Ry ≥ H(Y |X),

R = Rx + Ry ≥ H(X,Y ), (1a)

where H(·|·) and H(·, ·) are the conditional entropy and the joint entropy, re-
spectively.

The source nodes do not communicate with each other and directly send
their compressed observations to a central node (such as cluster head or gate-
way) which performs joint decoding. Hence, we actually reduce computational
complexity of the source nodes and increase the computational complexity of the
usually more powerful central node without sacrificing performance. Distributed
compression can save energy by compression while preserving accuracy [16]. Fur-
thermore, this approach is independent on the modality of the observed data.

We implement the source encoder as simple and energy-efficient matrix mul-
tiplication. The entropy tracking algorithm estimates the underlying joint prob-
ability density function p(x, y) of the observations obtained by the source nodes
which describes the correlation structure. Based on p(x, y) we can determine the
conditional information entropy

H(X |Y )=−
∑∑

p(x, y) log p(x|y). (2)
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The previous works follow rather idealistic assumptions in terms of communi-
cation and network topology. Furthermore, the energy consideration is often
highly abstracted and does not consider practical issues at sufficient depth. In
this work, we study various effects on the performance of distributed compression
in more realistic topologies. A sophisticated phenomenon model flexibly gener-
ating sensed phenomena with widely varying correlation structure is applied.
For thorough and realistic evaluation we make use of a detailed framework that
includes a Gilbert-Elliot error model and an energy model allowing even bit-level
evaluation. Our network analysis considers the signal processing costs associated
with distributed compression including entropy tracking capability and packet
header overhead. The evaluation of more realistic deployment models leads to
the identification of the best fitting deployment strategy in relation to the char-
acteristics of the phenomena under study.

3 System Model

3.1 Phenomenon Model and Spatial Correlations

In this study we make use of synthetically generated and spatially correlated
data fields h(x, y) [17]. The model used is independent on the node density,
the number of nodes or the topology. Any correlation structure can be taken
into account by varying the parameters controlling the statistical structure of
h(x, y) which gives great flexibility. One important parameter that can be varied
is the correlation distance rmax. If the distance between data elements of the
phenomena is more than rmax, then they cannot be directly derived from each
other. The generated data sampled from the model shows good correspondence
when statistically compared with experimental data. It assumes an underlying
stationary process that has any unique first-order distribution. This model is
more general and more realistic than the commonly used jointly Gaussian model
which makes it a suitable choice for our purposes.

3.2 Deployment Model

The node deployment model consists of the specification of the total number
of nodes N , and the coordinates (xi, yi)

N
i=1 of the individual nodes. We assume

a fixed region A with area |A| and that the coordinates are defined by a ran-
dom point process (PP) [18]. The simplest example of such a PP is the (homo-
geneous) Poisson PP for which the coordinates are distributed uniformly and
independently on the region under study, and N is a Poisson random variable
with parameter λ|A|. Here λ is called the intensity of the process, with units of
points per unit area. The Poisson assumption might be convenient but unfor-
tunately a rather unrealistic one. Hence, the need arises to develop and apply
improved and more realistic models to make more reliable statements about real
wireless networks. For more details on enhanced deployment models the reader
is referred to [9]. In order to study the effects of different network realisations we
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have chosen three suitable deployment models. The first model we study is the
Poisson PP for comparison purposes. The second and third are clustered models
called the Thomas PP and the Matern PP.

The Thomas process [19] is based on a Poisson PP of intensity λT which
is used to generate cluster centers. Then each parent or cluster center point is
replaced by a cluster of points. The number of points in each cluster li is a
Poisson distributed random variable with mean value μT ,

Probli(li) =
μT

li

li!
e−µT . (3)

The locations of nodes (x, y) in each cluster are sampled from a two-dimensional
(symmetric) normal distribution with variance σ2

T and the mean located at the
cluster center,

px,y(x, y) =
1

2πσ2
T

exp

(
−x2 + y2

2σ2
T

)
. (4)

Another example of a cluster process is the Matern point process. As for the
Thomas PP, the number of parent points are distributed according to a Poisson
process with intensity λM . The number of cluster members in each cluster is
also sampled from a Poisson distribution with mean μM . The only difference lies
in how the cluster points themselves are distributed. While for the Thomas PP
a normal distribution is used, the cluster points of a Matern PP are uniformly
distributed over a disc of radius RM with the respective parent point as the
center. Again, the parent points do not occur in the resulting realisation of the
point process.

All introduced models can be conveniently described by up to three parame-
ters. These parameters can easily be adjusted in order to create different models
of the same class of point processes. For comparison reasons we have to ensure
that all deployment models exhibit the same overall area density λA. Hence, the
condition λA=λ=λT ·μT =λM ·μM =const. needs to be always fulfilled.

3.3 Communication Model

In terms of communication we assume that each node has an omni-directional
transmission range and utilizes erroneous links. For modeling error characteris-
tics a widely used model is the “Gilbert-Elliot bit error model” [?, 20, 21]. This
model is fundamentally based on a two-state Markov model that takes bit er-
ror bursts into account. In the case of packet errors, generated by this model,
at maximum three retransmissions are initiated. In our simulations we observe
an overall average packet error rate of ≈ 0.1 per scenario. We apply practical
distributed compression achieving high energy-efficiency through exploitation of
spatial correlations in the phenomena under study [4,5,8]. Here distributed com-
pression is performed clusterwise and based on node pairs where the compressing
node is a cluster member and the reference node is its cluster head. In terms of
mobility the nodes are quasi-stationary at known positions and the overall net-
work density is constant in all cases. In our simulations we focus on the closest-
to-center of gravity scheme meaning that the cluster member with the minimum
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Euclidean distance to the cluster center is selected as cluster head. For analysis
of further cluster head selection schemes, see, for example, [5]. Throughout the
scenarios the shortest path multihop routing protocol is applied.

4 Derivation of the Net Energy Balance

Let Tx and Rx denote the transmission and reception energies per bit, respec-
tively. For the derivation of the net energy balance we also take into account
the packet header overhead and the additional energy consumption due to the
compression-related signal processing such as encoding, joint decoding and en-
tropy tracking. While Ec accounts for the energy consumed for encoding, Ed

stands for the decoding energy. The entropy tracking algorithm is executed each
observation cycle once and consumes the energy denoted as Et.

Let D(i) denote the set of all descendent nodes of node i that belong to
the same cluster. Furthermore, let Dh(i) denote the set of all descendent nodes
of node i that are cluster members belonging to any other cluster. Using the
indicator function 1m(i) that is set to 1 if node i is a cluster member and 0
otherwise, we can define the energy consumption of a node i as follows:

ei=1m(i)

[
kEc + (kcin+p)Tx + (Tx+Rx)

∑

j∈D(i)

(kcjn+p)

]

+
(
1− 1m(i)

)[
Et + |D(i)|kEd +Rx

∑

j∈D(i)

(kcjn+p)

+ (kn+ p)
[
|D(i)|Tx + |Dh(i)|(Tx+Rx)

]]
, (5)

where n is the number of uncompressed bits and c being the used code rate which
is always equal to the conditional information entropy c=H(X |Y ) of the consid-
ered node pair. The number of compressed bits thus becomes c·n. Additionally,
each packet consists of a constant number of packet header bits denoted by p
and a payload consisting of a number of compressed or uncompressed phenomena
observations k.

In order to analyse the energy consumption behaviour of cluster members
and cluster heads in the distributed compression case vs. the conventional case
we derive the energy balance as follows. For the worst case we assume a cluster
member node i in the distributed compression case that may relay only uncom-
pressed (i.e., c=1) packets so that its energy balance is not inequitable improved
over the conventional case. Thus, due to

∑

j∈D(i)

kcjn= |D(i)|kn (6)

we can neglect the relay part in our consideration and find

(kn+ p)Tx = kEc + (kcin+p)Tx. (7)
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This leads to the condition

ci ≤ 1− Ec

nTx
, (8)

which has to be always fulfilled if a cluster member node i saves energy. Hence,
we define the break-even point determined by the code rate ci = 1 − Ec

nTx
. Only

if the code rates reach the break-even point we automatically switch from the
distributed compression scheme to the conventional scheme (i.e., no compression
applied).

In case node i is a cluster head, we can ignore the transmission and relay ener-
gies in the balance since those are identical in both the distributed compression
case and the conventional case. Using

|D(i)|Rx(kn+ p) = Et + |D(i)|kEd +Rx

∑

j∈D(i)

(kcjn+p), (9)

we find the condition for the cluster head to be

∑

j∈D(i)

cj ≤ |D(i)|(1 − Ed

Rxn
)− Et

Rxkn
. (10)

Since Ed/(Rxn) > 1 for our energy model and cj ≥ 0 is always valid, no energy
savings can be achieved at the cluster head. This is not surprising due to the
distributed compression principle of shifting the computational complexity from
the cluster members to the cluster head. This is the trade-off we face so that the
more resource-constrained cluster members, being the majority of the nodes, can
conserve significant amounts of energy. For more details the reader is referred
to [8]. However, in order to achieve reduced total energy consumption the cluster
member level needs to at least compensate the inherent losses on cluster head
level. In the following we show that indeed strong total energy savings can be
achieved by our proposed approach.

5 Energy-Efficiency Analysis

Applying the presented energy model, see equation (5), we investigate both the
impact of distributed compression and the impact of the deployment strategy
on the energy-efficiency behaviour of wireless networks.

5.1 Impact of Distributed Compression

For comparison of the compression scheme and the conventional scheme we con-
sider the total energy savings through distributed compression according to dif-
ferent parameters. Figure 1 shows the total energy savings in relation to the
correlation distance parameter rmax. From the figure we can observe that the
topology types behave very similar to each other and that the energy savings are
strongly dependent on the correlation properties. From our quantitative results
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Fig. 1. Total energy savings vs. correlation distance for three topology types; 2000
simulation runs
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Fig. 2. Total energy savings vs. cluster member transmission range for three topology
types; rmax = 9, 2000 simulation runs

it follows that the savings can differ up to 31% between phenomena that ex-
hibit weak or strong spatial correlations. Since distributed compression seeks to
exploit the correlation in the phenomena data the results confirm the intuition
that the stronger the phenomenon is correlated the stronger the energy savings
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will be. Only for very weak correlations (rmax=3) small negative values can be
observed. In this case the distributed compression gains on cluster member level
cannot compensate for the loss on cluster head level. In addition, for moder-
ate to stronger correlations total energy savings of up to 26% at rmax=9 can
be realized by distributed compression. Figure 2 shows the total energy savings
according to the transmission range of the cluster members. The transmission
range is increased from 7 to 23 units with a constant step size of 4. We can
observe that the savings of cluster PP topologies are overall independent on
the transmission range. Only at very small transmission ranges the cluster PP
topologies exhibit slightly higher energy savings. For the Poisson topology sav-
ings significantly increase while decreasing transmission range. The reason for
improved savings at reduced transmission ranges in all cases lies in the resulting
topologies having increased graph depth. While the node depth is defined as the
number of edges that are traversed from the root node to the chosen node, the
graph depth is defined as the maximum appearing node depth. Restricting the
transmission range leads to cluster members that cannot be directly connected
to the respective cluster head. It follows that intermediate nodes are used in
order to create a path between such cluster members and the cluster head using
the shortest path routing protocol. The intermediate nodes participate in the
energy savings since gains can be achieved through multi-hop communication of
compressed packets. We see only little improvement in energy savings for cluster
PP topologies in contrast to the Poisson topology. The probability that cluster
members cannot be directly connected to the cluster head is much lower for the
considered cluster PP topologies since nodes are grouped together more closely.
It is noteworthy that the transmission range effects the total energy savings
of a given topology dependent on the cluster spread parameter of the chosen
deployment strategy.

From Figure 3 we can see the relation between total energy savings and the
payload size included during packet formation. The number of observations being
the payload is increased from 10 to 200. Increasing the payload size leads to less
relative header costs per packet and results in improvements independent on the
topology type.

Overall we can see from Figure 1 to Figure 3 that independent on the pa-
rameter varied the distributed compression gains for cluster PP topologies are
superior to those for Poisson PP in all cases. Furthermore, the Thomas PP topol-
ogy outperforms all other topologies and achieves significant total energy savings
through distributed compression of ≈ 26% in the reference case.

5.2 Impact of Deployment Strategies

For evaluation of different deployment strategies we focus on the total energy
consumption of wireless networks as the performance criterion. Because of the
significant total energy savings achieved by distributed compression we focus on
wireless networks applying this powerful technique.

Figure 4 and Figure 5 compare the deployment strategies considering the pa-
rameters correlation distance and number of clusters, respectively. The total en-
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Fig. 3. Total energy savings vs. number of observations per packet payload for three
topology types; rmax = 9, 2000 simulation runs
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Fig. 4. Total energy consumption vs. correlation distance for three topology types;
compression scheme applied; 2000 simulation runs

ergy consumption shows similar behaviour and reaches its minimum for Thomas
PP topologies. Taking into account the parameters number of observations and
cluster member transmission range confirms this result. Hence, the Thomas de-
ployment is our suggested node deployment strategy since it outperforms the
other approaches for all phenomena under study.
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Fig. 5. Total energy consumption vs. number of clusters for three topology types;
compression scheme applied; rmax = 9, 2000 simulation runs

It is noteworthy that the data points at the minimum number of clusters = 4
in Figure 5 are not fully reliable. The corresponding node connectivity is de-
creased by ≈ 20% for cluster topologies and even ≈ 40% for Poisson topologies
compared to all other data points. Low number of clusters result in large cluster
sizes. This implies inter-node distances exceeding the given transmission range
of cluster members thus generating disconnected nodes. Not connected nodes
are omitted in the energy consideration which leads to artificially lower values
in energy consumption.

We have shown that significant total energy savings can be achiy distribute
compression in realistic environments. In addition, optimized deployment strate-
gies lead to strongly reduced total energy consumption of wireless networks.
Those candidate approaches thus have high potential to make future wireless
networks “green”.

6 Network Lifetime Analysis

Operational network lifetime is a major performance criterion for networks also
from applications’ perspective. Hence, we continue our analysis considering life-
time focusing on cluster members, being the majority of the nodes, since those
are typically more resource-constrained than cluster heads. In our studies net-
work lifetime is defined as the number of data gathering cycles elapsed until the
first node in the network depletes its energy. After that it is considered to be
“dead”.
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Fig. 6. Lifetime extensions of cluster members vs. the correlation distance for three
topology types; 2000 simulation runs
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Fig. 7. Lifetime extensions of cluster members vs. the cluster member transmission
range for three topology types; rmax = 9, 2000 simulation runs

Figure 6 and Figure 7 depict the lifetime extensions on cluster member level in
relation to the correlation distance and the cluster member transmission range
for three topology types. Overall we can observe from those figures that the
Poisson PP topology is superior to all other topology types in terms of cluster
member lifetime extension. Other parameters are omitted since corresponding



530 F. Oldewurtel and P. Mähönen

0 20 40 60 80 100
0

100

200

300

400

500

600

cluster member lifetime extension [%]

oc
cu

rr
en

ce

 

 

Thomas
Poisson

Fig. 8. Histograms of the lifetime extension of cluster members for the Thomas PP
and Poisson PP topology; rmax = 9, 1500 simulation runs

results show similar behaviour. As we have seen this result is contrary to the
energy-efficiency analysis. In the following we provide an explanation for this
behaviour using the comparison of Thomas PP topology and the Poisson PP
topology exemplarily.

Higher cluster member lifetime extensions for the Poisson PP topology com-
pared to the cluster PP topologies are obtained. Reason is that there is on
average less reduction in the maximum energy consumption of cluster mem-
bers through distributed compression in the case of the cluster PP topologies.
Independent on the topology type some nodes experience high conditional en-
tropy values determined based on the phenomena values observed by the node
pairs. Those entropy values can be higher than the break point, thus switching to
the conventional scheme for such nodes since no energy savings can be achieved
if distributed compression is applied in this particular case. This implies that
a certain number of cluster members cannot improve their node lifetime. The
overall number of nodes having no lifetime extension is higher for the cluster PP
topology than for the Poisson PP topology. Figure 8 compares the histograms
of the cluster member lifetime for the Thomas PP topology and the Poisson PP
topology. From the figure we observe that the first bin representing no network
lifetime extension has ≈ 3 times higher occurrences in the Thomas case than
in the Poisson case, while the remaining part of the histograms does not show
severe discrepancy.

The strong difference in occurrences of the first bin influences the overall
network lifetime defined as the average value over the histogram. The resulting
average network lifetime extension is 33.3% in the Thomas case and 35.6% in
the Poisson case.
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The rationale for very different occurrences of the first bin lies in the different
probabilities of leaf nodes that are dependent on the topology type. A leaf node
is defined as a cluster member that does not have any descendent nodes. The
leaf node probability for the cluster PP topology is higher than for the Poisson
PP topology. Nodes are located on average closer to the respective cluster head,
forming often (albeit not always) direct connections due to the applied shortest
path routing protocol. The Poisson PP topology inherently has thus less leaf
nodes and more relaying cluster members at the same time. It is noteworthy
that this effect is dependent on the cluster member transmission range and
the cluster spread parameter since, for example, the Thomas PP topology with
extremely large cluster spread can be seen as Poisson PP topology.

In contrast to leaf nodes, relaying cluster members experiencing high condi-
tional entropies can improve their node lifetime. In fact this happens only when
relay nodes benefit from their descendent nodes through relaying of compressed
packets towards the sink. Required is at least a single descendent node experi-
encing entropy values below the break-point. Hence, even if relaying nodes face
high entropy values their node lifetime can be improved by the help of other
nodes.

As a result, considering energy consumption is not sufficient to make reliable
statements on lifetime. We have shown that reduced total energy consumption
does not directly imply extended operational lifetime as indicated in previous
works, for example, [13, 22]. However, solutions minimizing total energy con-
sumption can be used as a starting point towards maximizing network lifetime.

7 Conclusions

In this paper we have shown how “green” wireless networks with minimized
operational costs can be realized. The two concepts proposed rely on the ex-
ploitation of spatial correlations inherent to both the phenomenon under study
and the location of the nodes. In particular, we have investigated the distributed
compression scheme and optimized node deployment strategies. The application
of the candidate solutions show significantly reduced total energy consumption
of wireless networks. Furthermore, we provided the analysis of the network life-
time being often a major performance criterion from applications’ perspective.
As a result, we found that reduced total energy consumption does not always
directly imply extended operational lifetime of networks contrary to assumptions
made.
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Aachen University.
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